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 We need an equilibrium code that can handle chaotic fields
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Toroidal magnetic confinement depends on flux surfaces 

magnetic field lines wrap around toroidal “flux” surfaces

rational field-line ϑ = 0.3333… ξ

irrational field-line ϑ = 0.3819… ξ
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periodic toroidal angle ζ

nested family of flux surfaces is guaranteed
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* for axisymmetric magnetic fields
  

Transport in magnetized plasma dominately parallel to 
Confinement depends on existence of toroidal   surfacesflux
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straight field line flux coordinates,

magnetic differential equation, 
is singular at rational surfaces,
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family of periodic orbits ≡ rational flux surface

magnetic field is called integrable

pe
ri

od
ic

 p
ol

oi
da

l a
ng

le
 ϑ



Ideal MHD equilibria are extrema of energy functional 
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mass conservation                     

state equation                            

Faraday's law, ideal Ohm's law 
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ideal variations do not allow topology of the field to change
FROZEN FLUX

V ≡ global plasma volume

→ magnetic differential equations are singular at rational surfaces
→ pressure-driven currents have 1/ x type singularity
→ δ - function singular currents shield out islands

Euler Lagrange equation for    variations ideal-force-balance,      globally ideally-constrained p≡ ∇ = j× B
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*ideal-force-balance, ,  gives  0

*islands  chaos appear at all rational surfaces ( / ),  and rationals are dense
*irrational surfaces survive if there exists an
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chaos theory
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i.e. rotational-transform, ,  is   by rationals,
 ,  s.t. for all rationals, |

   

*Spitzer iterations are ill-

 MHD theory  chaos theory  pathological equilibrium
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e.g. introduce non-ideal terms, such as resistivity, , perpendicular diffusion, , [ , ],  or 
to have a well posed equilibrium with chaotic  need to extend beyond ideal MHD

. . .
relax infi
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nity of ideal MHD constraints

Ideal-force-balance with chaotic field is pathological 

Diophantine condition
Kolmogorov, Arnold and Moser

( ) is continuous
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→ transport of pressure along field is “infinitely” fast
→ no scale length in ideal MHD
→ pressure adapts exactly to structure of phase space

→ cannot be inverted to obtain parallel current



Taylor relaxation:   a weakly resistive plasma will relax, 
subject to single constraint of conserved helicity
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Lagrange multiplier
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Constrained energy functional   
 

Taylor relaxation

Euler-Lagrange equation,
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Opposite Extremes . . . .

Ideal MHD
→ imposition of infinity of ideal MHD constraints (nested flux surfaces)

non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation
→imposition of single constraint of conserved global helicity

structure of field is not-constrained, but pressure profile is trivial

We need something in between . . . .
perhaps an equilibrium model with finitely many constraints, and partial Taylor relaxation?

linear force-free field ≡Beltrami field
no pressure gradients
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A multi-volume, partially-constrained model of 
weakly-resistive MHD equilibria, with topological constraints 
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the interfaces are assumed to be ideal,  
dal surfaces encloses  annulur volumes

* The multi-volume, partially-constrained, energy functional is
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Euler-Lagrange equation for variati
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Across each interface, the total pressur
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an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

e is continuous [[p+ 2]]=0B
→

V1

= ∇×B A

ideal interfaces coincide with KAM surfaces

→ field remains tangential to interfaces,
→ a finite number of ideal constraints,

imposed topologically!



The equilibrium is defined by pressure & transform profiles, 
and outermost boundary 

 means that pressure gradients  coincide with KAM surfaces  ideal interfaces0

A self-consistent model of MHD equilibria with 

The ideal interfaces are chosen to coincide with pressure gradients
p ≡∇ =B musti

with 0,

                                                     with irregular, chaotic, volumes at every rational

          non-trivial, non-pathological pressure,  

         chaotic fields,
  finite

p

and

∇ =Bi

 radial surfaces

 across the chaotic volumes, the pressure is flat, ,
            finite pressure "jumps" at finite set of surfaces,
           

-radial resolution,                           N
means μ→ ∇× =

→
B B

2 the "total pressure"  is continuous.[[ / 2]]p B→ +

The multi-volume, partially relaxed equilibrium model is

1) consistent with weakly resistive plasma dynamics
an extension of Taylor relaxation to multiple volumes,
with additional topological constraints to allow for non-trivial pressure 

2)  consistent with the structure of chaotic fields
does not need to resolve infinite detail of chaos

3)  computationally tractable
algorithm does not invert pathological singular operators



Extrema of energy functional obtained numerically 
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* toroidal coordinates      ( , , )

* exploit gauge freedom   ( , , ) ( , , )

* Fourier                          

* Finite-element      

The vector-potential is discretized
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* derivatives w.r.t. vector-potential d.o.f.  linear equation for Beltrami field
* field in each annulus computed independent

and inserted into constrained-energy functional.
iis s sa aϑ ϑ ϕ=
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ly, distributed across multiple cpus
* field in each annulus depends on
                       poloidal flux, , and helicity-multiplier, 
                       geometry of interfaces

Force balance s

Pψ μ→
→

2* geometrical d.o.f.  interface geometry is adjusted to satisfy [[p+ 2 ]]=0
* tangential angle d.o.f. constrained by spectral-condensation
* derivative matri

olved using multi-dimensional Newton method.
B≡

≡
x computed using finite-differences

* quadratic-convergence w.r.t. Newton iterations
* Beltrami fields in each annulus computed in parallel

piecewise cubic or quintic basis polynomials

minimal spectral width [Hirshman, VMEC]

solved using sparse linear solver

adjusted so interface transform is strongly irrational 

future work . . .
1) approximate derivative matrix ~ 2nd variation of energy functional 
2) implement pre-conditioner 
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depends on finite-element basis
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 Scaling of numerical error with radial resolution
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial

Poincaré plot, ζ=0 Poincaré plot, ζ=π

(m,n)=(3,1) island
+ (m,n)=(2,1) island
=                     chaos
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Example of chaotic Beltrami field



Benchmark in axisymmetric geometry 

* in each annulu

In axisymmetric geometry, equilibria with smooth profiles exist

location of magnetic axis against radial resolution

stepped-profile approximation to smooth profile

VMEC surfaces, SPEC surfaces
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