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Abstract We develop a multiple interface variational model, comprising multiple Taylor-relaxed plasma
regions, each of which are separated by an ideal MHD barrier. A principle motivation is the development
of a mathematically rigorous ideal MHD model to describe intrinsically 3D equilibria, with nonzero
internal pressure. A second application is the description of transport barriers as constrained minimum
energy states. As a first example, we calculate the plasma solution in a periodic cylinder, generalizing the
analysis of the treatment of Kaiser and Uecker, Q. Jl. Mech. Appl. Math.,57(1), 2004, who treated the
single interface in cylindrical geometry. Expressions for the equilibrium field are generated, and equilib-
rium states computed. Unlike other Taylor relaxed equilibria, for the equilibria investigated here, only the
plasma core necessarily has reverse magnetic shear. We show the existence of tokamak like equilibria,
with increasing safety factor and stepped-pressure profiles. A stability treatment of the multiple barrier
configuration reduces to an eigenvalue problem, where the eigenvectors are the normal displacements of
the ideal barriers, and the eigen-matrix has tridiagonal structure. Next, marginal stability thresholds are
explored in parameter space. For a single interface, results are benchmarked to Kaiser and Uecker. For
multiple interfaces, we check our working via convergence tests, which reveal that the system approaches
the single barrier case in the limit of vanishing interface width. The analysis provides a foundation upon
which to study the stability of systems with a single internal barrier, placed at the reverse shear point.

1. Introduction

In 1967, Grad showed that in order for a static 3D equilibrium to exist, the pressure gradient
(∇p) must be zero in the neighbourhood of every rational flux surface, and poloidal flux ψp
surfaces must be relinquished. Since this time, this existence problem in 3D geometry has
remained controversial. Our working develops a mathematically rigorous model of 3D ideal
MHD configurations, in which the pressure is stepped, and ∇p is zero locally in any finite vol-
ume.

The original formulation of the 3D equilibrium problem, as proposed by Grad, was the search
for a helical field in cylindrical coordinates. Grad reduced the problem to the magnetic differ-
ential equation B � ∇ζ � 1, with ζ a current potential. Next, Grad proved that unless stringent
conditions are imposed on B, the potential ζ is a non-integrable function due to resonances at
rational rotational transform ι . If ζ is non-integrable, then J and the total current are infinite,
and the solution unphysical. A more transparent illustration, which elucidates the requirements
on B and ∇p for arbitrary 3D configurations involves adding a helical field perturbation δB
to a 2D field B0 with perfect flux surfaces [1]. The field must always satisfy J � B � ∇p,
hence B0

� ∇p0
��� B0 � δB � � ∇ � p0 � δ p � � 0. Here, J is the current density and p0 and δ p the

unperturbed and perturbed pressures. To first order, we require

δB � ∇p0
��� B0

� ∇δ p 	 (1)

By employing magnetic coordinates � ψt 
 θm 
 φ � for B0, with θm and φ magnetic poloidal and
toroidal angles, and linearizing the perturbations

δ p � ∑
m

∑
n

pmnei � nφ � mθ  
 (2)

δB � ψt

B0
� ∇φ

� ∑
m

∑
n

bmnei � nφ � mθ  
 (3)



it can be shown that Eq. (1) reduces to

i � n � mι � ψt � � pmn
� p

�
0
� ψt � bmn 	 (4)

Here, n and m are toroidal and poloidal mode numbers, and pmn and bmn perturbed pressure
and magnetic field Fourier coefficients. In general, and for a given � m 
 n � perturbation within
the range ιmin

� n
�
m � ιmax there will be a flux surface ψt resonant with the perturbation (i.e.

ι � ψt � � n
�
m). For these cases, a nonzero 3D perturbation can exist only if p

�
0
� ψt � � 0. The

existence of 3D equilibria can hence only be guaranteed providing ∇p0
� 0.

Fields for which ∇p � 0 are Beltrami fields, or force-free magnetic fields in astrophysical litera-
ture, where they were introduced over 50 years ago by Lüst and Schlüter [2] and Chandrasekhar
[3], amongst others. The motivation for the work was the vanishing of the Lorenz J � B force,
enabling astrophysical stationary state solutions. Woltjer [4] was the first to derive a Beltrami
field by trying to minimize the total energy of a pressure-less plasma subject constant helicity.
Whilst successfully describing the nature of stable solutions, Woltjer’s working did not address
how the plasma evolved to the lower energy state. Nearly 20 years later, Taylor [5-6] addressed
this difficulty by two conjectures initially developed to describe turbulent relaxation in the re-
verse field pinch : magnetic helicity would be roughly conserved during the relaxation process,
even in the presence of resistivity, and that no other topological invariant would survive the
relaxation phase. Since these formulative works, a large body of literature has been devoted
to force-free fields and Taylor relaxation. In astrophysical plasmas, important applications in-
clude coronal loops and accretion disks. In laboratory plasmas, examples include reverse field
pinches and spheromaks. The geophysical monograph “Magnetic Helicity in Space and Labo-
ratory Plasmas” [7] provides an an overview, and lists seminal references.

A parallel advance in magnetically confined fusion plasma physics has been the discovery of
high confinement regimes, where at sufficiently high heating power, the plasma self-organises
to produce internal transport barriers. Whilst descriptive theories for these transport barriers
exist (e.g. shear flow suppression of turbulence [8] and chaotic magnetic field line dynamics
[9]), little research has been devoted to addressing why the plasma self-organises into this state.
One possible explanation is that these are constrained minimum energy states, where the plasma
within the barrier satisfies ideal MHD, and the plasma between barriers is in a Taylor relaxed
state [6].

Our working builds principally upon a variational model developed by Spies et al [10], which
comprised a plasma/vacuum/conducting wall system. In Spies [10] the theory is applied to a
plasma slab equilibrium, with boundary conditions designed to simulate a torus. Later analysis
by Spies [11] extended the plasma model to include finite pressure. In 2005, Kaiser and Uecker
[12] analysed the finite pressure model in cylindrical geometry. More recently, Hole et al [13]
extended the single interface cylindrical treatment of Kaiser and Uecker to multiple interfaces,
and demonstrated the existence of partially relaxed Taylor plasmas with tokamak-like magnetic
shear profiles. In this work, we perform a stability analysis on the stepped pressure profile plas-
mas in cylindrical geometry. Our working also complements work by Hudson et al [14], which
developed a numerical algorithm for the calculation of Beltrami fields in weakly asymmetric
plasmas.

This paper is arranged as follows : Sec. 2 presents the variational model for the stepped pressure
profile equilibria. Equations for equilibrium and perturbed fields are derived, and expressions
for plasma stability determined for local and global displacements. Section 3 solves for the



equilibrium field in cylindrical geometry, and generates a mapping between different equilib-
rium constraint representations. Next, Sec. 4 solves for the perturbed field in a cylindrical
plasma, and reduces the stability to an eigenvalue equation. The eigenvalue problem is solved
numerically for one and two barrier systems. Finally, Sec. 5 contains concluding remarks.

2. Multiple Interface Plasma-Vacuum Model

We generalise the analysis of Kaiser and Uecker [12] to an arbitrary number N of Taylor relaxed
states, each separated by an ideal MHD barrier. The system is enclosed by a vacuum, and
encased in a perfectly conducting wall. For such a system, the energy functional can be written

W �
N

∑
i � 1

Ui
� N

∑
i � 1

µiHi
�
2 �

N

∑
i � 1

νiMi (5)

where µi and νi are Lagrange multipliers, and

Ui
� ���

i

dτ3 � Pi

γ � 1 �
B2

i

2 � 
 (6)

Mi
� � �

i

dτ3P1 � γ
i 
 (7)

Hi
� � �

i

dτ3A � ∇ � A ���
Csi

dl � A �
Cli

dl � A 	 (8)

The term Ui is the potential energy, Mi the plasma mass, and Hi the magnetic helicty in each
region 	 i. In Eqs. (6) - (8), dτ3 is a volume element, γ the ratio of specific heats, and Pi 
 Bi
and Ai the equilibrium pressure, magnetic field strength and vector potential respectively. The
regions 	 i comprise the N plasma regions 	 i

��

i and the vacuum region 	 N � 1

�� . Each
plasma region 
 i is bounded by the outer and inner ideal MHD interfaces � i, and � i � 1 respec-
tively, whilst the vacuum is encased by the perfectly conducting wall � . Finally, Csi and Cli
are fixed loops the short and long way around 	 i. Figure 1(a) shows the geometry of the system.

Setting the first variation to zero yields the following set of equations:

i; ∇ � B � µiB 
 Pi

� const 	 
 (9)� i; n � B � 0 
 � Pi � 1
�
2B2 � � 0 (10) ; ∇ � B � 0 
 ∇ � B � 0 (11)� ; n � B � 0 (12)

where n a unit vector normal to the plasma interface � i, and � x � � xi � 1
� xi denotes the change

in quantity x across the interface � i. The boundary conditions on n � B arise because each
interface and the conducting wall is assumed to have infinite conductivity. In turn, these imply
the following flux constraints during Taylor relaxation:


i ; Ψt
P� i � const 
 (13) ; Ψt
V
� const 
 Ψp

V
� const 
 (14)

where the subscripts Pi 
 V are labels for quantities within the i’th plasma region, and vacuum re-
gion respectively, and the superscripts p 
 t label the fluxes as poloidal and toroidal, respectively.
Given the vessel with boundary � , the interfaces � i, and the magnetic field B, Eqs. (9)-(12)
constitute a boundary problem for the plasma pressure Pi in each region 	 i.
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Figure 1: Schematic of magnetic geometry (a), showing ideal MHD barriers � i, the conducting
wall � , plasma regions 
 i and the vacuum  ; and example stepped-pressure plasma profile
solution in cylindrical geometry, (b)-(d). Panel (b) is a shaded contour plot of the polodial flux,
where the dashed line is the vacuum boundary, and the dotted lines the ideal barriers within the
plasma. Panels (c) and (d) show the pressure profile and safety factor profile, respectively.

The second variation is a straightforward generalization of Spies [10, 11] to multiple interfaces.
That is,

δ 2W �
n

∑
i � δ 2WP� i � δ 2WI � i � � δ 2WV (15)

where

δ 2WP� i � � �
i

dτ3 � �∇ � a
� 2 � µia � � ∇ � a � � pi

� 2 �
γiPi � (16)

δ 2WI � i � ���
i

dσ 2 � ξi
� 2 � Bn � ∇B � (17)

δ 2WV
� � � dτ3 �∇ � a

� 2 (18)

and where, following Kaiser and Uecker[12], we have used upper case symbols to denote equi-
librium quantities, and lower case use to represent perturbation. Hence, a is the perturbed vector
potential and pi the perturbation in the equilibrium pressure Pi. The term γi is the ideal gas con-
stant in each region, whilst ξi

� ξ i
� n denotes the normal displacement of Ii.

In Spies [10] the condition δ 2W � 0 was re-formulated as a highly nonlinear eigenvalue prob-
lem. That is, the functional δ 2W has been minimized subject to the constraint of constant NA,
where

NA
� � �
	�� d3τ

�
∇ � a

� 2 (19)

To solve the problem the Lagrangian multiplier λ was introduced, and the functional L �
δ 2W � λNA varied. Solutions of δL � 0 with L � 0 are stable providing λ � 0.



For N � 1, reduction to a linear eigenvalue problem is possible with a different choice of nor-
malization:

NB
� N

∑
i

� �
i

d2σ
�
ξi
� 2 (20)

where we have recognized that the displacement of the wall is zero, ξN � 1
� 0. For 
 i 
  
 � ,

solutions of δL � 0 can be written in terms of the perturbed magnetic field b � ∇ � a as follows:

i ; ∇ � b � µib 
 (21)� i ; ξ �i � B � b � � ξ �i ξi � B � n � ∇ � B � � λξ �i ξi

� 0 
 (22)

n � bi � i � 1
� Bi � i � 1

� ∇ξi � ξin � ∇ � � n � Bi � i � 1 � 
 (23) ; ∇ � b � 0 
 (24)

∇ � b � 0 
 (25)� ; n � b � 0 	 (26)

Equations (23) and (26) are boundary conditions, and do not result from setting δL � 0. Em-
ploying a suitable Fourier decomposition, Eq. (23) solves for the unknown coefficients of the
perturbed field in each region. With substitution, Eq. (22) then becomes a linear eigenvalue
equation. The set of equations is completed by expressions for the perturbed fluxes through
each region.

3. Cylindrical Equilibria

In this section cylindrically symmetric equilibrium solutions are generated. A cylindrical co-
ordinate system is used � r
 θ 
 z � , with equilibrium variations permitted only in the radial direc-
tion. Following Kaiser we use the normalization of plasma-vacuum boundary r � 1, and assume
that the cylinder is periodic in the z direction, with periodicity L. In this system, solutions to
Eqs. (9) - (12) can be written in vector notation B ��� Br

� r � 
 Bθ
� r � 
 Bz

� r ��� as

1 : B ��� 0 
 k1J1

� µ1r � 
 k1J0
� µ1r � � 



i : B ��� 0 
 kiJ1
� µir � � diY1

� µir � 
 kiJ0
� µir � � diY0

� µir ��� 
 : B ��� 0 
 BV
θ

�
r
 BV

z � 

(27)

where ki 
 di � ℜ, and J0 
 J1 and Y0 
 Y1 are Bessel functions of the first kind of order 0, 1, and
second kind of order 0, 1, respectively. The terms BV

θ and BV
z are constants. The constant d1 is

zero in the plasma core 
 1, because the Bessel functions Y0
� µ1r � and Y1

� µ1r � have a simple
pole at r � 0 [15]. The geometry of this system is analogous to the general screw pinch [16],
but with key differences. Notably, the pressure gradient is zero, except at ideal MHD barriers,
where it is a delta function.

With an analytic form for the equilibrium magnetic field available, the equilibrium problem can
now be prescribed in parameter space. Recognising that the change in pressure can be expressed
in terms of the change in field strength B of the barriers, we observe that the plasma equilibrium
is completely determined by the magnetic field profile and the radial position of the barriers.
That is, the equilibrium is constrained by the 4N � 1 parameters:

� k1 
 	 	 	 
 kN 
 d2 
 	 	 	 
 dN 
 µ1 
 	 	 	 
 µN 
 r1 
 	 	 	 rN � 1 
 rw 
 BV
θ 
 BV

z � 
 (28)

where ri are the radial positions of the N ideal MHD barriers, and rw the radial position of the
conducting wall. Equivalently, the equilibrium can be constrained by the safety factors and
magnetic fluxes. That is, the 4N � 1 quantities

� Ψt
1 
 	 	 	 
 Ψt

N 
 Ψp
1 
 	 	 	 
 Ψp

N � 1 
 Ψt
V 
 Ψp

V 
 qi
1 
 	 	 	 
 qi

N 
 qo
1 
 	 	 	 
 qo

N � 
 (29)



where qi
i and qo

i are the safety factor on the inside and outside of each interface. In cylindrical
geometry the safety factor expands as

qi
i
� 2πri

L

Bz � i � ri �
Bθ � i � ri � 
 qo

i
� 2πri

L

Bz � i � 1
� ri �

Bθ � i � 1
� ri � 
 (30)

whilst the toroidal and poloidal fluxes compute as follows:

Ψt
i
� � ri

ri � 1
Bz
� r � rdθdr � 2π

µi

�
kirJ1
� rµi � � dirY1

� rµi ��� ri
ri � 1 
 (31)

Ψp
i
� � ri

ri � 1
Bθ
� r � Ldr � � L

µi

�
kiJ0
� rµi � � diY0

� rµi ��� ri
ri � 1
	 (32)

In the vacuum region, the fluxes compute as

Ψt
V
� BV

z π � r2
w
� 1 � 
 Ψp

V
� BV

θ L lnrw 	 (33)

Figure 1(b)-(d) shows an example with 5 ideal barriers. In addition to the poloidal flux, the
safety factor is plotted, which necessarily decreases in the plasma core. In the plasma core,
q � rJ0

� µ1r � �
J1
� µ1r � , which for all µ1 � 0 is a strictly decreasing function with increasing

radius. Elsewhere q may increase or decrease, depending upon the values of di
�
ki and µi. In

general, q can jump at the interfaces, although the example shown here is chosen with δq � 0.

4. Cylindrical plasma stability

Fourier decomposition of the perturbed field b � ∇ � a and the displacements ξi at each interface
enables a straight forward solution. That is,

b ���bei � mθ � κz  
 ξi
� Xie

i � mθ � κz  
 (34)

where m 
 κ are the Fourier poloidal mode-number and axial wave-number, and �b and Xi are
complex Fourier amplitudes. Under these Fourier substitutions, and after solving for the field
in each plasma region, the system of Eqs. (21) - (26) is reduced to the eigenvalue equation,

η � X � λX (35)

with η is a N � N matrix. The i’th row of η is the i’th interface calculation of

� � B � b � � ξi � B � n � ∇ � B � � e � i � mθ � κz  (36)

which is the first two terms of Eq. (22), divided by X�i . In Eq. (36) b and B take values either
side of the interface. In regions 	 i and 	 i � 1, Eq. (23) solves for �br in terms of equilibrium
quantities and the complex amplitudes Xi 
 Xi � 1 and Xi � 1 
 Xi, respectively. As such, η is a tridi-
agonal matrix.

We have solved Eq. (35) for the set of N eigenvalues λ1 
 	 	 	 
 λN, and eigenvectors X1 
 	 	 	 
 XN
using standard numerical packages. First, using Mathematica, Fortran 90 statements were gen-
erated to compute the coefficients of the matrix η for all cases. For each matrix element ηi j,
the statements were coded into a case-selection algorithm. To determine the eigenvalue, the QR
algorithm for real Hessenberg matrices was employed [17].
When evaluated for an eigenfunction, δL vanishes, and so δ 2W � λNB. The system is stable
providing there do not exist eigenfunctions with λ � 0. For each m and magnetic configuration,
we have computed the spectrum of eigenvalues, as a function of κ . Marginal stability thresholds



were investigated by sweeping κ over the range � K � κ � K, with K � 20 and δκ � 0 	 002,
and detecting changes in sign of any of the eigenvalues λ .

For N � 1, Eq. (35) reduces to an expression for the eigenvalue λ . We have benchmarked
our variational approach to the results of Kaiser and Uecker [12], in which marginal stability
scans are available. Figure 2 is a plot of the m � 1 and m � 2 marginal stability boundaries as a
function in µ1, δ space, with rl

� 1 	 1, and for a selection of pressure values. Kaiser and Uecker
define δ to be a measure of the increase in pitch angle of the field at the such that

Bθ �V � J1
� µ1 � cosδ � J0

� µ1 � sinδ (37)

Bz �V � J0
� µ1 � cosδ � J0

� µ1 � sinδ (38)

For consistency with our working, we map δ to the jump in safety factor

∆q � 2π
L
� J0
� µ1 � �

J1
� µ1 � � tanδ

1 � J0
� µ1 � �

J1
� µ1 � tanδ

� 1 � (39)

Different internal pressures are described by β . We generalize the definition of Kaiser and
Uecker to multiple interfaces,

β � 2
� �
Pi
� �

B2
�
r � 1 � (40)

where
� �

denotes volume averaging. The term β is related to our working by k1
��� 1 � β .

Comparison of Fig. 2 to Fig. 3 in Kaiser and Uecker [12] shows the stability boundaries to be
identical.
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Figure 2: Figure (a) shows marginal stability boundaries for m � 1 in µ1
� δ space, and for

different plasma β values. The plasma has rw
� 1 	 1 and L � 1. The stable region is interior to

each locus. The cross-hairs denote the equilibrium configuration used for the dispersion curves
presented in Fig. (b), which is a dispersion curve for N � 2 and m � 1, and for different internal
barrier positions r1.

To develop confidence in the model, we next explore two interfaces (N � 2), in limiting regimes
where the internal interface is expected to only weakly perturb the single interface eigenvalue.
One such regime is for m � 1, in the limit that radial position r1 of the the inner interface � 1



approaches the plasma-vacuum boundary � 2 at r2
� 1. Figure 2 shows a set of m � 1 dispersion

curves for varying separation ε � r2
� r1 between the two interfaces. As the separation between

the interfaces approaches zero, λ1 � ∞, and λ2 � 2λ � N � 1 � . The eigenvalue λ1 has eigen-
vector X1

��� 1 ���
2 
 � 1

���
2 � , and corresponds to no free energy in the region r1

� r � r2. The
eigenvalue λ2 has eigenvector X2

� � 1 � �
2 
 1 � �

2 � , and corresponds to N � 1 configuration.

5. Conclusions

We have formulated a variational model for multiple interface stepped pressure profile plasma
configurations. The working extends previous treatments, which developed models for a single
interface plasma-vacuum systems. The motivation for the work is the rigorous development
of a model capable of generating 3D ideal MHD equilibria in arbitrary geometry. The system
comprises multiple Taylor-relaxed plasma regions, each of which is separated by an ideal MHD
barrier of zero width. The system is enclosed by a vacuum region, and encased by a perfectly
conducting wall. As a first step, analytic solutions were developed for the equilibrium and per-
turbed fields of a a multiple interface cylinder. For these equilibria, the safety factor in the core
necessarily decreases monotonically. For regions outside of the innermost ideal barrier, solu-
tions can be constructed with increasing safety factors, and decreasing pressures. A tokamak
like example of a multiple-interface equilibria was provided.

System stability was examined by reducing expressions for the perturbed fields to an eigenvalue
problem. For a single interface, marginal stability thresholds reduce to previous working. For
multiple interfaces, system stability converges to the single interface case in the limit that the
interface separation reduces to zero. The analysis provides a foundation upon which to study
the stability of systems with a single internal barrier, placed at the reverse shear point. Initial
results will be presented in tokamak like configurations as a function of qmin, and q0.

This work was supported by Australian Research Council grant DP0452728.
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