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Content of talk

• What are close-to-integrable 1½-d.o.f. systems?

• Periodic pseudo-orbits as basis of approach

• Action-minimization strategies for pseudo-orbits

• Reconciliation of ghost and QFMin approaches



Example of 1½ d.o.f. 
3-D Magnetic fields

• Field line flow is a 1-degree-of-freedom Hamiltonian 
system, with toroidal angle ζ playing the role of time

• Helical deformation breaks toroidal symmetry so ζ is not 
an ignorable coordinate: extra “½ degree of freedom”



1½ d.o.f. Hamiltonian systems are not 
generically integrable—resonant 

invariant tori are destroyed

Example:  island in H-1NF for 3 values of vertical field.
Our approach is to define an almost-invariant torus as a trial 
surface selected so as to minimise the quadratic flux, a weighted 
mean of (n.B)2 (QFMin principle).



Heat transport in chaotic magnetic 
fields:  Temperature contours fitted 

well by “ghost surfaces”

Hudson & Breslau Phys Rev Letters 100, 095001 (2008) show that 
temperature contours for heat diffusion in fields with imperfect 
magnetic surfaces appear to agree very well with “ghost surfaces,” 
an alternative to QFMin surfaces.  What is the relation between 
these two approaches, and can they be unified?



where             is obtained by solving one of the 
Hamiltonian eqs. of motion exactly:

and corresponding Lagrangian 

Generalisation to 1½-d.o.f. 
Hamiltonian systems

• Consider non-autonomous, periodic-in-time* system 
with Hamiltonian approximately in action-angle form

H = H0(I, θ) + �H1(I, θ, t)

I(θ, θ̇, t)
θ̇ −HI(I, θ, t) ≡ 0

*We identify t with toroidal angle in field line application.

L ≡ I(θ, θ̇, t)θ̇ −H(I(θ, θ̇, t), θ, t)

= L0(θ, θ̇) + �L1(θ, θ̇, t)



• Periodic orbits are simpler to work with than invariant 
tori and cantori with irrational rotation numbers

• Alternative to KAM:  Periodic orbits from a rotation 
number sequence                             ,               (chosen 
by a continued fraction construction) can be used to 
characterize the breaking of invariant tori [J. Greene,        
J. Math. Phys. 20, 1183 (1979)].

Periodic orbits as a key to chaos

H. Poincaré:  Les Méthodes Nouvelles de la Mécanique Céleste
quoted by Bountis & Helleman in Lecture Notes in Physics — 

Volta Memorial Conference, Como, 1977 (Springer, 1979)

ωp,q = p/q → ωirrat.

ωirrat.

p, q ∈ Z



Action another key
Pierre-Louis Moreau de 
Maupertuis 1698–1759

• Consider p,q periodic configuration-space path            , 

Then Lagrangian action over one period is

William Rowan Hamilton 
1805–1865

θ = ϑ(t)

• Hamiltonian action on phase-space path
                                                                           is

• Hamilton’s principle for a true periodic orbit is
                , or                         .   Euler–Lagrange 
equations give Lagrangian or Hamiltonian eqs. of motion

θ = ϑ(t), I = I(t)

δS = 0 ∀ δϑ δSph = 0 ∀ δϑ, δI

S[ϑ] =
� 2πq

0
L(ϑ, ϑ�, t) dt

Sph[ϑ, I] =
� 2πq

0
[Iϑ� −H(I,ϑ, t)] dt

ϑ(t + 2πq) = ϑ(t) + 2πp ∀ t ∈ R

ϑ(t + 2πq) = ϑ(t) + 2πp, I(t + 2πq) = I(t) ∀ t ∈ R



Action gradient

• Define gradients in path space as functional derivatives:

δS =
�

δϑ,
δS

δθ

�
δSph =

�
δϑ,

δSph

δθ

�
+

�
δI,

δSph

δI

�

�f, g� ≡
� 2πq

0
fg dt

• Define functional inner product over periodic orbit:

δS

δθ
= Lθ −

d

dt
Lθ̇

δSph

δθ
= −İ −Hθ,

δSph

δI
= θ̇ −HI

• On a pseudo-orbit we constrain:                           ,

i.e.

θ̇ −HI(I, θ, t) ≡ 0
δSph

δI
≡ 0, ⇒ δSph

δθ
=

δS

δθ
= O(�)

the action gradient; which 
can also be identified as 
a surface flux density



Hamilton’s Principle (not 
“Least Action”)

• Action contours —
unperturbed case

Continuous family of 1,2-periodic 
orbits with same action, giving an 
invariant torus

• Perturbed (but 
integrable) case

Nearly all 1,2-periodic orbits 
destroyed, leaving only action-
minimizing and minimax orbits

2ndry 
torus in 
island

x •



Pseudo-orbits

• For Lagrangian and Hamiltonian formulations to be 
equivalent we need to apply one Hamilton equation
                          as a constraint.  Thus, define a phase-
space pseudo-orbit as a path satisfying the other 
Hamiltonian equation of motion approximately: 

İ + Hθ = O(�)

• Define a configuration-space pseudo-orbit as a path 
satisfying the Lagrangian eq. of motion approximately: 

dLθ̇

dt
− Lθ = O(�)

θ̇ −HI(I, θ, t) ≡ 0



Minimizing and minimax orbits 
survive transition to chaos

• Blue dots are points on p,q-periodic 
orbits that minimize the action S

• Red dots are points on p,q-periodic 
orbits that are saddle (minimax) 
points of the action S

• Periodic orbits are invariant under 
the dynamics

• An almost-invariant p,q curve is an 
interpolation through the periodic 
orbits belonging to a p,q island chain
— not unique:  how to choose?
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Illustrated using Standard Map
(see later)

2,3-periodic orbits & almost-invariant curve

1,3-periodic orbits & almost-invariant curve

1,2-orbits & curve

by Poincaré-Birkhoff theorem [see e.g. Meiss, 
Rev. Mod. Phys. 64, 795 (1992)]



• QFMin surfaces minimise the surface quadratic flux:

under variations of trial surface made up of a one-
parameter family of QFMin pseudo-orbits,                  .

Two strategies for “joining the dots”
• Ghost surfaces are foliated by a family of pseudo-

orbits constructed by action-gradient flow from 
minimax to minimising orbits:

∂ϑghost(t|θ0)
∂θ0

∝ −δS

δθ

where we label pseudo-orbits by      s.t. ϑ(0|θ0) = θ0θ0

ϑQFMin(t|θ0)

ϕ2 ≡
1
2

� 2π

0

� 2π

0

�
δS

δθ

�2

dθdt



“QFMin Theorem”
• Consider torus in 3-D phase space

d

dt

�
δS

δθ

�
= 0 ⇒ δS

δθ
= ν(θ0), const. on pseudo-orbit

Defines pseudo-orbit dynamics
T : I = ρ(θ, t)

ϑ̇ = HI(ρ(ϑ, t),ϑ, t)

• Vary quadratic flux, using δϑ̇ = HIIδρ

İ = ρt + ϑ̇ρθ

δİ = δρt + ϑ̇δρθ + δϑ̇ρθ

δ
δS

δθ
= −δİ −HIθδρ

• Integrating by parts, and setting             we findδϕ2 = 0

This slight modification to Hamiltonian dynamics 
allows us to find a family of QFMin orbits defining    .T



H-1 Island-healing example

θ0

ν

1 2 3

1

2
3

QFMin orbit constant of motion    (action gradient) oscillates as    
initial poloidal angle     changes, passing through zero at the S-
minimizing and minimax orbits.  In case 2,    is almost zero for all     
and its oscillations are 180º out of phase in cases 1 and 3.

ν

θ0

θ0
ν



Action gradient is not coordinate-
independent

• Change angle coordinate (for given p, q set)

then new action gradient is
δS
δΘ = θΘ

δS
δθ

• Define new ghost surfaces by the gradient flow
DΘ
DT = − δS

δΘ

• Define new QFMin surfaces by

where    is a parameter labelling each ghost pseudo-orbit

δS
δΘ = ν(Θ0)

where initial value     labels each QFMin pseudo-orbitΘ0

T
(1)

(2)

θ ≡ θ(Θ, t)



• Seek     such that the two families have a one-to-one 
correspondence, implying that the labels    and     are 
functionally dependent:     

• Eliminating            between (1) and (2), we find the 
reconciliation condition   

• As    is so far completely undefined, we are free to 
choose it to simplify the reconciliation condition, 
subject to the periodicity condition:

Reconciliation of ghost & 
QFMin formulations
Θ

T Θ0

T = T (Θ0)

δS/δΘ
DΘ
DΘ0

= −T �(Θ0)ν(Θ0)

� 2π
0 dΘ0 DΘ/DΘ0 = 2π

Θ



Conclusion

• We have reviewed action-based formulations for 
almost-invariant tori in general Hamiltonian/Lagrangian 
dynamical systems

• Have unified mean-square flux minimization (QFMin) 
and ghost surface approaches, hopefully combining best 
features of each

• By defining both QFMin and ghost surfaces in terms of
    we have found a formulation that is nicer than that 
of Hudson & Dewar Phys. Lett.  A 373, 4409 (2009)
Θ


