A chaotic collection of thoughts on stochastic transport

what are the issues that M3D must consider to accurately determine heat transport

which analytical and numerical methods may complement the M3D algorithm

Stuart Hudson

thanks for interesting discussions with Josh Breslau, Ravi Samtaney, Roscoe White, Allen Boozer

How is heat transported across islands and chaotic regions ?

 $\mathbf{q} = -\kappa_{\parallel} \nabla_{\parallel} T - \kappa_{\perp} \nabla_{\perp} T$, $\nabla \cdot \mathbf{q} = S$, $\kappa_{\parallel} \gg \kappa_{\perp}$

heat flux **q**

heat source S

A spectrum of analytical and numerical approaches exist . .

1) Analytical

- 1) tearing mode theory following Fitzpatrick (island but no chaos)
- 2) Rechester-Rosenbluth (strong chaos)
- 2) <u>Monte Carlo</u>
 - 1) particle pushing (statistical)

3) Point Gaussian model

- 1) pushing local gaussians
- 4) <u>Magnetic Coordinate approach</u>
 - 1) locate KAM surfaces
- 5) Markov model of transport through cantori
 - 1) following MacKay, Meiss, Percival
- 6) <u>Full Numerical Simulation</u>
 - 1) finite elements, M3D, NIMROD,

I will discuss each of these approaches

Fitzpatrick [PoP 2(3), 825, 1995] applied tearing mode analysis to determine scale island width

Balancing
$$\kappa_{\parallel} (\mathbf{b} \cdot \nabla)^2 \sim \kappa_{\perp} (\nabla_{\perp})^2$$

gives scale island width

$$\frac{\mathbf{W}}{\mathbf{r}} \propto \left(\frac{\kappa_{\parallel}}{\kappa_{\perp}}\right)^{1/4}$$

for w \ll W, κ_{\perp} dominates for w \gg W, κ_{\parallel} dominates heat transported along boundary layer

DID NOT CONSIDER CHAOS

Rechester & Rosenbluth [PRL 40(1), 38, 1978] considered the enhancement to particle diffusion due to the stochastic field

can handle islands, chaos, KAM surfaces . . .
 need lots of particles to give accurate statistics

The following few slides will introduce the Gaussian model

The gaussian plays a special role in diffusion

$$g_{\sigma}(x) = \frac{1}{\sigma} \exp\left(\frac{-x^2}{2\sigma^2}\right) \text{ solves } \partial_t T = D\partial_{xx}^2 T \text{ with } \sigma = \sqrt{2Dt + \sigma_0^2}.$$

Model : approximate T by summation of gaussians . . .
Consider $f(x) = \int dx' f(x') \ \delta(x - x') \rightarrow \sum \Delta x f_i \ g_{\sigma}(x - x_i) \ \alpha$
hope is to do
better than
Monte Carlo
method

By representing T as sum of gaussians, effect
of diffusion is approximated.
$$\mathbf{x} = (x, y), \Gamma = \begin{pmatrix} \sigma_x & 0 \\ 0 & \sigma_y \end{pmatrix}$$
In 2D, T(**x**) = $\sum_{i,j} T_{i,j} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{x}_{i,j})^T \cdot \Gamma^2 \cdot (\mathbf{x} - \mathbf{x}_{i,j})\right] \alpha$.
Under map, **x**' = F**x**, gaussian is rotated & stretched
T(**x**) = $\sum_{i,j} f_{i,j} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{x}'_{i,j})^T \cdot \mathbf{U} \cdot \mathbf{W}^{-1} \cdot \Gamma^2 \cdot \mathbf{W}^{-1} \cdot \mathbf{U}^T \cdot (\mathbf{x} - \mathbf{x}'_{i,j})\right] \alpha$,
and then diffuses $\sigma'_x \rightarrow \sqrt{2D + {\sigma'_x}^2}$
where $\Gamma' = \Gamma \cdot \mathbf{W} = \begin{pmatrix} \sigma'_x & 0 \\ 0 & \sigma'_y \end{pmatrix}$
initial distribution

The model determines Temperature evolution

An example Temperature profile is shown

1) Steady state T is shown boundary condition $T(r \le 1) = 1$

2) island width suff. large so $\kappa_{\parallel} (\mathbf{b} \cdot \nabla)^2 \sim \kappa_{\perp} (\nabla_{\perp})^2$

unstable manifold

3) What is influencing T?

here standard map is used

Decreasing diffusion κ_{\perp} leads to increased correlation with field

- 1) I am still working through the details of this method..
- 2) The method should be directly extendable to 3D chaotic fields with arbitrary diffusion . .
- *3)* The parallel motion is solved exactly, so this method may reduce numerical pollution of perpendicular transport
- 4) The model is similar to both the Monte Carlo method and to direct matrix methods . .

Now moving on to other approaches . . Can use discrete magnetic coordinates

0.8

flatten across these islands,

- 1) KAM surfaces are robust, and can construct magnetic coordinates between islands
- 2) The use of magnetic coordinates can reduce discretization errors
- 3) <u>Destruction of invariant surfaces and</u> <u>magnetic coordinates for perturbed</u> <u>magnetic fields, Hudson PoP 2004.</u>
- 4) Procedure implemented for M3D field

Can also use a Markov model for transport developed by MacKay, Meiss & Percival [PHYSICA D 13 (1-2): 55-81 1984]

1) KAM surfaces disintegrate into leaky Cantor-set tori=cantori

- 2) Can develop a transport model based on probability of jumping from region to region $N_i' = \Sigma_j P_{i,j} N_j$
- 3) Cantori are approximated by high order periodic orbits eg. <u>Calculation of</u> <u>cantori for Hamiltonian flows, Hudson,</u> <u>Physical Review E, 2006.</u>

cantori can be very strong, partial barriers

A Markov model of advection-diffusion might look like this . .

Perhaps a stepped temperature profile . . ?

And, of course, there is the full numerical simulation

- 1) Such numerical simulations are probably the most reliable approach, but lack insight and need to be supported by theory.
- 2) The ideas presented on previous slides may enable a better initial guess for iterative solutions . .

eg. Gunter et al., JCP 209, 354, 2005

$$\frac{\partial}{\partial x}T\Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \frac{1}{2(\Delta x)} \left((T_{i+1,j+1} + T_{i+1,j}) - (T_{i,j+1} + T_{i,j}) \right),$$

$$\frac{\partial}{\partial y}T\Big|_{i+\frac{1}{2},j+\frac{1}{2}} = \frac{1}{2(\Delta y)} \left((T_{i+1,j+1} + T_{i,j+1}) - (T_{i+1,j} + T_{i,j}) \right),$$

Fig. 1. Grid labelling and elementary cell.

The End