PHYSICS ISSUES FOR A VERY-LOW-ASPECT-RATIO QUASI-POLOIDAL STELLARATOR (QPS)*

J. F. Lyon, L. A. Berry, S. P. Hirshman, D. A. Spong, D. J. Strickler P. K. Mioduszewski, B. E. Nelson, D. E. Williamson. E-mail: lyonjf@ornl.gov *Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, TN 37831-8072, U.S.A.*

A. S. Ware, E. Barcikowski, A. J. Deisher University of Montana-Missoula, Missoula, Montana 59812, U.S.A.

A. Brooks, G. Y. Fu, S. Hudson, D. Mikkelsen, D. A. Monticello, N. Pomphrey *Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08502, U.S.A.*

R. Sanchez, Universidad Carlos III de Madrid, Madrid, Spain

A quasi-poloidal stellarator with very low plasma aspect ratio ($\langle R \rangle / \langle a \rangle \sim 2.7$, 1/2-1/4 that of existing stellarators) is a new magnetic confinement approach that could ultimately lead to a high-beta ($\langle \beta \rangle = 7-15\%$) disruption-free compact stellarator reactor. In this approach the dominant components in the magnetic field spectrum are poloidally symmetric in flux coordinates. The quasi-poloidal symmetry leads to small $\mathbf{B} \times \nabla B$ drifts out of a flux surface and reduced neoclassical transport, reduced flow damping in the poloidal direction; and reduced bootstrap current. The reduced bootstrap current leads to high- β MHD stability limits.

The Quasi-Poloidal Stellarator

The Quasi-Poloidal Stellarator (QPS) [1] shown in Fig. 1 is being developed to test key features of this approach. The main QPS parameters are $\langle R \rangle = 0.9$ m, $\langle a \rangle = 0.33$ m, $\langle B_{axis} \rangle = 1$ T for a 1-s pulse, and $P_{heating} = 1-3$ MW. The shape of the QPS flux surfaces varies from bean-shaped at the higher-field ends to D-shaped in the middle of the long straight sections. In the plasma core $(r/\langle a \rangle < 1/2)$ the magnetic energy in non-poloidally symmetric field components is $\langle 10\%$ of that in the poloidally symmetric field components and rises to $\sim 30\%$ at the plasma edge.

Fig. 1. Top (left) and side (above) views of the QPS plasma and the modular coils that create it. The colors indicate contours of |B| in T on the last closed flux surface.

A measure of the reduction in neoclassical transport is shown in Fig. 2. For $E_r = 0$ in the lowcollisionality limit, the neoclassical ripple-induced heat diffusivity is proportional to $\varepsilon_{eff}^{3/2}$ where ε_{eff} is the effective ripple in a single helicity 1/v transport model that gives the same transport as a full 3-D calculation in this limit. QPS has similar transport to that in the W 7-X configuration, but at 1/4 the plasma aspect ratio. The quasi-poloidal symmetry and the reduced effective field ripple may also produce reduced poloidal viscosity, enhancing the naturally occurring $\mathbf{E} \times \mathbf{B}$ poloidal drifts for possible shear damping reduction of anomalous transport. The QPS magnetic configuration is relatively insensitive to increasing β . The plasma is Mercier stable for $\langle\beta\rangle \sim$ 2.5%. Kink and vertical modes are stable at $\langle\beta\rangle \sim 5\%$ without feedback or close conducting walls. The MHD stability limit for QPS is theoretically set by infinite-*n* ε_{eff} ballooning modes at $\beta \sim 2\%$. However, a region of second stability at higher β exists in QPS. As β is increased above 2%, the plasma becomes ballooning unstable. At higher β ($\beta > 6\%$), the core plasma enters a region of second stability. This region of second stability grows as β is increased. At the highest β ($\beta = 9.6\%$) only a few surfaces near the edge remain ballooning unstable.

High-B Quasi-Poloidal Hybrid Configurations

Another type of qps configuration is very-high- β hybrid configurations with a tokamak-like rotational transform profile [2] in contrast to the stellarator

Fig. 3. (a) The last closed flux surface of a three-field period, $\beta = 15\%$, A = 3.7, qps configuration with (b) contours of |B| in Boozer space for the $(r/a)^2 = 0.75$ surface and (c) normalized ballooning growth rates for a range of β .

rotational transform profile of QPS. Figure 3a shows the last closed flux surfaces for a three-field period hybrid qps configuration with A = 3.7 and $\beta = 15\%$. The colors indicate contours of constant |B|. Contours of |B| in Boozer coordinates are shown in Fig. 3b for the $(r/a)^2 = 0.75$ surface which display the qps symmetry of this configuration. The high- β qps configurations have a high shear, tokamak-like rotational transform profile $[\iota(0) \sim 0.4 \text{ to } \iota(a) \sim 0.1]$ primarily from bootstrap current. The non-axisymmetric $(n \neq 0)$ Fourier components of |B| reduce the neoclassical bootstrap current to 1/3-1/5 that in the equivalent tokamak, resulting in stability to low-*n* ideal MHD kink modes for high values of β , up to $\beta = 11\%$ for kink and vertical stability. At this value of β , the Troyon factor $\beta_N = 19$ is significantly larger than the $\beta_N \sim 3$ for kink stability in an equivalent tokamak with no wall stabilization. The infinite-*n* ballooning and Mercier stability β limit for these qps configurations is very high: Mercier and ballooning-stable configurations with self-consistent bootstrap current were found for plasmas with $2\% < \beta < 23\%$.

* Research supported by the U.S. Dept. of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC and Grant No. DE-FG03-97ER54423 at the University of Montana.

^[1] J. F. Lyon and the QPS team, "QPS, A Low Aspect Ratio Quasi-Poloidal Concept Exploration Experiment", <u>http://qps.fed.ornl.gov/</u>, April 2001.

^[2] A. S. Ware, et al., "High- β Equilibria of Drift Optimized Compact Stellarators", submitted to Phys. Rev. Lett. (2002).