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1. Introduction
One of the most important advances in magnetically confined fusion plasma physics has

been the discovery of high confinement regimes, where at sufficiently high heating power, the
plasma self-organises to produce internal transport barriers. Whilst descriptive theories for these
transport barriers exist (e.g. shear flow suppression of turbulence [1] and chaotic magnetic field
line dynamics [2]), little research has been devoted to addressing why the plasma self-organises
into this state. One possible explanation is that these are constrained minimum energy states,
where the plasma within the barrier satisfies ideal MHD, and the plasma between barriers is in
a Taylor relaxed state [3].

Taylor relaxation describes plasma with small but finite resistivity and viscosity, in which the
magnetic field has evolved to a minimum energy state, subject to the conservation of magnetic
helicity and toroidal flux, and the presence of a perfectly conducting wall. In such plasma states
the pressure gradient is zero, and the magnetic field B satisfies the Beltrami equation

∇×B = µB (1)
with the Lagrange multiplier µ below some critical value µT , which depends only on the ves-
sel. By introducing ideal MHD barriers between different Taylor relaxed states, equilibria with
stepped pressure profiles can be constructed. Subject to the imposed constraints, these new
equilibria are in a relaxed or minimum energy state, and so may explain the existence of trans-
port barriers in toroidal magnetic confinement experiments. The stepped pressure profile model
also offers a possible solution to the long-standing 3D equilibrium existence problem [4].

2. Stepped Pressure Plasmas in Cylindrical Geometry : Equilibria
Our working builds principally upon a variational model developed by Spies et al.[5], which

comprised a plasma/vacuum/conducting wall system. In Spies [5] the theory is applied to a
plasma slab equilibrium, with boundary conditions designed to simulate a torus. Later analysis
by Spies [6] extended the plasma model to include finite pressure. More recently, Kaiser and
Uecker [7] analysed the finite pressure model in cylindrical geometry. In this work, we gener-
alise the analysis of Kaiser and Uecker [7] to an arbitrary number of Taylor relaxed states, each
separated by an ideal MHD barrier. For this system, the energy functional can be written

W = U −Σn
i=1µiHi/2−Σn

i=1νiMi (2)
Setting the first variation to zero yields the following set of equations :

Pi : ∇×B = µiB, pi = const. (3)
Ii : n ·B = 0, < pi +1/2B2 >= 0 (4)
V : ∇×B = 0, ∇ ·B = 0 (5)
W : n ·B = 0 (6)



where Pi,Ii are the i’th plasma region and interface, and V ,W are the vacuum region and
wall, respectively. Also, µi is the Lagrange multiplier in each region, pi the pressure in each
region, n a unit vector in the radial direction, and < x >= xi+1 − xi denotes the change in
quantity x across the interface Ii. Figure 1 shows an example with 5 ideal barriers (shown as
solid circles in panel (a), interior to the boundary). In addition to the poloidal flux, the safety
factor is plotted, which decreases in Taylor relaxed regions, and undergoes step discontinuities
at the ideal MHD barriers.

3. Stability Analysis
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Figure 1: Example of a stepped-pressure
plasma profile, with five ideal MHD barriers,
showing : (a) a contour plot of the polodial flux,
(b) the pressure profile, and (c) the safety factor.

To investigate stability, we minimize δ 2W
with respect to the perturbed vector potential
a, while keeping the displacement ξi of the
interfaces constant. This reduces the energy
functional δ 2W to a summation of interface
integrals. Solutions for the cylinder are ob-
tained by using a Fourier decomposition in
the poloidal and axial directions for the per-
turbed field b = ∇×a and the displacements
ξi. In general, the solutions for both the equi-
librium and perturbed field are Bessel func-
tions, and modified Bessel functions, respec-
tively. The use of interface conditions relates
the perturbed magnetic field amplitude to the
equilibrium quantities. Finally, stability is as-
sessed by computing the free energy summed
over the different interfaces. The space of un-
stable solutions is mapped numerically, and
compared to systems with fewer constraints.
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