Theory and numerics of partially-relaxed, topologically-constrained, MHD equilibria with chaotic magnetic fields

Stuart Hudson

Princeton Plasma Physics Laboratory

R.L. Dewar, M.J. Hole & M. McGann

The Australian National University

20th International Toki Conference, 7-10 December 2010, Toki, Japan

Motivation & Outline

 \rightarrow The simplest model of approximating global, macroscopic force balance in toroidal plasma confinement with arbitrary geometry is magnetohydrodynamics (MHD)

 \rightarrow As toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, and are generally chaotic, we need an MHD equilibrium code that allows for chaotic fields.

 \rightarrow Existing ideal MHD equilibrium codes with chaotic fields fail to accommodate the fractal structure of Hamiltonian chaos. This leads to an ill-posed numerical algorithm for computing numericallyintractable, pathological equilibria.

 \rightarrow A new partially-relaxed, topologically-constrained MHD equilibrium model is described and implemented numerically. Results demonstrating convergence tests, benchmarks, and non-trivial solutions are presented.

Ideal-force-balance with *chaotic* field is pathological

MHD theory *ideal* =

*ideal-force-balance,
$$
\nabla p = \mathbf{j} \times \mathbf{B}
$$
, gives $\mathbf{B} \cdot \nabla p = 0$

chaos theory =

*for non-symmetric systems nested family of flux surfaces is destroyed

*islands & irregular field lines appear where transform is rational (n/m) , rationals are dense in space Poincare-Birkhoff theorem \rightarrow periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos *irrational surfaces survive if there exists an $r, k \in \mathbb{R}$ s.t. for all rationals, $|i - n / m| > r m^{-k}$

> *Diophantine condition Kolmogorov, Arnold and Moser*

[→] transport of pressure along field is "infinitely" fast

[→] pressure adapts exactly to structure of phase space

[→] no scale length in ideal MHD

i.e. rotational-transform, *i*, is *poorly approximated* by rationals,

ideal MHD theory + chaos theory ≡ pathological equilibrium

e.g. introduce non-ideal terms, such as resistivity, η , perpendicular diffusion, κ_{\perp} , [HINT, M3D,..], To have a well posed equilibrium with chaotic **B** need to extend beyond ideal MHD. \rightarrow or can relax infinity of ideal MHD constraints

Taylor relaxation: a weakly resistive plasma will relax, *subject to single constraint* of conserved helicity Taylor relaxation, [Taylor, 1974]

$$
W = \int_{V} (p + B^2 / 2) dv, \qquad H = \int_{V} (A \cdot B) dv
$$

plasma energy
Constrained energy functional $F = W - \mu H / 2$, $\mu =$ Lagrange multiplier
Euler-Lagrange equation, for *unconstrained* variations in magnetic field, $\nabla \times \mathbf{B} = \mu \mathbf{B}$
linear force-free field = Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes

Ideal-MHD \rightarrow imposition of *infinity* of ideal MHD constraints non-trivial pressure profiles, but structure of field is *over-constrained*

Taylor relaxation \rightarrow imposition of $\langle Single \rangle$ constraint of conserved global helicity structure of field is not-constrained, but pressure profile is trivial, i.e. *under-constrained*

We need something in between . . .

. . . perhaps an equilibrium model with *finitely* **many ideal constraints, and** *partial* **Taylor relaxation?**

Introducing the multi-volume, partially-relaxed model of MHD equilibria with topological constraints

Energy, helicity and mass integrals

Multi-volume, partially-relaxed energy principle

- * A set of N nested toroidal surfaces enclose N annulur volumes
- \rightarrow the interfaces are assumed to be ideal, $\delta \mathbf{B} = \nabla \times (\delta \xi \times \mathbf{B})$
- * The multi-volume energy functional is

$$
F = \sum_{l=1}^{N} (W_l - \mu_l H_l / 2 - v_l M_l)
$$

Euler-Lagrange equation for *unconstrained* variations in **A**

[→] field remains tangential to interfaces, [→] a finite number of ideal constraints, imposed topologically!

V1

In each annulus, the magnetic field satisfies $\nabla \times \mathbf{B}_l = \mu_l \mathbf{B}_l$

Euler-Lagrange equation for variations i n interface geometry

Across each interface, pressure jumps allowed, but total pressure is continuous $\left[\left[p+B^{2}/2\right] \right] =0$

 \rightarrow an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

ideal interfaces coincide with KAM surfaces

Topological constraints : pressure gradients coincide with flux surfaces

The ideal interfaces are chosen to coincide with pressure gradients

- \rightarrow parallel transport dominates perpendicular transport,
- \rightarrow simplest approximation is $\mathbf{B} \cdot \nabla p = 0$

[→] structure of B and structure of the pressure are intimately connected;

 \rightarrow pressure gradients **must** coincide with KAM surfaces \equiv ideal interfaces

[→] cannot apriori specify pressure without apriori constraining structure of the field;

A fixed boundary equilibrium is defined by : (i) given pressure, $p(\psi)$, and rotational-transform profile, $\iota(\psi)$ (ii) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and $\mathbf{B} \cdot \nabla p = 0$ (b) the computed equilibrium magnetic field must be consistent with the input profiles $(a) + (b)$ = where the pressure has gradients, the magnetic field must have flux surfaces.

Existence of Three-Dimensional Toroidal MHD Equilibria with Nonconstant Pressure

OSCAR P. BRUNO

California Institute of Technology

PETER LAURENCE

Universita di Roma "La Sapienza"

We establish an existence result for the three-dimensional MHD equations

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = \nabla p$ $\nabla \cdot \mathbf{B} = 0$ $\mathbf{B} \cdot \mathbf{n}|_{\partial T} = 0$

with $p \neq$ const in tori T without symmetry. More precisely, our theorems insure the existence of sharp boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for solutions to be constructed with an arbitrary number of pressure jumps. © 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

→ how large the "sufficiently small" departure from axisymmetry can be needs to be explored numerically

Extrema of energy functional obtained numerically; introducing the Stepped Pressure Equilibrium Code, SPEC

The vector-potential is discretized

* toroidal coordinates (s, ϑ, ζ) , *interface geometry $R_{l} = \sum_{n,n} R_{l,m,n} \cos(m\vartheta - n\zeta), Z_{l} = \sum_{n,n} Z_{l,m,n} \sin(m\vartheta - n\zeta)$

- * exploit gauge freedom $A = A_{\rho}(s, \theta, \zeta) \nabla \theta + A_{\zeta}(s, \theta, \zeta) \nabla \zeta$
- * Fourier $A_g = \sum_{m,n} a_s(s) \cos(m\theta - n\zeta)$

* Finite-element $a_{\theta}(s) = \sum_{i} a_{\theta,i}(s) \varphi(s)$ piecewise cubic or quintic basis polynomials

and inserted into constrained-energy functional.

* derivatives w.r.t. vector-potential \rightarrow linear equation for Beltrami field $\nabla \times \mathbf{B} = \mu \mathbf{B}$ * field in each annulus depends on enclosed toroidal flux (boundary condition) and * field in each annulus computed independently, distributed across multiple cpus *solved using sparse linear solver*

 \rightarrow poloidal flux, ψ_p , and helicity-multiplier, μ *adjusted so interface transform is strongly irrational*

$$
\rightarrow
$$
 geometry of interfaces, $\xi \equiv \{R_{m,n}, Z_{m,n}\}\$

Force balance solved using multi-dimensional Newton method.

* interface geometry is adjusted to satisfy force $\mathbf{F}[\xi] = \{ [[p + B^2/2]]_{m,n} \}$ $\text{ted to satisfy force } \mathbf{F}[\xi] \equiv \{ [[p + B^2 / 2]]_{m,n} \} = 0$

* angle freedom constrained by spectral-condensation, adjust angle freedom to minimize $\sum m^2 (R_m^2 + Z_m^2)$

* derivative matrix, $\nabla F[\xi]$, computed using finite-differences

* quadratic-convergence w.r.t. Newton iterations

minimal spectral width [Hirshman, VMEC]

future work . . .

- *approximate derivative matrix* $\sim 2^{nd}$ *variation of energy functional*
- *2) implement pre-conditioner*

Numerical error in Beltrami field scales as expected

Scaling of numerical error with radial resolution depends on finite-element basis

$$
r = 0.2 + \delta \left[\cos(2\theta - \zeta) + \cos(3\theta - \zeta) \right]
$$

stepped-pressure equilibria accurately approximate smooth-pressure *axisymmetric* equilibria

in axisymmetric geometry . . .

- \rightarrow magnetic fields have family of nested flux surfaces
- \rightarrow equilibria with smooth profiles exist,
- \rightarrow may perform benchmarks (e.g. with VMEC)
- (arbitrarily approximate smooth-prof ile with stepped-profile)
- \rightarrow approximation improves as number of interfaces increases
- \rightarrow location of magnetic axis converges w.r.t radial resolution

Equilibria with (i) perturbed boundary [→]chaotic fields, and (ii) pressure are computed .

Summary

 \rightarrow A partially-relaxed, topologically-constrained energy principle has been presented for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

\rightarrow The model has been implemented numerically

- * using a high-order (piecewise quintic) radial discretization
- * an optimal (i.e. spectrally condensed) Fourier representation
- * workload distrubuted across multiple cpus,
- * extrema located using Newton's method with quadratic-convergence

\rightarrow Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

\rightarrow The model has a sound theoretical foundation

* solutions guaranteed to exist (under certain conditions)

\rightarrow The numerical method is computationally tractable

- * does not invert singular operators
- * does not struggle to resolve fractal structure of chaos

\rightarrow Convergence studies have been performed

- * expected error scaling with radial resolution confirmed
- * detailed benchmark with axisymmetric equilibria (with smooth profiles)
- * that the island widths converge with Fourier resolution has been confirmed

Toroidal magnetic confinement depends on flux surfaces

Transport in magnetized plasma dominately parallel to **B**

 \rightarrow if the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined

Axisymmetric magnetic fields possess a continuo usly nested family of flux surfaces

 \rightarrow nested family of flux surfaces is guaranteed if the system has an ignorable coordinate *magnetic field is called integrable*

→ rational field-line = periodic trajectory family of periodic orbits = rational flux surface

Ideal MHD equilibria are extrema of energy functional

The energy functional is

$$
W = \int_V (p + B^2 / 2) \, dv
$$

V [≡] global plasma volume

ideal variations

mass conservation

state equation

 $\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$ $\frac{d}{dt} (p \rho^{-\gamma}) = 0$

→ideal variations don't allow field topology to change "frozen-flux"

the first variation in plasma energy is

- j×B ξ

 $\delta W = \int_V (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \delta \xi \, dv$

 $\mathcal{B} = \nabla \times (\delta \mathbf{\xi} \times \mathbf{B})$

Euler Lagrange equation for globally ideally-constrained variations

\n
$$
\nabla p = \mathbf{j} \times \mathbf{B}
$$

[→] two surface functions, e.g. the pressure, p(s) , and rotational-transform [≡] inverse-safety-factor, ι*(s) , and* \rightarrow *a boundary surface* $(. .)$ *for fixed boundary equilibria* \cdots \rightarrow *, constitute "boundary-conditions" that must be provided to uniquely define an equilibrium solution The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .*

nested flux surface topology maintained by singular currents at rational surfac es

from $\nabla \cdot (\sigma \mathbf{B} + \mathbf{j}_{\perp}) = 0$, parallel current must satisfy $\mathbf{B} \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_{\perp}$, whe re $\mathbf{j}_{\shortparallel} = \mathbf{B} \times \nabla p / B^2$

*[→] magnetic differential equations are singular at rational surfaces (periodic orbits) [→] pressure-driven "Pfirsch-Schlüter currents" have 1/ x type singularity →*δ *- function singular currents shield out islands*

$$
\sigma_{m,n} = \frac{i(\sqrt{g} \nabla \cdot \mathbf{j}_{\perp})_{m,n}}{(m\iota - n)} + \delta(m\iota - n)
$$

Topological constraints : pressure gradients coincide with flux surfaces

The ideal interfaces are chosen to coincide with pressure gradients

 \rightarrow parallel transport dominates perpendicular transport,

- \rightarrow simplest approximation is $\mathbf{B} \cdot \nabla p = 0$
- \rightarrow pressure gradients **must** coincide with KAM surfaces \equiv ideal interfaces

[→] structure of B and structure of the pressure are intimately connected;

[→] cannot apriori specify pressure without apriori constraining structure of the field;

[next order of approximation, $\mathbf{B} \cdot \nabla p$ is small, e.g. $\partial_t p = \kappa_{\parallel} \nabla_{\parallel}^2 p + \kappa_{\perp} \nabla_{\perp}^2 p = 0$, with $\kappa_{\parallel} \gg \kappa_{\perp}$, e.g. $\kappa_{\perp} / \kappa_{\parallel} \sim 10^{-10}$

 *pressure gradients coincide with KAM surfaces, cantori . . *pressure flattened across islands, chaos with width > $\Delta w_C \sim (\kappa_1 / \kappa_1)^{1/4}$ * anisotropic diffusion equation solved analytically, p' $\propto 1 / (\kappa_{\parallel} \varphi_2 + \kappa_{\perp} G)$, φ_2 is quadratic-flux across cantori, G is metric term *[→] where there are significant pressure gradients, there can be no islands or chaotic regions with width > ∆ wc*

A fixed boundary equi librium is defined by : (i) given pressure, $p(\psi)$, and rotational-transform profile, $\iota(\psi)$ (ii) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and $\mathbf{B} \cdot \nabla p = 0$ (b) the computed equilibrium magnetic field must be consistent with the input profiles $(a) + (b)$ = where the pressure has gradients, the magnetic field must have flux surfaces. → non-trivial stepped pressure equilibrium solutions are *guaranteed* to exist

A sequence of equilibria with increasing pressure and perturbed boundary are computed

phase of islands flips near n= ∞ stability boundary