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o The variational principle for relaxed toroidal plasma- o Mgdel built upon Kaise.r ar}d Uecker [6], Spies [7] and . Ass.um.e.plasma is cylindrically symmetric, wiﬁh axial e Fourier decompose variations b and ¢ :
vacuum systems with pressure is applied to axially pe- Spies [8]. System comprises: periodicity L, vacuum boundary at r = 1, wall at r = b Fgilmt ) 6 i 20)
riodic cylinders. — N plasma regions P; in relaxed states. T N ' '
e Plasma comprises multiple Taylor-relaxed regions, with - Regions separated by ideal MHD barrier Z;. ¢ Solutions of B in each region read Eq. - b, X; are complex Fourier amplitudes
ea.C;}[ ;egion separated by an ideal MHD barrier of zero — Enclosed by a vacuum V, P {0, ko Jy (), ke Jo(par) } — m € Z, k € Z are poloidal, axial wave numbers
width. - Encased in a perfectly conducting wall W. P {0, kiJi(uir) ;/F diY1(par),  kiJy(par) +vdiY1(M¢7” )} e In general, the plasma and vacuum regions, Eqs. (12)
e Extends the plasma-vacuum analysis of Kaiser and VAo, By /r, B; (15) can be re-arranged as a second order differential
Uecker, Quartly Jnl of Mech. Appl. Math. 57(1-17), 2004. @ h (17) equation for ZZ That is,
where :
e First stage of an attempt to describe a stepped-pressure Magneti try, showi . 7
profile ir% full 3D. P ppecp % id:agln &EDg;:rrﬁzrrsyIi,ihzvzg;lg_ — ideal MHD barriers located at radii r;. Pi; Li(m)g’z(F Nl =0, F=—u>0 Q1)
@ ducting wall W, plasma regions — BY BY ki.d R V; Lo(m)b.(||]r)] =0, &#0, (22)
e May describe formation of internal transport barriers in P; and the vacuum V. In re- 0> 7z = )
magnetic confinement fusion experiments. gion P; plasma has pressure P;, = Jo,J1 and Yy, Y; are Bessel functions. where L (m) is the modified Bessel ODE for 2 > 2,
& equilibrium field B. and L_(m) the Bessel ODE for k% < y2.

o equilibrium prescribed: EITHER by B and r;

¢ Energy functional can be written:

Equation (13) reduced to the eigenvalue equation,

14 14
{kh ceey k‘N, d2, ceny dN, M1y eorsy UNS Ty oo TN=1, Tws 39 5 Bz }

N N
1 Introduction -~ (18) n-X =X (23)
W=v- Zl pillif2 = Zl vil; ®) OR by safety factors and fluxes

1.1 Transport Barriers in Tokamaks withpa N x N tridiagnonal matrix. The i'th row of 7 is

; Wl Wk W W W WP g g, %) (19 the i'th interface calculation of
e At sufficiently high heating power, fusion plasmas self- with t N W T W s i s ) (19) ‘
organise to produce internal transport barriers. o / 5 < P N B? > A / 4P ) -4 ?n? q¢ are safety factors on inside/outside of each ((B-b) + & (B(n - V)B)) e imo+ez) (24)
. . ‘ i _ 1T ) i interface.
Example: MAST discharges showing ITB formation. (a)-(c) show 7085, a Ri v i _ 4N + 2 parameters in total e Eq. (23) solved for the set of NV eigenvalues Ay, ..., Ay,
high performance D-D discharge [1], (d) shows TRANSP reconstructions H, = / dr3A -V x A + 5) P . and eigenvectors Xy X
of a NBI heated discharge [2]. R;

R . 15 e 5 2 (b) - 1;; coded into a case-selection algorithm.
= [ b . | (d) . }{« di- A o< dl-A - o> di-A ]{c> dl- A6) 1 - QR algorithm used to resolve ; [17]
2. 5 i E pi ti pi ti
o2 - £, - solutions stable providing all A; < 0
{3 E e First variation : Set W = 0, yields partially Taylor re- ~ .
2 e y P yray N e Benchmark A:For N = 1, Eq. (23) reduces to eigenvalue
=) laxed equilibria: 1 Example of a stepped- )
2% pressure  plasma profile, A, and results compared to Kaiser and Uecker [12].
i VxB=uB, P= t. 7 ith five ideal MHD barri- . . .
14 7;“ 0B _’L(L)Z ' <Z P C:I;;ﬁ%z -0 ES; 2 o > zfs shg\?v;ge? @a Con?;r;r — Marginal stability parameter spans, sweeping
& #8575,02 5 v - ¢ - . plot of the polodial flux, (b) overrange —K < x < K,
7 “00 02 04 06 08 10 V; VxB=0, V-B=0 ©) = 20K(c) ] the pressure profile, and (c) - & a measure of increase in pitch angle of B
o4 o5 o8 112 P W, n-B=0 (10) x 10 1 the safelz;cy factor, given by .
ol 2 o0 ; ; @ = QTWB;E:; Boy = Ji(p)cosd + Jo(p)sind (25)
e While descriptive theories for these barriers exist : e.g. - pi, v; are Lagrange multipliers, (d) = — i
° i - nZ a 11mit vector normal to Z; o 10 NOTE: Only the core neces- Bey Jolun) o83 = Jo(yuz) sin g (26)
— shear flow suppression of turbulence [3], ¢ v 0 sarily has reverse shear. . 2P|
. L . . - <z >= 1, — 7, is the change in x across Z,. -2 0 2 — Pressure described by 7 = 5=+
— chaotic magnetic field line dynamics [4], i ] | ) R [m]
, . . . - poloidal, toroidal flux constant during relaxation e Benchmark B: For N = 2, introduce artificial ITB with
they don’t explain why the plasma self-organises into r — 70 — ¢, and no change in equilibrium. As 7 —s 7
this state. e Second variation : Examine stability to interface dis- )\1 B 22)\ N,f 1 d & tq + t. bl L t z
) o ) ) placements &; by minimize §2W wrt constant N, ) 2 =~ 2A(N =1),and A; — co at most unstable point.
e A possible explanation is that these are constrained min- 6 Conclusions
imum energy states. N Figure (a) shows marginal stability boundaries for m = 1in p; — ¢
Np = Z / do®|&;|? (11) e Developed multiple ideal barrier variational model. space, and for different plasma /3 values. The plasma has r,, = 1.1
i=1 Y Zi . . . and L = 1. The stable region is interior to each locus. The cross-
, o Shown existence of tokamak-like ¢ profiles hairs denote the equilibrium configuration used for the dispersion
1.2 Tavlor Relaxation To solve, vary functional L = §*W — ANg. For P;,Z;,V, . . . . . curves presented in Fig. (b), which is a dispersion curve for N = 2
y solutions to §L = 0 are: o Generalized analy51s for Stablhty of mlﬂtlple barriers and m = 1, and for different internal barrier positions r;
e In a turbulent, resistive plasma, flux tubes do not have e Benchmarked analvsis N
independant existence [5]. Infinity of constraints re- P; ;3 Vxb=ub, (12) y @
placed by single constraint T, 5 & (B-b)+£&&(Bn-V)B) — g =0, (18) e Begun ITB configurations scans
n-bii =B VE+HEm -V X (nx By), (14)
KO:/VA-BdT @ YV Vxb=0, V-b=0, (15)
W : n-b=0. (16) [1] M.]. Hole, Plas. Phys. Con. Fus., 47(4), 518-613, 2005.
e Minimum magnetic energy solutions, which are con- ’ [2] B. Lloyd, Plas. Phys. Con. Fus., 46(12B), 477-494, 2004.
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strained by the total helcity are Beltrami fields Where b = §Bis the pertur‘b?d field. Solutions of 6L = 0 [4]J. H. Misguich, Phys. Plas, 85, 2132-2138, 2001.
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