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Motivation and Outline
→ The simplest model of approximating global, macroscopic force balance in toroidal plasma confinement 

with arbitrary geometry is magnetohydrodynamics (MHD)

→ Toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, are generally not foliated by continuous 
family of flux surfaces, so we need an MHD equilibrium code that allows for non-integrable fields.

→ Ideal MHD equilibria with non-integrable magnetic fields (i.e. fractal phase space) are infinitely 
discontinuous. This leads to an ill-posed numerical algorithm for computing numerically-intractable, 
pathological equilibria.

→ A new partially-relaxed, topologically-constrained MHD equilibrium model is described and implemented 
numerically. Results demonstrating convergence tests, benchmarks, and non-trivial solutions are 
presented.
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An ideal equilibrium with non-integrable (chaotic) field and 
continuous pressure, is infinitely discontinous 

Kolmogorov, Arnold and Moser,  Diophantine condition

→ transport of pressure along field is “infinitely” fast 
→ no scale length in ideal MHD
→ pressure adapts exactly to structure of phase space
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Instead, a multi-region, relaxed energy principle for MHD 
equilibria with non-trivial pressure and chaotic fields



→ how large the “sufficiently small” departure from axisymmetry can be needs to be explored numerically . . . . 



By definition, an equilibrium code must constrain topology;
B·∇p=0 means flux surfaces must coincide with pressure gradients. 
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Extrema of energy functional obtained numerically;
introducing the Stepped Pressure Equilibrium Code, SPEC 
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 linear equation for Beltrami field 
* field in each annulus computed independently, distributed across multiple cpus
* field in each annulus depends on enclosed toroidal flux 
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Numerical error in Beltrami field scales as expected 

h = radial grid size = 1 / N
n = order of polynomial
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Stepped-pressure equilibria accurately approximate 
smooth-pressure axisymmetric equilibria 

magnetic fields have family of nested flux surfaces
equilibria with smooth profiles exist,
may perform benchmarks (e.g. with VMEC)
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Equilibria with (i) perturbed boundary≡chaotic fields, 
and (ii) pressure are computed .      
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Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.
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Summary 
→ A partially-relaxed, topologically-constrained energy principle has been presented 
for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

→ The model has been implemented numerically
* using a high-order (piecewise quintic) radial discretization
* an optimal (i.e. spectrally condensed) Fourier representation
* workload distrubuted across multiple cpus,
* extrema located using Newton’s method with quadratic-convergence

→ Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

→ The model has a sound theoretical foundation
* solutions guaranteed to exist (under certain conditions)

→ The numerical method is computationally tractable
* does not invert singular operators
* does not struggle to resolve fractal structure of chaos

→ Convergence studies have been performed
* expected error scaling with radial resolution confirmed
* detailed benchmark with axisymmetric equilibria (with smooth profiles)
* that the island widths converge with Fourier resolution has been confirmed 





  if the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined
Transport in magnetized plasma dominately parallel to 
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Ideal MHD equilibria are extrema of energy functional 
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→ two surface functions, e.g. the pressure,  p(s) , and rotational-transform ≡ inverse-safety-factor,  ι(s) , 
and → a boundary surface  ( . .  for fixed boundary equilibria . . .   ) , 
constitute  “boundary-conditions”     that must be provided to uniquely define an equilibrium solution
. . . . . . The computational task is to compute the magnetic field that is consistent with the given boundary conditions . . .

V ≡ global plasma volume

→ magnetic differential equations are singular at rational surfaces (periodic orbits)
→ pressure-driven “Pfirsch-Schlüter currents” have 1/ x type singularity
→ δ - function singular currents shield out islands

Euler Lagrange equation for    variations
                            ideal-force-balance      

globally ideally-constrained
p∇ = j× B

→ideal variations don’t allow field topology to change “frozen-flux”



Topological constraints : 
pressure gradients coincide with flux surfaces 

pressure gradients  coincide with KAM su
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simplest approximation is 0
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Taylor relaxation:   a weakly resistive plasma will relax, 
subject to single constraint of conserved helicity 
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 variations in magnetic field,    unconstrained μ∇× =B B

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . . .

Ideal-MHD             → imposition of   infinity of ideal MHD constraints
non-trivial pressure profiles, but structure of field is over-constrained

Taylor relaxation → imposition of   single constraint of conserved global helicity
structure of field is not-constrained, but pressure profile is trivial, i.e. under-constrained

We need something in between .  .  .
.  .  .  perhaps an equilibrium model with finitely many ideal constraints, and partial Taylor relaxation?

linear force-free field ≡ Beltrami field

But, . . .Taylor relaxed fields have no pressure gradients



Sequence of equilibria with increasing pressure shows 
plasma can have significant response to external perturbation.
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Introducing the multi-volume, partially-relaxed model of 
MHD equilibria with topological constraints 
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Sequence of equilibria with slowly increasing pressure
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