Errata discovered in Toroidally Confined Plasmas Plus improvements and additions

Second edition

Chap 1

Eq 1.25 last term first line, should be $-\vec{e}_{\alpha} \cdot \partial_{\beta}\vec{e}_{\kappa}$], indices α , β switched Eq 1.30 lhs should be $\nabla \zeta$ bottom p 11 Remove the subscript p in first expression, eliminate second expression, making $(1/2\pi) \int (\vec{B} \cdot \nabla \zeta) \mathcal{J} d\zeta d\theta d\psi = 2\pi \psi$,

Chap 2

Eq 2.31 The denominator should be $\mathcal{J}q$, not qImproved discussion after Eq 2.43 and added Prob 7

Chap 7

Improved energy transfer section and added the bounce frequency fishbone Added problem 1, pendulum Chap ${\bf 9}$

Eq 9.5 should be $(a, z)_s$, and line above should read "including the slow ..."

Revised Second Edition

Chap 2

page 34, 35 The expression for toroidal section before Eq 2.15 is wrong. It should be $\nabla \zeta'$, not $\nabla \theta$. Eq 2.43 $\vec{\zeta}$ should be $\nabla \zeta$

Chap 3

After Eq 3.8 there should be the remark that terms of second order in gyro radius have been dropped, ie terms in w^{**2} without a factor of dot(xi).

Eq 3.27 third row P_{θ} not P_{ζ} , last row $-\partial_{\psi}P_{\zeta}$

Third Edition

Chap 3

There should be an extended discussion of canonical momentum in tokamaks with reversed field. Co-injection refers to beam injection in the direction of the current, not the field, and confinement is better with co-injection than with counter injection. This is easy to remember by noting that two current carrying wires attract with co-current, and repel if opposite. Consider a particle co-injected at the last closed flux surface, with \vec{B} and \vec{j} positive, and coordinates with ϕ positive, and ϕ , ψ , θ right handed, as in Fig. 1.3. The particle will initially move in the positive θ direction, drift will be downward, and the particle well confined. Now reverse \vec{B} . The particle will initially move in the negative θ direction, drift will be upward, and again the particle will be well confined. The orbit position in the E, P_{ζ} , μ plane is unchanged. Thus we must define $P_{\zeta} = g\rho_{\parallel}(\vec{j} \cdot \vec{B})/(jB) - \psi_p$ with $\rho_{\parallel} = \vec{v} \cdot \vec{B}/B^2$. All equations in the book are written assuming that \vec{j} and \vec{B} are both positive.