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Error fields, 3D effects, . . create chaotic fields.

Heat transport is solved numerically:

  0 with / =10 .

 
Isotherms coincide with cantori,
chaotic coord
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inates, based on - , 
     solves for the temperature profile in a chaotic field.

ghost surfaces

eg. M3D simulation of CDX-U



Field line transport is restricted by irrational field-lines

Poincaré plot (model field → next slide)
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→ the irrational KAM surfaces disintegrate into invariant irrational sets ≡ cantori,
which continue to restrict field line transport even after the onset of chaos.
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“noble”
cantori
(black dots)

(delete middle third)KAM surface

cantor set

complete barrier

partial barrier

→ KAM surfaces stop
radial field line transport

→ broken KAM surfaces ≡cantori
do not stop, but do slow down
radial field line transport



Cantori are approximated by high-order periodic orbits; 

→ high-order (minimizing) periodic orbits are located using variational methods;

2where      and    ( , , )= cos( )

 Magnetic field lines,  , are stationary curves  of the action integral = ,    

  / 2 ( ) .

 Setting 0 gives /  ( , , ) and 
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 A piecewise linear, ( )= +( - )/ ,  trial curve 
  allows analytic evaluation of the action integral, ( , ,  . . .) !

 To find ( , ) periodic curves, use Newton's method to fi
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   with constraint 2 ,  = +2 . 

 Two types of periodic orbit:    : stable, action-minimax
                                                   : unstable, action-minimizing
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Ghost-surfaces constructed via action-gradient flow
between the stable & unstable periodic orbits. 

C. Golé, J. Differ. Equations 97, 140 1992., R. S. MacKay and M. R. Muldoon, Phys. Lett. A 178, 245, 1993.

2 2 At the minimax (stable) periodic orbit, the eigenvector of the Hessian, S / , 

   with negative eigenvalue indicates the direction in which the action integral decreases.

 Pushing trial curve 
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 Ghost-surfaces 

from minimax (stable) /  orbit down action-gradient flow to 
   minimizing (unstable) /  orbit defines - ,

may be thought of as rational coordinate surfaces that pass thro
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Steady state temperature is solved numerically;
isotherms coincide with ghost-surfaces. 

→ ghost-surface for high order periodic orbits “fill in the gaps” in the irrational cantori;

→ ghost-surfaces and isotherms are almost indistinguishable;
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NUMERICS
heat flux 0,  where  ;

   strongly anisotropic / 10 ;

parallel relaxation, use field-alligned coordinates

   ,  so 

perpendicular relax
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ation, use symmetric finite-diff.

   

solve sparse linear system iteratively

   on numerical grid 2 2
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Chaotic-coordinates simplifies temperature profile
→ ghost-surfaces can be used as radial coordinate surfaces → chaotic-coordinates (s,θ,φ)

2quadratic-flux   for ,  and metric G ,  where ,  B / ( |/ ) |n
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 on irrational KAM surfaces where 0;

non-zero  ensures ( ) is smooth, '  peaks on minimal-  surfaces (noble cantori).  T s T

ϕ

κ ϕ•

=

⊥

10
|| / 10 )(

Temperature Profile
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Summary

→ in chaotic fields, anisotropic heat transport is restricted by irrational field lines ≡ cantori

→ interpolating a suitable selection of ghost-surfaces allows chaotic-magnetic-coordinates
to be constructed

→ the temperature takes the form T=T(s), where s labels the chaotic coordinate surfaces,
and an expression for the temperature gradient is derived.

Future Work
→ For a practical implementation of this theory, eg. in MHD codes, the following points 

must be addressed:
→ what is the best selection of rational p/q ghost-surfaces for a given chaotic field ?
→ how does the best selection of ghost-surfaces depend on κ┴ ?
→ how should the ghost-surfaces be interpolated ?
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