Partially-relaxed, topologically-constrained MHD equilibria with chaotic fields.

Stuart Hudson

Princeton Plasma Physics Laboratory

R.L. Dewar, M.J. Hole & M. McGann

The Australian National University

5th International Workshop on Stochasticity in Fusion Plasmas, Jülich, Germany, 11th -14th April 2011

Motivation and Outline

- → The simplest model of approximating global, macroscopic force balance in toroidal plasma confinement with arbitrary geometry is magnetohydrodynamics (MHD)
- → Toroidal magnetic fields are analogous to 1-1/2 Hamiltonians, are generally <u>not</u> foliated by continuous family of flux surfaces, so we need an MHD equilibrium code that allows for *non-integrable* fields.
- → Ideal MHD equilibria with non-integrable magnetic fields (i.e. fractal phase space) are infinitely discontinuous. This leads to an ill-posed numerical algorithm for computing numerically-intractable, *pathological* equilibria.
- → A new partially-relaxed, topologically-constrained MHD equilibrium model is described and implemented numerically. Results demonstrating convergence tests, benchmarks, and non-trivial solutions are presented.

An ideal equilibrium with non-integrable (chaotic) field and

continuous pressure, is infinitely discontinous

ideal MHD theory = $\nabla p = \mathbf{j} \times \mathbf{B}$, gives $\mathbf{B} \cdot \nabla p = 0$

 \rightarrow transport of pressure along field is "infinitely" fast \rightarrow no scale length in ideal MHD

 \rightarrow pressure adapts exactly to structure of phase space

chaos theory = nowhere are flux surfaces continuously nested^L

*for non-symmetric systems, nested family of flux surfaces is destroyed;
*islands & irregular field lines appear where transform is rational (n / m); rationals are dense in space; Poincare-Birkhoff theorem → periodic orbits, (e.g. stable and unstable) guaranteed to survive into chaos
*some irrational surfaces survive if there exists an r, k ∈ R s.t. for all rationals, |t - n / m| > r m^{-k}, i.e. rotational-transform, t, is *poorly approximated* by rationals, Kolmogorov, Arnold and Moser, Diophantine condition but nowhere are smooth flux surfaces continuously nested, i.e. nowhere foliate space;

ideal MHD theory + chaos theory \rightarrow infinitely discontinuous equilibrium

*iterative method for calculating equilibria is ill-posed;
1) B_n · ∇p = 0 → ∇p is everywhere discontinuous, or zero;
2) j_⊥ = B_n × ∇p/B_n² → j_⊥ everywhere discontinuous or zero;
3) B_n · ∇σ = -∇ · j_⊥; B · ∇ is *densely and irregularly* singular; condition that σ be single valued δσ = -∮_C ∇ · j_⊥dl / B = 0; pressure must be flat on every closed field line, or parallel current is not single-valued;

4) $\nabla \times \mathbf{B}_{n+1} = \mathbf{j} \equiv \sigma \mathbf{B}_n + \mathbf{j}_\perp;$

To have a well-posed equilibrium with chaotic **B** need to extend beyond ideal MHD. e.g. introduce non-ideal terms, such as resistivity, η , perpendicular diffusion, κ_{\perp} , [*HINT*, *M3D*, *NIMROD*,..], \rightarrow or can relax infinity of ideal MHD constraints

Instead, a multi-region, relaxed energy principle for MHD equilibria with non-trivial pressure and chaotic fields Energy, helicity and mass integrals (defined in nested annular volumes) $\underbrace{W_l = \int_{V_l} \left(\frac{p}{\gamma - 1} + \frac{B^2}{2}\right) dv}_{\text{plasma energy}}, \quad H_l = \underbrace{\int_{V_l} \left(\mathbf{A} \cdot \mathbf{B}\right) dv}_{\text{helicity}}, \quad M_l = \underbrace{\int_{V_l} p^{1/\gamma} dv}_{\text{mass}}$ Seek extrema of plasma energy with constraints : $F = \sum_{l=1}^{N} (W_l - \mu_l H_l / 2 - v_l M_l)$ First variation due to *unconstrained* variations in pressure, fields and geometry except ideal constraint $\delta \mathbf{B} = \nabla \times (\boldsymbol{\xi} \times \mathbf{B})$ imposed discretely at interfaces $\delta F = \sum_{l=1}^{N} \left\{ \int_{V_l} \underbrace{\left(\frac{1}{\gamma - 1} - \frac{\nu_l p^{1/\gamma - 1}}{\gamma} \right)}_{\nu p^{1/\gamma - \gamma} p^{1/\gamma - 1}} \delta p \, d\nu + \underbrace{\int_{V_l} \delta \mathbf{A} \cdot \left(\nabla \times \mathbf{B} - \mu_l \mathbf{B} \right) d\nu}_{\nabla \times \mathbf{B} = \mu_l \mathbf{B} \text{ in each annulus}} - \int_{\partial V_l} \underbrace{\left[\frac{p + B^2}{2} \right]}_{\text{continuity of total pressure across interfaces}} \xi.dS \right\}$ $v p^{1/\gamma} = \gamma p/(\gamma - 1) = const$ in each annulus

Equilibrium solutions when $\nabla \times \mathbf{B} = \mu_l \mathbf{B}$ in annuli, $[[\mathbf{p}+\mathbf{B}^2/2]]=0$ across interfaces

→ partial *Taylor relaxation* allowed in each annulus; allows for topological variations/islands/chaos;

- \rightarrow global relaxation prevented by ideal constraints; \rightarrow non-trivial *stepped pressure* solutions;
- $\rightarrow \nabla \times \mathbf{B} = \mu_l \mathbf{B}$ is a linear equation for **B**; depends on interface geometry; solved in parallel in each annulus;
- → solving force balance = adjusting interface geometry to satisfy [[p+B²/2]]=0; standard numerical problem finding zero of multi-dimensional function; call NAG routine: Newton & convex gradient method;

Existence of Three-Dimensional Toroidal MHD Equilibria with Nonconstant Pressure

OSCAR P. BRUNO California Institute of Technology Universita di Roma "La Sapienza"

PETER LAURENCE

We establish an existence result for the three-dimensional MHD equations

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = \nabla p$ $\nabla \cdot \mathbf{B} = \mathbf{0}$ $\mathbf{B} \cdot \mathbf{n}|_{\partial T} = 0$

with $p \neq$ const in tori T without symmetry. More precisely, our theorems insure the existence of sharp boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for solutions to be constructed with an arbitrary number of pressure jumps. © 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

 \rightarrow how large the "sufficiently small" departure from axisymmetry can be needs to be explored numerically....

By *definition*, an equilibrium code must constrain topology; $\mathbf{B} \cdot \nabla p = 0$ means flux surfaces *must* coincide with pressure gradients.

Definition: Equilibrium Code (fixed boundary)

- given (1) boundary (2) pressure (3) rotational-transform \equiv inverse q-profile (or current profile); \rightarrow calculate **B** that is consistent with force-balance; pressure profile *is not changed*! compare with "coupled equilibrium-transport" algorithm:
- \rightarrow simultaneously evolve pressure, etc. , while adjusting **B**;

An equilibrium code must enforce topological constraints;

- → Parallel transport \gg perpendicular transport; simplest approximation **B**· ∇p =0;
- → The constraint $\mathbf{B} \cdot \nabla p = 0$ means the structure of \mathbf{B} and p are intimately connected; *cannot apriori specify pressure without apriori constraining topology of the field;
- \rightarrow pressure gradients must coincide with flux surfaces;
- → the flux surfaces most likely to survive are strongly irrational = "noble";
- = limit of alternating path down Farey-tree;= Fibonacci sequence

 $\frac{p_1}{q_1}, \frac{p_2}{q_2}, \frac{p_1 + p_2}{q_1 + q_2}, \dots \rightarrow \frac{p_1 + \gamma p_2}{q_1 + \gamma q_2}, \ \gamma = golden \ \overline{mean}$

<u>Extrema of energy functional obtained numerically;</u> <u>introducing the Stepped Pressure Equilibrium Code, SPEC</u>

The vector-potential is discretized

* toroidal coordinates (s, ϑ, ζ) , *interface geometry $R_l = \sum_{m,n} R_{l,m,n} \cos(m\vartheta - n\zeta), Z_l = \sum_{m,n} Z_{l,m,n} \sin(m\vartheta - n\zeta)$ * exploit gauge freedom $\mathbf{A} = A_g(s, \vartheta, \zeta) \nabla \vartheta + A_{\zeta}(s, \vartheta, \zeta) \nabla \zeta$ $A_{g} = \sum_{m \ n} a_{\vartheta}(s) \cos(m\vartheta - n\zeta)$ * Fourier $a_{\vartheta}(s) = \sum_{i} a_{\vartheta,i}(s) \varphi(s)$ piecewise cubic or quintic basis polynomials * Finite-element and inserted into constrained-energy functional $F = \sum_{l=1}^{N} (W_l - \mu_l H_l / 2 - \nu_l M_l)$ * derivatives w.r.t. vector-potential \rightarrow linear equation for Beltrami field $\nabla \times \mathbf{B} = \mu \mathbf{B}$ solved using sparse linear solver * field in each annulus computed independently, distributed across multiple cpus * field in each annulus depends on enclosed toroidal flux (boundary condition) and \rightarrow poloidal flux, ψ_P , and helicity-multiplier, μ adjusted so interface transform is strongly irrational \rightarrow geometry of interfaces, $\xi \equiv \{R_{m,n}, Z_{m,n}\}$ Force balance solved using multi-dimensional Newton method. * interface geometry is adjusted to satisfy force $\mathbf{F}[\boldsymbol{\xi}] = \{[[\mathbf{p}+B^2/2]]_m, \}=0$ * angle freedom constrained by spectral-condensation, adjust angle freedom to minimize $\sum m^2 \left(R_{mn}^2 + Z_{mn}^2 \right)$ minimal spectral width [Hirshman, VMEC] * derivative matrix, $\nabla F[\xi]$, computed in parallel using finite-differences

* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method;

Numerical error in Beltrami field scales as expected

Scaling of numerical error with radial resolution depends on finite-element basis

Stepped-pressure equilibria accurately approximate smooth-pressure *axisymmetric* equilibria

in axisymmetric geometry . . .

- \rightarrow magnetic fields have family of nested flux surfaces
- \rightarrow equilibria with smooth profiles exist,
- \rightarrow may perform benchmarks (e.g. with VMEC)
 - (arbitrarily approximate smooth-profile with stepped-profile)
- \rightarrow approximation improves as number of interfaces increases
- \rightarrow location of magnetic axis converges w.r.t radial resolution

Equilibria with (i) perturbed boundary≡chaotic fields, and (ii) pressure are computed .

Sequence of equilibria with increasing pressure shows plasma can have significant response to external perturbation. axisymmetric small perturbation plus $R = 1.00 + 0.30\cos(\vartheta) + 0.05\cos(2\vartheta) + [\delta_{21}\cos(2\vartheta - \zeta) + \delta_{31}\cos(3\vartheta - \zeta)]\cos(\vartheta)$ $[\delta_{21}\cos(2\vartheta-\zeta)+\delta_{31}\cos(3\vartheta-\zeta)]\sin(\vartheta)$ $Z = 1.00 + 0.40 \sin(\theta) +$ t−2 π. 0/ 24 $\beta_{tot} \approx 0.00$ $\beta_{tot} \approx 0.05$ p= 0.000 |F|=2.e-11 M= 8 N= .3 RESOLUTION PRESSURE TRANSFORM 0.6 +1.0e-03 resonant error field 0.5 +5.0e-04 0.4 +0.0e+00 0.3 -5.0e-04 15 pressure

<u>Summary</u>

 \rightarrow A partially-relaxed, topologically-constrained energy principle has been presented for MHD equilibria with chaotic fields and non-trivial (i.e. non-constant) pressure

\rightarrow The model has been implemented numerically

- * using a high-order (piecewise quintic) radial discretization
- * an optimal (i.e. spectrally condensed) Fourier representation
- * workload distrubuted across multiple cpus,
- * extrema located using Newton's method with quadratic-convergence

\rightarrow Intuitively, the equilibrium model is an extension of Taylor relaxation to multiple volumes

\rightarrow The model has a sound theoretical foundation

* solutions guaranteed to exist (under certain conditions)

\rightarrow The numerical method is computationally tractable

- * does not invert singular operators
- * does not struggle to resolve fractal structure of chaos

\rightarrow Convergence studies have been performed

- * expected error scaling with radial resolution confirmed
- * detailed benchmark with axisymmetric equilibria (with smooth profiles)
- * that the island widths converge with Fourier resolution has been confirmed

Toroidal magnetic confinement depends on flux surfaces

Transport in magnetized plasma dominately parallel to **B**

 \rightarrow if the field lines are not confined (e.g. by flux surfaces), then the plasma is poorly confined

Axisymmetric magnetic fields possess a continuously nested family of flux surfaces

→ nested family of flux surfaces is guaranteed if the system has an ignorable coordinate magnetic field is called integrable

 \rightarrow rational field-line = periodic trajectory *family of periodic orbits* = *rational flux surface*

Ideal MHD equilibria are extrema of energy functional

The energy functional is

$$W = \int_V (p + B^2 / 2) \, dv$$

 $V \equiv$ global plasma volume

 $\frac{\partial}{\partial t}\rho + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\left\{ d_t(p\rho^{-\gamma}) = 0 \right\}$

ideal variations

mass conservation

state equation

Faraday's law, ideal Ohm's law $\delta \mathbf{B} = \nabla \times (\delta \boldsymbol{\xi} \times \mathbf{B})$

 \rightarrow ideal variations **don't** allow field topology to change "frozen-flux"

the first variation in plasma energy is

 $\delta W = \int_{W} (\nabla p - \mathbf{j} \times \mathbf{B}) \cdot \delta \boldsymbol{\xi} \, dv$

Euler Lagrange equation for globally ideally-constrained variations
ideal-force-balance
$$\nabla p = \mathbf{j} \times \mathbf{B}$$

→ two surface functions, e.g. the pressure, p(s), and rotational-transform = inverse-safety-factor, $\iota(s)$, and → a boundary surface (.. for fixed boundary equilibria...), constitute "boundary-conditions" that must be provided to uniquely define an equilibrium solution The computational task is to compute the magnetic field that is consistent with the given boundary conditions...

nested flux surface topology maintained by singular currents at rational surfaces

from $\nabla \cdot (\sigma \mathbf{B} + \mathbf{j}_{\perp}) = 0$, parallel current must satisfy $\mathbf{B} \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_{\perp}$, where $\mathbf{j}_{\perp} = \mathbf{B} \times \nabla p / B^2$

 \rightarrow magnetic differential equations are singular at rational surfaces (periodic orbits) \rightarrow pressure-driven "Pfirsch-Schlüter currents" have 1/x type singularity $\rightarrow \delta$ - function singular currents shield out islands

$$\sigma_{m,n} = \frac{i(\sqrt{g} \nabla \cdot \mathbf{j}_{\perp})_{m,n}}{(mn-n)} + \delta(mn-n)$$

<u>Topological constraints :</u> pressure gradients coincide with flux surfaces

The ideal interfaces are chosen to coincide with pressure gradients

- \rightarrow parallel transport dominates perpendicular transport,
- \rightarrow simplest approximation is $\mathbf{B} \cdot \nabla p = 0$
- \rightarrow pressure gradients **must** coincide with KAM surfaces = ideal interfaces

 \rightarrow structure of *B* and structure of the pressure are intimately connected;

 \rightarrow cannot apriori specify pressure without apriori constraining structure of the field;

[next order of approximation,
$$\mathbf{B} \cdot \nabla p$$
 is small, e.g. $\partial_t p = \kappa_{\parallel} \nabla_{\parallel}^2 p + \kappa_{\perp} \nabla_{\perp}^2 p = 0$, with $\kappa_{\parallel} \gg \kappa_{\perp}$, e.g. $\kappa_{\perp} / \kappa_{\parallel} \sim 10^{-10}$

*pressure gradients coincide with KAM surfaces, cantori . . *pressure flattened across islands, chaos with width > $\Delta w_C \sim (\kappa_{\perp} / \kappa_{\parallel})^{1/4}$

 \rightarrow where there are significant pressure gradients, there can be no islands or chaotic regions with width $> \Delta wc$

* anisotropic diffusion equation solved analytically, p' $\propto 1 / (\kappa_{\parallel} \varphi_2 + \kappa_{\perp} G)$, φ_2 is quadratic-flux across cantori, G is metric term

A fixed boundary equilibrium is defined by: (i) given pressure, $p(\psi)$, and rotational-transform profile, $\iota(\psi)$ (ii) geometry of boundary;

(a) only stepped pressure profiles are consistent (numerically tractable) with chaos and B•∇p = 0
(b) the computed equilibrium magnetic field must be consistent with the input profiles
(a) + (b) = where the pressure has gradients, the magnetic field must have flux surfaces.
→ non-trivial stepped pressure equilibrium solutions are *guaranteed* to exist

Taylor relaxation: a weakly resistive plasma will relax,

subject to single constraint of conserved helicity

Taylor relaxation, [Taylor, 1974]

$$W = \int_{V} (p + B^{2} / 2) dv, \qquad H = \int_{V} (\mathbf{A} \cdot \mathbf{B}) dv$$

plasma energy
Constrained energy functional $F = W - \mu H / 2, \ \mu = \text{Lagrange multiplier}$
Euler-Lagrange equation, for *unconstrained* variations in magnetic field, $\nabla \times \mathbf{B} = \mu \mathbf{B}$
linear force-free field = Beltrami field

But, . . . Taylor relaxed fields have no pressure gradients

Ideal MHD equilibria and Taylor-relaxed equilibria are at opposite extremes . . .

Ideal-MHD \rightarrow imposition of *infinity* of ideal MHD constraints non-trivial pressure profiles, but structure of field is *over-constrained*

Taylor relaxation \rightarrow imposition of *single* constraint of conserved global helicity structure of field is not-constrained, but pressure profile is trivial, i.e. *under-constrained*

We need something in between . . .

. . . perhaps an equilibrium model with *finitely* many ideal constraints, and *partial* Taylor relaxation?

Introducing the multi-volume, partially-relaxed model of MHD equilibria with topological constraints

Energy, helicity and mass integrals

Multi-volume, partially-relaxed energy principle

- * A set of N nested toroidal surfaces enclose N annulur volumes
- \rightarrow the interfaces are assumed to be ideal, $\delta \mathbf{B} = \nabla \times (\delta \boldsymbol{\xi} \times \mathbf{B})$
- * The multi-volume energy functional is

$$F = \sum_{l=1}^{N} (W_{l} - \mu_{l}H_{l} / 2 - \nu_{l}M_{l})$$

Euler-Lagrange equation for unconstrained variations in A

 → field remains tangential to interfaces,
 → a finite number of ideal constraints, imposed topologically!

 V_1

In each annulus, the magnetic field satisfies $\nabla \times \mathbf{B}_l = \mu_l \mathbf{B}_l$

Euler-Lagrange equation for variations in interface geometry

Across each interface, pressure jumps allowed, but total pressure is continuous $[[p+B^2/2]]=0$

 \rightarrow an analysis of the force-balance condition is that the interfaces must have strongly irrational transform

ideal interfaces coincide with KAM surfaces

Sequence of equilibria with slowly increasing pressure

