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Motivation & Outline
→ The simplest model of approximating global, macroscopic force balance in toroidal plasma 
confinement with arbitrary geometry is magnetohydrodynamics (MHD)

→ As toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, and are generally chaotic, we need 
an MHD equilibrium code that allows for chaotic fields.

→ Existing ideal MHD equilibrium codes with chaotic fields fail to accommodate the fractal structure 
of Hamiltonian chaos. This leads to an ill-posed numerical algorithm for computing numerically-
intractable, pathological equilibria.

→ A new partially-relaxed, topologically-constrained MHD equilibrium model is described and 
implemented numerically. Results demonstrating convergence tests, benchmarks, and non-trivial 
solutions are presented.
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Ideal-force-balance with chaotic field is pathological 

Diophantine condition
Kolmogorov, Arnold and Moser

→ transport of pressure along field is “infinitely” fast 
→ no scale length in ideal MHD
→ pressure adapts exactly to structure of phase space

→ cannot be inverted to obtain parallel current infinite, fractal structure



Taylor relaxation:   a weakly resistive plasma will relax, 
subject to single constraint of conserved helicity 
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 variations in magnetic field,    unconstrained μ∇× =B B

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . . .

Ideal-MHD             → imposition of   infinity of ideal MHD constraints
non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation → imposition of   single constraint of conserved global helicity
structure of field is not-constrained, but pressure profile is trivial, i.e. under-constrained

We need something in between .  .  .
.  .  .  perhaps an equilibrium model with finitely many ideal constraints, and partial Taylor relaxation?

linear force-free field ≡ Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients
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Introducing the multi-volume, partially-relaxed model of 
MHD equilibria with topological constraints 
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the interfaces are assumed to be ideal,  
 nested toroidal surfaces enclose  annulur volumes

* The multi-volume energy functional is
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ideal interfaces coincide with KAM surfaces

→ field remains tangential to interfaces,
→ a finite number of ideal constraints,

imposed topologically!



Topological constraints : 
pressure gradients coincide with flux surfaces 

pressure gradients  coincide with KAM su

parallel transport dominates perpendicular transport, 
simplest approximation is 0

The ideal interfaces are chosen to coincide with pressure gradients
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A fixed boundary equilibrium is defined by : 
(i) given pressure, ( ), and rotational-transform profile, ( )
(ii) geometry of boundary;
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p ψ ι ψ

≡

(numerically tractable) nsistent with chaos and 0 
(b) the computed equilibrium magnetic field must be consistent with the input profiles 
(a) + (b) = where the pressure has gradients, the magnetic
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 field must have flux surfaces.

→ structure of B and structure of the pressure are intimately connected; 

→ cannot apriori specify pressure without apriori constraining structure of the field;



→ how large the “sufficiently small” departure from axisymmetry can be needs to be explored numerically . . . . 



Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code, SPEC 
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Beltrami field 
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux  and 
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* derivative matrix, , computed using finite-differences
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* quadratic-convergence w.r.t. Newton iterations

piecewise cubic or quintic basis polynomials

minimal spectral width [Hirshman, VMEC]

solved using sparse linear solver

adjusted so interface transform is strongly irrational 

future work . . .
1) approximate derivative matrix ~ 2nd variation of energy functional 
2) implement pre-conditioner 
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Scaling of numerical error with radial resolution
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial

Poincaré plot, ζ=0

(m,n)=(3,1) island
+ (m,n)=(2,1) island
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Example of chaotic Beltrami field Poincaré plot, ζ=π
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stepped-pressure equilibria accurately approximate 
smooth-pressure axisymmetric equilibria 

magnetic fields have family of nested flux surfaces
equilibria with smooth profiles exist,
may perform benchmarks (e.g. with VMEC)
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increasing pressure resolution ≡ number of interfaces
N  ≡ finite-element resolution

magnetic axis vs. radial resolution
using quintic-radial finite-element basis

(for high pressure equilibrium)
(dotted line indicates VMEC result)
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Equilibria with (i) perturbed boundary→chaotic fields, 
and (ii) pressure are computed .      
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Summary 
→ A partially-relaxed, topologically-constrained energy principle has been presented 
for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

→ The model has been implemented numerically
* using a high-order (piecewise quintic) radial discretization
* an optimal (i.e. spectrally condensed) Fourier representation
* workload distrubuted across multiple cpus,
* extrema located using Newton’s method with quadratic-convergence

→ Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

→ The model has a sound theoretical foundation
* solutions guaranteed to exist (under certain conditions)

→ The numerical method is computationally tractable
* does not invert singular operators
* does not struggle to resolve fractal structure of chaos

→ Convergence studies have been performed
* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* that the island widths converge with Fourier resolution has been confirmed 





  if the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined
Transport in magnetized plasma dominately parallel to 
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Toroidal magnetic confinement depends on flux surfaces 

magnetic field lines wrap around toroidal “flux” surfaces
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Ideal MHD equilibria are extrema of energy functional 
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→ two surface functions, e.g. the pressure,  p(s) , and rotational-transform ≡ inverse-safety-factor,  ι(s) , 
and → a boundary surface  ( . .  for fixed boundary equilibria . . .   ) , 
constitute  “boundary-conditions”     that must be provided to uniquely define an equilibrium solution
. . . . . . The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .

V ≡ global plasma volume

→ magnetic differential equations are singular at rational surfaces (periodic orbits)
→ pressure-driven “Pfirsch-Schlüter currents” have 1/ x type singularity
→ δ - function singular currents shield out islands

Euler Lagrange equation for    variations
                            ideal-force-balance      

globally ideally-constrained
p∇ = j× B

→ideal variations don’t allow field topology to change “frozen-flux”



Topological constraints : 
pressure gradients coincide with flux surfaces 

pressure gradients  coincide with KAM su

parallel transport dominates perpendicular transport, 
simplest approximation is 0

The ideal interfaces are chosen to coincide with pressure gradients
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(b) the computed equilibrium magnetic field must be consistent with the input profiles 
(a) + (b) = where the pressure has gradients, the magnetic field must have flux surfaces.
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tepped pressure equilibrium solutions are  to existguaranteed

→ structure of B and structure of the 
pressure are intimately connected; 

→ cannot apriori specify pressure without 
apriori constraining structure of the field;

→ where there are significant pressure gradients, 
there can be no islands or chaotic regions with width  > ∆wc



A sequence of equilibria with increasing pressure and 
perturbed boundary are computed

phase of islands flips near n=  stability boundary∞

movie of sequence of equilibria with increasing pressure
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