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Abstract We calculate the stability of multiple region relaxed plasmas using both a variational approach
with constant helicity, and a tearing mode analysis evaluated in a periodic cylindrical configuration. In
the variational model, the problem reduces to an eigenvalue problem for the interface displacements. For
the tearing mode treatment, analytic expressions for the tearing mode stability parameter ∆′, being the
jump in the logarithm in the helical flux across the resonant surface, are found. The stability of these
treatments is compared for m = 1 displacements of an illustrative RFP-like configuration, comprising of
two distinct plasma regions. We find the marginal stability conclusions of each treatment to be identi-
cal. The tearing mode treatment also resolves ideal MHD unstable solutions for which ∆′ → ∞. In the
multiple region relaxed MHD (MRXMHD) variational treatment, these correspond to displacements of
only one interface. Wall stabilisation scans further resolve the internal and external ideal kink. Scans
with increasing pressure are also performed: these indicate pressure stabilisation in configurations with
increasing edge pressure. The results provide confidence in the variational model we have developed to
find mathematically rigorous equilibria in 3D geometry.

1. Introduction

Recently, Hole et al [1] proposed a model for a partially relaxed plasma-vacuum system. The
purpose of the model, which abandons all but a small number of flux surfaces, is to provide a
mathematically rigorous foundation for ideal MHD equilibria in 3D configurations. The model
appeals to both chaotic field lines, that flatten the pressure gradient in chaotic regions, and
Taylor relaxation, which force the plasma gradient to be zero in Taylor-relaxed regions. The
model consists of a stepped pressure profile, where the steps correspond to ideal MHD barriers
across which can be supported a pressure or field jump, or a jump in rotational transform. Our
overarching objective is the development of an equilibrium solver for 3D plasmas built on a
stepped pressure profile model. In the 3D case, we envisage that the barriers can be chosen to be
non-resonant KAM surfaces that survive the onset of field line chaos intrinsic to 3D equilibrium.
In between the interfaces, the field is Beltrami, such that ∇×B = µB. The boundary condition
across the interfaces is the continuity of total pressure p + B2/2µ0. Such a model, which we
term a MRXMHD (multiple relaxation regions MHD) model, raises a number of questions.
How should the equilibrium be constrained? How much jump in pressure and/or rotational
transform ι- can each interface support? Are the interfaces stable to deformation? Can the class
of stability shed information onto other quasi-relaxed phenomena?

In previous work, we have focused on the equilibrium constraints [2], construction of a numeri-
cal algorithm for calculation of Beltrami fields between interfaces in 3D configurations [3], and
a variational principle for the equilibrium and stability of the multiple interface configuration in
cylindrical plasmas [1]. The motivation of this paper is to understand the nature of MRXMHD
modes identified from the variational principle.

Recently, Tassi et al [4], performed a tearing mode stability treatment on stepped µ force-free
equilibria close to Taylor relaxed states. Their motivation was to develop a mechanism for the
formation of cyclic Quasi-Single-Helicity (QSH) states observed in Reverse Field Pinches [5].
They consider a cylindrical plasma divided into two different Beltrami regions, and encased in
a perfectly conducting shell, and compute the tearing mode stability parameter ∆′ at a resonant
radius rs for a helical flux perturbation χ1(r) = mBz1(r)− κrBθ1(r). Tassi et al find critical
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values of the jump in µ , beyond which the RFP-like plasma is unstable. Based on these, they
postulate the QSH state may be viewed as a small, cyclic departure from a Taylor-relaxed state.

In this work, we extend the tearing mode stability treatment of Tassi et al [4] to plasmas with
finite pressure and a vacuum region, and compare stability conclusions of our variational treat-
ment to that of a tearing mode stability analysis. Our paper is arranged as follows : Sec. 2
summarises the variational model of stepped pressure profile plasmas, presented in Hole et al
[1], and introduces a tearing mode model. Section 3 treats MRXMHD plasmas in cylindrical
geometry, yielding stability parameter expressions for both the variational and tearing mode
treatments. In Sec. 4, we compute stability for an example configuration, draw comparisons
between the stability conclusions based on variational and tearing mode treatments, and ex-
plore marginal stability limits in wave-number space as a function of pressure. Finally, Sec. 5
contains concluding remarks.

2. Multiple-interface plasma-vacuum model

The system comprises N Taylor-relaxed plasma regions, each separated by an ideal MHD bar-
rier. The outermost plasma region is enclosed by a vacuum, and encased in a perfectly con-
ducting wall. Figure 1(a) shows the geometry of the system, and introduces the nomencla-
ture used to describe the region and interfaces. The regions Ri comprise the N plasma regions
R1 = P1, ...,RN = PN and the vacuum region RN+1 = V . Each plasma region Pi is bounded
by the inner and outer ideal MHD interfaces Ii−1, and Ii respectively, whilst the vacuum is
encased by the perfectly conducting wall W .
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Figure 1: Schematic of magnetic geometry (a), showing ideal MHD barriers Ii, the conducting wall
W , plasma regions Pi and the vacuum V . Panel (b) shows the q profile used for stability studies in Sec.
4, with µ1 = 2 (core) and µ2 = 3.6 (edge).

2.1 A variational approach

In previous work [1] we outlined our variational principle, which lies between that of Kruskal
& Kulsrud [6] — minimization of total energy W ≡

∫
[B2/2 + p/(γ − 1)] (where p is plasma

pressure, γ the ratio of specific heats) under the uncountable infinity of constraints provided by
applying ideal MHD within each fluid element—and the relaxed MHD of Woltjer [7] and Taylor
[8]—minimization of W holding only the two global toroidal and poloidal magnetic fluxes, and
the single global ideal-MHD helicity invariant H ≡

∫
A ·B, constant. In summary, the energy
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functional could be written

W =
N

∑
i=1

Ui−
N

∑
i=1

µiHi/2−
N

∑
i=1

νiMi (1)

where µi and νi are Lagrange multipliers, and

Ui =
∫
Ri

dτ
3
(

Pi

γ −1
+

B2
i

2µ0

)
, (2)

Mi =
∫
Ri

dτ
3P1/γ

i , (3)

Hi =
∫
Ri

dτ
3A ·∇×A+

∮
C<

p,i

dl ·A
∮

C<
t,i

dl ·A−
∮

C>
p,i

dl ·A
∮

C>
t,i

dl ·A. (4)

The term Ui is the potential energy, Mi the plasma mass, and Hi the magnetic helicity in each
region Ri. In Eqs. (2) - (4), dτ3 is a volume element, γ the ratio of specific heats, and Pi,Bi
and Ai the equilibrium pressure, magnetic field strength and vector potential respectively. The
superscripts > and < denote clockwise and anti-clockwise rotation, respectively.

Setting the first variation to zero yields the following set of equations:

Pi; ∇×B = µiB, Pi = const., (5)
Ii; n ·B = 0, [[Pi +1/2B2]] = 0, (6)
V ; ∇×B = 0, ∇ ·B = 0, (7)
W ; n ·B = 0, (8)

where n is a unit vector normal to the plasma interface Ii, and [[x]] = xi+1 − xi denotes the
change in quantity x across the interface Ii. The boundary conditions, n ·B = 0, arise because
each interface and the conducting wall is assumed to have infinite conductivity. In turn, these
imply the toroidal flux in each plasma region (and the poloidal flux in the vacuum) is constant
during relaxation. Given the vessel with boundary W , the interfaces Ii, and the magnetic field
B, Eqs. (5)-(8) constitute a boundary problem for the plasma pressure Pi in each region Ri.

Minimizing the second variation subject to the constraint of the positive definite normalization
N = ∑

N
i

∫
Ii

d2σ |ξi|2 yields the following set of equations for the variation in the magnetic field
b = δB:

Pi ; ∇×b = µib, (9)
Ii ; ξ

∗
i [[B ·b]]+ξ

∗
i ξi[[B(n ·∇)B]]−λξ

∗
i ξi = 0, (10)

n ·bi,i+1 = Bi,i+1 ·∇ξi +ξin ·∇× (n×Bi,i+1), (11)
V ; ∇×b = 0, ∇ ·b = 0, (12)
W ; n ·b = 0. (13)

Here ξ i is the normal displacement of the interface Ii, and λ the Lagrange multiplier of the
stability treatment, such that λ < 0 indicates a lower energy state is available. Using Eqs. (9)-
(13) the perturbed flux through each region can be found. With a suitable Fourier decomposition
chosen, Eq. (11) solves for the unknown coefficients of the perturbed field in each region. With
substitution, Eq. (10) then becomes a linear eigenvalue equation for λ .

2.2 Tearing mode treatment
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A starting point for the treatment of tearing modes is the set of MHD equations:

∂ρ

∂ t
+∇ ·ρv = 0, (14)

ρ
dv
dt

= J×B−∇p, (15)

d
dt

p
ρ

γ
gas

= 0, (16)

E+v×B = ηJ, (17)
∇×E = −∂B/∂ t, (18)
∇×B = µ0J, (19)
∇ ·B = 0, (20)

being the fluid equation of motion, mass continuity, the adiabatic equation of state, Ohm’s law,
Faraday’s law, Ampere’s law, and the magnetic mono-pole condition, respectively.

Following Tassi et al , we divide the region resonant to the tearing mode into an inner region,
centered around a surface resonant with perturbations of a given helicity, and an outer region,

where the effects of resistivity are negligible. The parameter ∆′, given by ∆′ =
[

1
χ1

dχ1
dr

]r+
s

r−s
is

based solely on solutions of the knowledge of χ in the outer region. The plasma growth rate,
obtained by linearising Faraday’s law and substituting for E as determined by Ohm’s law, is
proportional to ∆′, such that ∆′ = 0 denotes marginal stability, and ∆′ > 0 instability.

To find χ1, the field is written B = ∇χ × h + gh, χ expanded as a Fourier perturbation, and
solutions to the linearised Beltrami equation found. As shown in Sec. 3.2, the ODE for χ1
integrates to a jump condition in χ ′

1/χ1 at each interface, expressed in terms of equilibrium
parameters. The final expression for ∆′ is hence a function of the equilibrium parameters in the
resonant region, as well as jumps in equilibrium parameters across the interfaces.

3. MRXMHD cylindrical plasmas

Solutions in an azimuthally-symmetric, axially-periodic cylinder (with axial periodicity length
L = 2πR) are available in Hole et al [1]. In the cylindrical co-ordinate system (r,θ ,z) they are:

P1 : B = {0, k1J1(µ1r), k1J0(µ1r) },
Pi : B = {0, kiJ1(µir)+diY1(µir), kiJ0(µir)+diY0(µir) },
V : B = {0, BV

θ
/r, BV

z },
(21)

where ki,di ∈ ℜ, and J0,J1 and Y0,Y1 are Bessel functions of the first kind of order 0, 1, and
second kind of order 0, 1, respectively. The terms BV

θ
and BV

z are constants. The constant d1 is
zero in the plasma core P1, because the Bessel functions Y0(µ1r) and Y1(µ1r) have a simple
pole at r = 0. Radius is normalized to the plasma-vacuum boundary, located at r = 1.

The equilibrium is constrained by the 4N +1 parameters:

{k1, ...,kN ,d2, ...,dN ,µ1, ...,µN ,r1, ...rN−1,rw,BV
θ ,BV

z }, (22)

where ri are the radial positions of the N ideal MHD barriers, and rw is the radial position of
the conducting wall. Equivalent representations, and the mapping between these solutions has
been discussed in earlier work [1-3].

3.1 Stability from a variational principle
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We have assessed stability using a Fourier decomposition in the poloidal and axial directions
for the perturbed field b = ∇×a and the displacements ξi of each interface. That is,

b = b̃ei(mθ+κz), ξi = Xiei(mθ+κz), (23)

where m,κ are the Fourier poloidal mode-number and axial wave-number, and b̃ and Xi are
complex Fourier amplitudes. Under these substitutions, and after solving for the field in each
region, Eq. (10) reduces to an eigenvalue matrix equation η ·X = λX with column eigenvector
X = (ξ1, ...,ξN)T , eigenvalue λ , and η a N×N tridiagnonal real matrix.

3.2 Tearing mode stability

In the helical coordinate u = mθ + kz, a divergence-less B can be written

B(r,u) = ∇χ(r,u)×h+g(r,u)h, (24)

where χ is a the helical flux, and g a helical field. The vector h is defined by h = f (r)∇r×∇u,
where f (r) = r/(m2 +k2r2) is a metric term. As in Tassi et al we search for helical perturbations
of the form

χ(r,u, t) = χ0(r)+ χ1(r)eγt+iu, g(r,u, t) = g0(r)+g1(r)eγt+iu. (25)

In this representation, resonant surfaces are those for which χ ′
0(r) = 0. The equilibrium field

satisfies the Beltrami equation, giving rise to µ = g′0(r)/χ ′
0(r), such that the rotational transform

can be written

ι- =−R
r
×

rκg0(r)/χ ′
0(r)+m

mg0(r)/χ ′
0(r)− rκ

. (26)

By writing the incompressible velocity field in a similar form to Eq. (24), and expanding con-
tinuity to first order, it is possible to show perturbations in the flow, pressure and mass density
do not affect marginal stability.

In each of the plasma regions, projections of the linearised Beltrami equation along h and ∇r
yield

g1 = g′0(r)/χ
′
0(r)χ1(r), (27)

χ0(r)
[

χ
′′
1 (r)+

f ′(r)
f (r)

χ
′
1(r)+

(
µ

2− 1
r f (r)

+
g0(r)
χ ′

0(r)
µ
′−β µ

)
χ1(r)

]
= 0, (28)

where µ ′ vanishes everywhere except at r = rstep, where it becomes singular. These are identical
to Eqs. (27) and (29) of Tassi et al . Equation (28) reduces to a Bessel or modified Bessel

equation in the transformed variables xi =
√
|µ2

i −κ2|r and xV = |κ|r. In the i’th region, and
either side of the resonant surface, solutions are different combinations of Bessel or modified
Bessel functions with undetermined coefficients ζi,Λi, ζi−s,Λi−s and ζi+s,Λi+s, respectively.
As only the ratio χ ′

1(r)/χ1(r) appears in ∆′, its value is unaffected by normalizing ζ = 1 in
each interval and region. The requirement of boundedness at r = 0, and the presence of perfectly
conducting wall implies

χ1(0) = χ0, χ1(rw) = 0. (29)

Noting that the perturbed flux must be continuous across each interface, Eq. (28) can then be
integrated about each interface to yield[[

χ
′
0(r)

χ ′
1(r)

χ1(r)

]]
=

[[
−χ

′
0(r)

g0(r)
χ ′

0(r)
µ

]]
(30)
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The parametric dependence can also be examined by solving for χ0(r) and using Eq. (26) to
eliminate g0(r)

χ ′0(r)
. Solving equilibrium for χ0(r) gives

χ
′
0(r) = B

√√√√ m2 +κ2r2(
−mR/r+κR ι-r/R

ι-m+κR

)2
+1

= F(B,r,R,m,κ). (31)

Finally, eliminating χ0(r) and g0(r)
χ ′0(r)

, Eq. (30) can then be rewritten[[
F(B,r,R,m,κ)x

χ ′
1(x)

χ1(x)

]]
= [[G(B,µ, ι-,r,R,m,κ)]] , (32)

where

G(B,µ, ι-,r,R,m,κ) = rµF(B,r,R,m,κ)× mR/r−κR ι-r/R
ι-m+κR

. (33)

With ζ = 1 everywhere, the tearing mode parameter ∆′ is a function of Λ in each interval, which
are uniquely determined by the above constraints. That is, the inner boundary condition (28)
yields Λ1 = 0. If for instance the resonant surface lies in R2, Eq. (32) evaluated at interface I1
and I2 solves for Λ2−s in terms of Λ1 and Λ2+s in terms of ΛV , respectively. The conducting
wall BC solves for ΛV .

Changes in the field strength B at any interface enter Eq. (30) through the solution to χ0(′r),
given by Eq. (31). Stability is hence a property of the rotational transform, the position of the
barriers, the Lagrange multipliers, the rotational transform, and any jumps in the pressure or
rotational transform across the interfaces. Our working reduces to Tassi et al in the limit of no
pressure, field or rotational transform jumps across the interfaces, and no vacuum.

4. Stability for an RFP-like configuration

We have compared stability conclusions using variational and tearing mode treatments for an
illustrative configuration. The example chosen is guided by earlier detailed working [1], where
the core Lagrange multiplier was µ1 = 2. The first interface is placed at r = 0.5, and the axial
periodicity length chosen to be 20π , such that the effective aspect ratio r/R = 1/10 is small. The
jump in safety factor between the internal interface and the plasma-vacuum boundary has been
chosen to resemble Hole et al , subject to the different R values used for the two treatments (R =
1/(2π) in Hole et al ). We have used µ2 = 3.6, which requires d2/k2 = 0.77 for the rotational
transform profile to be continuous. A second motivation for this choice is the similarity to q
profiles of high confinement reverse field pinches, such as the Madison Symmetric Torus [9]
and RFX-mod [10], although the change in µ is greatly exaggerated in this work. The plasma
pressure is selected by the parametrization β1 = p1/(B2

V /2µ0),β2 = p2/(B2
V /2µ0). Except for

the final scan over β , a pressure-less plasma is assumed (i.e. β1 = β2 = 0). Figure 1(b) shows
the q profile for the chosen equilibrium, where q = 1/ ι-.

Figure 2(a) is a dispersion curve for m = 1 modes, showing λ computed using the variational
treatment, and −rs∆

′ computed for modes resonant within the plasma. Marginal stability cor-
responds to λ = 0 and ∆′ = 0: these overlap identically in Fig.2(a). Modes with n = −16
and n = 12 corresponds to a perturbation near-resonant with the outer and inner interfaces
(q(r2)≈−1/16 and (r1)≈ 1/12) respectively.

In the variational treatment, we have prescribed no relationship between ξ and b in the relaxed
regions. As such, excepting at the ideal interfaces, field line resonance in such plasmas is not
explicitly resolved. Expressions can however be constructed which provide an estimate of the
localization of the mode rs,eff, and a convenient choice is r2

s,eff = ∑
N
i=1(riXi)2 Figure 2(b) shows
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Figure 2: Dispersion curve (a) and mode localization (b) of m = 1 modes of a pressure-less MRXMHD
plasma with q profile given by Fig. 1(b). In panel (a), the solid lines are eigenvalues (λ ) of the MRXMHD
treatment, while the points are values of −0.002× rs∆

′ determined from tearing mode analysis of Sec.
. The vertical dashed lines correspond to zeros in λ . Panel (b) shows the resonant surfaces rs of tearing
modes (points), and effective localization rs,e f f of modes using the variational treatment (solid line).
The solid points and cross-hairs denote unstable and stable tearing modes. The heavy solid line denotes
solutions for which λ < 0, and the dashed vertical lines correspond to marginal stability, λ = 0.

a comparison of rs,eff to rs, in which modes unstable to variational and tearing modes have been
identified. Agreement between rs,eff and rs is qualitatively good in the interval over which the
plasma in unstable, and excellent near the interfaces. The n = −16 and n = 9 modes are near
resonant with the outer and inner interface, respectively. As shown in Fig. 3(a), a stability scan
with wall radius indicates that in the limit rw → 1, modes for n < 0 are wall-stabilized. In the
limit that the outer interface is made resonant with the n = −16 tearing mode (for example by
changing R), ∆′→ ∞. This mode is the current driven external kink of ideal MHD. Conversely,
the unstable range for n ≥ 12 is only very weakly affected by the wall position. If the inner
interface is mode resonant with the perturbation, ∆′ → ∞, and the mode is ideal unstable. This
is the internal kink of ideal MHD.

Finally, Fig. 3(b) is a plot of the marginal stability boundary (λ = 0) in n−β space for m = 1
eigenmodes. The two pressure profile configurations that have been studied are β1 = 0 and
β2 = 0. Trends in the marginal stability boundary can be understood by relating the radial
location of the mode resonant surface to the analog of radial pressure gradient in the MRXMHD
model: the sign and magnitude of nearby pressure jumps. For n > 0 modes resonant near the
first interface, an increasing core pressure increases the pressure drop across the first interface,
and so destabilises the plasma. Conversely, increasing the edge pressure leads to a pressure
jump across the first interface, and so stabilises the internal modes. For β2 > 0.3 all m = 1
internal modes (n > 0) are completely stabilised. For the n < 0 modes resonant near the edge,
changes in the core pressure have little effect, while increasing the edge pressure destabilises
the plasma.

5. Conclusions

We have computed the stability of multiple region relaxed plasmas using both a variational
approach with constant helicity, and a tearing mode analysis evaluated in a periodic cylindri-
cal configuration. The marginal stability conclusions of the two models are identical, thereby
building confidence in the variational model we have developed to find mathematically rigorous
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Figure 3: Wall stabilization (a) and marginal stability pressure dependence (b) of MRXMHD plasmas
unstable to m = 1 modes. Panel (a) shows the dispersion curves of MRXMHD plasmas unstable to m = 1
modes as a function of conducting wall radius. In panel (b) marginal stability n−β space is shown for
different pressure profile configurations. The solid lines are for the pressure in the outer region set to
zero (β2 = 0), while the dashed line corresponds to zero core pressure (β1 = 0).

equilibria in 3D geometry, and identifying the type of modes found unstable in the variational
approach. In ongoing work we are developing a faster numerical algorithm for the construc-
tion of 3D MRXMHD plasmas, exploring the maximum pressure jump an interface can support
before it is destroyed by chaos, and determining stability implications if the ideal barrier is
resolved with nonzero width [11].
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