
TH/6-2 1

Constructing Integrable High-pressure Full-current Free-boundary
Stellarator Magnetohydrodynamic Equilibrium Solutions.

S.R.Hudson 1), D.A.Monticello 1), A.H.Reiman 1), D.J.Strickler 2), S.P.Hirshman 2),
L-P. Ku 1), E.Lazarus 2), A.Brooks 1), M.C.Zarnstorff 1), A.H.Boozer 3), G-Y. Fu 1) & G.H.Neilson 1).

1) Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton NJ 08543, USA.
2) Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge TN 37831, USA.
3) Columbia University, New York, New York 10027, USA.

email contact of main author: shudson@pppl.gov

Abstract. For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates
for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested
flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for
breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic
islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlüter currents,
diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge
is to design the plasma and coils such that these effects cancel.

Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are sup-

pressed using a procedure based on the Princeton Iterative Equilibrium Solver [Comp. Phys. Comm., 43:157,

1986] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to

a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The

changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of

ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an

equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy

engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact

Stellarator eXperiment [Phys. Plas. 8(5):2083, 2001].

1. Introduction

An attractive stellarator requires a set of non-axisymmetric coils that confines a high-pressure plasma so
that the self-consistent plasma equilibrium currents and the coil currents combine to produce an integrable
magnetic field. A perfectly integrable field is too stringent a requirement for practical purposes — if the
perturbations are small, the theory of Kolmogorov, Arnol’d and Moser (KAM) [1] implies that flux
surfaces will exist almost everywhere; and sufficiently small magnetic islands will have little, if any, effect
on particle transport. In this context, ‘good-flux-surfaces’ indicates that the islands occupy less than
a tolerable percentage of the plasma volume. Nevertheless, to construct magnetohydrodynamic (MHD)
equilibria with high-pressure in which the island content is negligible is a challenging task.

Traditional stellarator design seeks to optimize plasma performance (particle orbits, MHD stability, etc.)
subject to engineering constraints. These optimizations rely on plasma equilibrium codes, and the fastest
stellarator equilibrium codes presuppose perfect flux surfaces — the existence or size of magnetic islands
cannot be addressed. The flux surface quality is investigated using equilibrium codes which allow a
general representation of the field including islands after the plasma and coils are designed. With such
an approach, there is no guarantee that the configuration will have acceptable flux surface quality.

The difficulty of constructing plasma equilibria with integrable fields lies in part that the plasma itself
is not controlled directly, but indirectly through coil design. Pfirsch-Schlüter currents, diamagnetic
currents and resonant coil fields contribute to the formation of magnetic islands. The challenge is to
design the plasma and coils such that these effects cancel. A recent article [2] presented a method by
which high-pressure full-current fixed-boundary solutions may be constructed with good flux-surfaces.
Small adjustments to the boundary were related to the resonant fields at rational rotational-transform
surfaces and, by suitable boundary adjustment, magnetic islands were suppressed.

Stellarator coils may be designed to balance the coil field and the plasma field on a given boundary; but,
practical considerations, such as cost, engineering constraints and diagnostic access, limit reconstruction
accuracy [3]. To balance the coil field and the plasma field perfectly at every point on a given boundary
requires a continuous current distribution on some prescribed surface, and if discretized will lead to
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FIG. 1: The modular coils of NCSX.

singular coil currents [4]. The fixed boundary healing work [2] showed that for the suppression of islands,
only a certain spectrum of modes of the normal field on a given boundary is related to island formation.
Ultimately it is the resonant magnetic fields at the rational surfaces that cause islands. In the small
island approximation, the width of an island depends on the magnitude of the resonant field, Bnm, and
the shear, ι-′,

∆ = (|Bnm|/| ι-′|m)1/2
. (1)

The phase of the island depends on the sign of both Bnm and ι-′. The fixed-boundary healing method, and
the method to be described in this article, express the resonant fields as functions of a set of independent
variables (boundary harmonics or coil geometry parameters). Standard numerical techniques may then
be used to set Bnm = 0: thus eliminating islands.

This article describes a method for constructing high-pressure full-current free-boundary MHD equilibria
with confining coils designed to suppress selected resonances. The method is based on the free-boundary
Princeton Iterative Equilibrium Solver (PIES) code [5] which iterates the MHD equilibrium equations to
solve for plasma equilibria in stellarator geometry. PIES does not constrain the magnetic field topology
to preserve nested magnetic flux surfaces and, for an arbitrary coil set, will converge to an equilibrium
with islands. Island suppression is achieved by modifying the coil geometry at each iteration so that
selected resonant components of the coil magnetic field cancel the resonant components of the plasma
magnetic field. It is of course necessary to ensure that the optimized plasma and engineering figures
of merit are not compromised in this procedure. This is achieved by constraining the coil variations
to lie in the nullspace of these figures of merit. As the iterations proceed, the coil geometry and the
plasma simultaneously converge to an island-free coil-plasma equilibrium with the desirable plasma and
coil properties preserved.

The method is applied to a stellarator design considered for the National Compact Stellarator eXperiment
(NCSX) [6]. Features of the design make special demands on the coil design to avoid magnetic islands.
NCSX is compact, thus the lack of symmetry is pronounced, and has a large shear and transform per
period, which produce multiple low order resonances. A significant percentage of the rotational transform
is provided by the plasma current and thus the vacuum rotational transform profile is quite different to
the designed operating reference configuration. Consequently, the removal of islands in the vacuum state
does not demonstrate the removal of islands in the full plasma current case. Also, NCSX will operate at
high plasma pressure. The effect of pressure will modify the shape of the equilibrium flux surfaces, and
thus modify the magnetic field spectrum produced by the coils at rational surfaces. In addition, magnetic
islands themselves are directly affected by pressure [7], and equilibrium calculations using the HINT code
[8] have shown that this can lead to an effect called ‘self-healing’ [9]. The finite-β full-current reference
configuration itself needs to be directly considered.
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2. Method

The total magnetic field, B, is the sum of the magnetic field produced by the plasma, BP , and the
magnetic field produced by the confining coils, BC , which is a function of a set of Fourier harmonics, ξ,
that describe the coil geometry, at the nth PIES iteration

Bn = Bn
P + BC(ξn). (2)

The initial plasma state is provided by the combined NESTOR and VMEC codes [10, 11], to give
the free-boundary VMEC code, which makes the artificial simplifying assumption that the plasma is
consistent with nested flux-surfaces, and the initial coil geometry is provided by the COILOPT code
[12]. The method presented in this article removes the constraint of nested flux-surfaces and allows the
initialization to relax into an equilibrium, potentially with islands, while making adjustments to the coil
set to remove selected islands as they develop. The PIES iterations solve for the plasma current J given
B and the pressure profile, p; and then the plasma magnetic field is solved given J

∇p = Jn+1 ×Bn, (3)
Jn+1 = ∇×Bn+1

P . (4)

The standard PIES algorithm makes no changes to the coil geometry and iterates through Eqns (3)
and (4) to calculate the equilibrium for the given coils and pressure profile. The additional steps for
coil-healing are as follows. The total magnetic field B at this stage is

Bn+ 1
2 = Bn+1

P + BC(ξn). (5)

The superscript n + 1
2

indicates that the intermediate total field B has not yet advanced to the next
iteration. At this stage, the plasma field has been updated, but the coil field has not. To avoid clumsy
notation, the intermediate total field will be represented simply as B.

We may consider B to be a nearly integrable field, and that magnetic islands are caused by fields normal
to, and resonant with, rational rotational-transform, ι-, flux-surfaces of a nearby integrable field. For each
resonance selected for suppression, a quadratic-flux-minimizing surface [13] is constructed. A quadratic-
flux-minimizing surface is a surface that extremizes the quadratic-flux functional

ϕ2 =
1
2

∫ ∫ [
∂S

∂θ

]2

dθdζ, (6)

where S is the magnetic field line action S =
∮

A · dl, A is the magnetic vector potential and θ, ζ are
poloidal and toroidal coordinates. Each such surface may be considered as a rational flux-surface of
an underlying integrable field [14], with each surface passing through its associated island chain. The
construction of the quadratic-flux-minimizing surfaces provides an optimal magnetic coordinate system
exactly and only where required — at the rational rotational-transform surfaces where islands develop.
The amplitude of each resonant field harmonic is calculated by Fourier decomposing the field normal to
the surface in an angle coordinate which corresponds to a straight field line coordinate of the integrable
field on that surface. The selected set of resonant harmonic amplitudes thus calculated is denoted
{Bi : i = 1, N}, where Bi = Bni,mi is the (ni, mi) Fourier harmonic of (B · ∇ψ/B · ∇ζ) calculated on the
rational surface labeled by ψ.

The COILOPT [12] code provides a convenient Fourier representation of the coil geometry and an ap-
propriate set of coil harmonics {ξj : j = 1,M} is systematically varied to set Bi = 0 using a Newton
method. The coupling matrix, ∇BCij, is defined as the partial derivatives of the selected resonant har-
monics of the coil magnetic field normal to the quadratic-flux-minimizing surface (held constant during
each PIES/healing iteration) with respect to the chosen coil harmonics and is calculated using finite-
differences. In the linear approximation, a multi-dimensional Newton method determines the coil changes
δξn

j that cancels the resonant fields

Bi +
∑

j

∇BCij · δξn
j = 0. (7)

This equation is solved for the δξn
j in a few iterations by inverting the N×M matrix ∇BCij using singular

value decomposition (SVD) [15] and the new coil set is obtained

ξn+1
j = ξn

j + δξn
j , (8)
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FIG. 2: Poincaré plot of converged healed coil-plasma configuration (upper) and of the original
configuration (lower). The VMEC initialization boundary (solid line) and the boundary of the
VMEC configuration consistent with the healed coils (dashed line – upper) are also shown.

such that the resonant component of the combined plasma-coil field is eliminated. By adjusting the coil
geometry at every iteration, the inherent non-linearity of the plasma response is effectively controlled.
As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium
with good flux-surfaces.

The healing algorithm just described is augmented to include engineering constraints. The coils are
represented by filaments (with zero cross-sectional area). It is required that the coil filaments are well
separated to allow for finite thickness coils that will eventually be built. Also, there is a limit to how
tightly the coils can bend. The initial coil set, described by ξ0, is satisfactory from an engineering
perspective. To include the engineering constraints, the vector Bi of resonant fields to be eliminated
is augmented by including the (appropriately weighted) differences in coil-coil separation and minimum
bend-radius (calculated by COILOPT) of the nth coil set, described by ξn, from the initial coil set.
To the accuracy of the finite difference calculation of the coupling matrix, and to the validity of the
linear approximation, this constrains the island eliminating coil variations to lie in the nullspace of these
measures of engineering acceptability. Also, the kink stability of the free-boundary VMEC equilibrium
for each trial coil set is computed using TERPSICHORE [16], and in a similar manner changes to the
coil geometry are constrained to preserve kink stability. Finally, some numerical checks are performed to
ensure that the suggested coil correction does in fact reduce the magnitude of the function vector |Bi|,
and if not, the coil correction is rejected.

3. Application to NCSX

The method is routinely applied to NCSX [6] candidate coil and plasma designs. The plasma design
adopted by NCSX has 3 field periods, is quasi-axisymmetric to give good transport and is stable to kink
modes at β=4.1%, but is marginally unstable to infinite n ballooning modes. The rotational-transform
profile has ι- ≈ 0.4 on axis, ι- ≈ 0.66 near the edge and ι- ≈ 0.65 at the edge: including the low order
resonances ι- = 3/7, 3/6 and 3/5. The coil design has 6 stellarator symmetric modular coils per period,
shown in Fig.(1), and additional vertical field coils and trim coils.
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FIG. 3: Coil comparison showing the original coils and the healed coils on the toroidal
winding-surface.

Considering a candidate coil set (named m45) and selecting the (n,m)=(3,6),(3,5) islands, together with
the minimum bend-radius, coil-coil separation and kink stability (9 constraints), and allowing some
m=3,4,5,6,7 and 8 coil harmonics to vary (36 independent variables), a kink-stable healed-plasma equi-
librium, with coils preserving the engineering measures, is obtained. Several hundred PIES/healing
iterations are required to achieve convergence in the coil geometry. To confirm convergence in the plasma
equilibrium, several hundred additional PIES iterations are performed with the coil geometry unchanged.
A Poincaré plot of the final field is shown on an up-down symmetric toroidal cross section in Fig.(2).

Small high-order islands, (n,m) = (3, 7), (6, 12), (6, 11), (6, 10) and (9, 14), that have not been selected for
reduction remain but these are considered tolerable. There is some resonant (n,m) = (12, 18) deformation
where ι-′ = 0 near the edge, which indicates that additional near-resonant fields may need to be eliminated.
The plasma retains quasi-axisymmetry and is stable to finite-n ballooning modes with n < 45. A Poincaré
plot of the original configuration is shown after 180 standard PIES iterations and this case deteriorates
into large regions of chaos as the iterations continue.

The boundary of the VMEC equilibrium consistent with the original coils is shown as the solid line.
This equilibrium was used to initialize the PIES/healing run. The boundary of the VMEC equilibrium
consistent with the healed coils is shown as the dashed line in the upper half of the plot. If the PIES
equilibrium was perfectly healed, then it and the VMEC equilibrium should agree. The agreement
between the PIES and VMEC boundaries is good, but not perfect. The difference may result from the
existence of small residual islands in the PIES equilibrium. To investigate this further, it may be necessary
to extend the coil healing to suppress the higher order islands, and to perform convergence studies in
various numerical resolution parameters in both VMEC and PIES. The results shown here used 63 radial
surfaces, 12 poloidal and 6 toroidal modes for the PIES calculation, and 49 radial surfaces, 9 poloidal
and 5 toroidal modes for the VMEC calculation.

The application of SVD in this case identifies which coil harmonics are most pertinent to island formation.
In this application we choose sufficiently many coil geometry harmonics to ensure there are more degrees
of freedom than constraints, and the extra freedom is used to determine a solution with the minimal
change to the coils. The coil harmonics varied correspond to the toroidal variation of the modular coils
on a toroidal ‘winding-surface’. The winding-surface itself is not altered in this application, though this
is possible as it is also described by a Fourier representation. The maximum coil alteration is about 2cm,
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FIG. 4: Poincaré plots of equilibria with the healed coils: (a) the operating reference configuration
using a multi-filament description, and (b) a vacuum case. The boundary of the corresponding
VMEC equilibrium is shown as the solid line for each case.

which comfortably exceeds manufacturing tolerances, but is not so large that coil-healing significantly
impacts other design concerns, such as diagnostic access. The healed coils are compared to the original
coils in Fig.(3). On the scale of this figure it is difficult to notice the difference between the coils. That
such a small coil change can produce a significant change in the quality of the equilibrium is reasonable
considering that it is the resonant harmonics of the coil geometry that have been altered. Very small
resonant error fields can give rise to significant islands, particularly where the shear is small.

4. Flux surface quality of equilibria supported by healed coils and trim coil healing

The coil healing has assumed a filamentary model of the coils. The flux surface quality of the equilibrium
supported by a finite cross-section of the coils was performed. A multi-filament coil set was generated to
model the finite thickness of the healed coil set by replacing each filament of the original coil set with an
array of 32 parallel filaments. The total envelope of the coil cross-section is 12 cm high by 10 cm wide.
Without further healing, the flux surface quality of equilibrium consistent with the multi-filament coils
as calculated by PIES remains intact, as shown in Fig.(4a). In fact, the surface quality appears to have
improved, particularly near the edge.

With the geometry fixed, there remains freedom in variation of the coil currents and this freedom can
be used to generate a variety of configurations to illustrate the flexibility of NCSX [17]. Various vacuum
states were generated that preserve good-flux-surfaces, and one such state is shown in Fig.(4b).

To judge whether there are plausible and reasonable paths from vacuum fields to the desired NCSX
target equilibrium, a discharge scenario was constructed. The discharge scenario is essentially a sequence
of equilibria, with increasing β, that evolves the current profile in time self-consistently from the discharge
initiation to the high β state. The evolution of the aspect ratio, a, plasma current, I, plasma β, and the
rotational-transform on the axis and at the edge are shown in Table 1.

Table 1: Discharge Equilibria Sequence
time (ms) a I (A) β (%) axis ι- edge ι-

50 4.415 5.34e4 1.22 0.443 0.543
100 4.390 8.16e4 3.38 0.427 0.511
116 4.383 9.02e4 3.67 0.442 0.598
139 4.427 9.97e4 3.93 0.358 0.585
303 4.466 1.32e5 4.58 0.307 0.655

The width of magnetic islands depends in part on plasma pressure [9] and the pressure, current and
rotational-transform profiles. As the configuration departed from the healed reference configuration,
islands did re-appear as shown in Fig.(5); however, the island content of the healed coils was smaller than
the island content of the original coils. An example of this is shown in Fig.(5d), which shows the Poincaré
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FIG. 5: Poincaré plots of the discharge configuration sequence: (a)t=50ms (b)t=100ms (c)t=139ms
(d)t=303ms for the healed coils. In the lower half of (b), trim coils have been used to eliminate the
(n,m) = (3, 6) island. In the lower half of (d), the original coils are used. The boundary of the
corresponding VMEC equilibrium is shown as the solid line for each case.

plots for the 303ms equilibrium supported by the healed coils and the ‘same’ equilibrium supported by
the original coils. The island content is smaller with the healed coils, and there are less chaotic field
lines near the plasma boundary. Note that none of the discharge sequence equilibria were optimized with
respect to surface quality and the current and pressure profiles are different to the profiles of the reference
configuration.

To provide additional control of island widths as the configuration varies, the NCSX design includes
arrays of m = 5 and m = 6 trim coils which provide control of the (n,m) = (3, 5) and (3, 6) resonances
respectively. To determine the current required in the m = 6 trim coil to suppress the (n,m) = (3, 6)
island in the 100ms equilibrium, the method as presented in Section 2 was applied. In this case, the set
of independent variables were chosen to be the trim coil currents, and the geometry of the modular coils
was not changed. A trim coil current of about 1kA was required, and the improvement in the flux surface
quality is shown in Fig.(5b).

5. Comments

Present and future work on this topic includes the following: (a) Ballooning stability will be directly
included as a constraint. In the results shown here, it was fortune rather than design that ballooning
stability was not substantially violated. It is preferable to ensure the healed plasma-coil configuration
is ballooning stable. (b) The finite difference calculation of the coupling matrix ∇BCij involves M
independent trial coil set evaluations. This aspect of the algorithm can be parallelized to achieve a
great increase in speed. (c) The evaluation of the kink and ballooning stability is based on the free-
boundary VMEC equilibrium for a given trial coil set. As there is potentially some slight discrepancy
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between the VMEC and PIES equilibrium, a more consistent analysis will calculate the stability of the
PIES equilibrium directly. (d) Additional constraints, such as specifying the location of the magnetic
axis and the rotational-transform profile, may be included. With the particular application of this
method to NCSX, for which great effort has been made to ensure the plasma is quasi-axisymmetric,
the preservation of quasi-axisymmetry should be explicitly guaranteed. (e) It may be possible to design
coils to simultaneously heal multiple configurations — to ensure an island free discharge evolution or to
provide additional flexibility.

Presented is a stellarator design optimization routine that results in kink-stable plasma configurations
with negligible island content and matching build-able coil-designs. In principle, by selecting additional
high order islands, and allowing more coil parameters to vary, this method can reduce the islands to any
desired level. In addition to the improvement in particle confinement, the construction of equilibria with
good-flux-surfaces has implications for stellarator MHD stability calculations, which are usually based
on equilibria artificially constrained to have nested flux surfaces. As the equilibria constructed using
this method relax the unphysical imposition of nested surfaces, but maintain integrability by design,
stability studies based on these equilibria are expected to be more reliable. The construction of integrable
configurations provides the basis for comparison with codes that impose nested flux surfaces such as
VMEC, and allows numerical investigation of the effect of perturbations on an integrable field. It will
be interesting to determine how the equilibrium, in particular the island widths and associated chaos,
behaves as a perturbation is applied and to compare with theoretical predictions [18].

We thank the NCSX design team, Raul Sanchez and Tony Cooper for use of the COBRA and TERPSI-
CHORE codes. This work was supported in part by US Department of Energy contract DE - AC0276CH03073.

[1] D.K. Arrowsmith and C.M. Place. An introduction to Dynamical Systems. Cambridge University
Press, Cambridge, U.K., 1991.

[2] S.R. Hudson, D.A. Monticello, and A.H. Reiman. Physics of Plasmas, 8(7):3377, 2001.

[3] M. Drevlak. Fusion Technology, 33:106, 1997.

[4] P. Merkel. Nuclear Fusion, 27(5):867, 1987;

[5] A.H. Reiman and H.S. Greenside. Computer Physics Communications, 43:157, 1986.

[6] A. Reiman, L. Ku et al. Physics of Plasmas, 8(5):2083, 2001.

[7] A.H. Reiman and A.H. Boozer. Physics of Fluids 27:2446, 1984.

[8] T. Hayashi, T. Sato et al. Physics of Plasmas, 1(10):3262, 1994.

[9] A. Bhattacharjee, T. Hayashi et al. Physics of Plasmas, 2(3):883, 1995.

[10] S.P. Hirshman, W.I. van Rij and P. Merkel. Computer Physics Communications, 43:143, 1986.

[11] S.P. Hirshman and O. Betancourt. Journal of Computational Physics, 96:99, 1991.

[12] D.J. Strickler, L.A. Berry, and S.P. Hirshman. Fusion Science and Technology, 41(2):107, 2002.

[13] R.L. Dewar, S.R. Hudson, and P. Price. Physics Letters A, 194:49, 1994.

[14] S.R. Hudson and R.L. Dewar. Physics of Plasmas, 6(5):1532, 1999.

[15] W.H. Press, B.P. Flannery et al. Numerical Recipes in Fortran 77 : The art of scientific computing.
Cambridge University Press, Cambridge, U.K., 2nd edition, 1992.

[16] D.V. Anderson, W.A. Cooper et al. International Journal of Supercomputer Applications and High
Performance Computing, 4:34, 1990.

[17] N.Pomphrey, R.Hatcher et al. 29th European Physical Society Conference on Plasma Physics and
Controlled Fusion 17-21 June 2002, Montreux, Switzerland.

[18] C.C. Hegna. UW-CPTC, 99-6, 1999.


