
Computation of non-axisymmetric equilibria using a partially-relaxed,
partially-constrained MHD equilibrium model

S.R. Hudson, R.L. Dewara, M.J. Holea, M. McGanna

Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ, 08543, USA
aPlasma Research Laboratory, Research School of Physics and Engineering, The Australian National University,

Canberra ACT 0200, Australia

shudson@pppl.gov

Increasingly it is being realized that a comprehensive understanding of nominally axisymmetric devices re-
quires an understanding of the non-linear, self-consistent plasma response to non-axisymmetric perturbations.
In order to construct non-axisymmetric equilibria allowing for topological variations in the field, e.g. magnetic
islands and ergodic regions, one must appreciate the fact that non-axisymmetric magnetic fields are generally
chaotic. In this case, the commonly used equation of ideal force balance, ∇p = j × B, leads to pathological
solutions: any continuous non-trivial pressure that satisfies B · ∇p = 0 with a chaotic field will have an infin-
ity of discontinuities in the pressure gradient. The perpendicular current j⊥ = B ×∇p/B2 is either zero or
discontinuous. This pathological structure causes problems for the so-called Spitzer iterative approach, which
is fundamentally ill-posed as it depends on inverting magnetic differential equations, B · ∇(j‖/B) = −∇ · j⊥,
and such equations have a dense set of singularities.
Instead, we have implemented an equilibrium model allowing for chaotic fields by combining elements of Taylor
relaxation (that a weakly-resistive plasma will relax, and the topology may break, in order to minimize the
plasma energy subject to the constraint of conserved helicity) and ideal constraints. Consider a plasma region
comprised of a set of N nested annular regions which are separated by a discrete set of toroidal interfaces, Il

[Dewar et al., Entropy, 2008]. In each volume, Vl, bounded by the Il−1 and Il interfaces, the plasma energy,
Ul, the helicity, Hl, and the “mass”, Ml, are given by the integrals:
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where A is the vector potential, B = ∇× A. The equilibrium states that we seek minimize the total plasma
energy, subject to the constraints of conserved helicity and mass in each annulus. Such states are extrema
of a constrained energy functional, F =

∑

l(Ul − µlH/2 − νlM), where µl and νl are Lagrange multipliers.
Arbitrary variations in the pressure, δp, vector potential, δA, and interface geometry, δξ are allowed, except
that we assume the magnetic field remains tangential to the interfaces which act as ideal barriers, i.e. on the
Il we assume that δA = δξ × B. The Euler-Lagrange equations show that in each annulus the pressure is
constant, the magnetic field satisfies ∇× B = µlB, and across each interface the total pressure is continuous,
[[p + B2/2]] = 0. The ideal interfaces allow non-trivial “stepped-pressure” profiles to be constructed. The
number of interfaces may be made arbitrarily large so that the steps may be made arbitrarily small. Math-
ematical theorems proving the existence of solutions (under certain conditions) have been presented [Bruno
& Laurence, Commun. Pur. App. Math., 1996].
We have implemented this model in the Stepped Pressure Equilibrium Code (SPEC), which uses a mixed
Fourier, finite-element representation for the vector potential. Quintic polynomial basis functions give rapid
convergence in the radial discretization, and the freedom in the poloidal angle is exploited to minimize a
“spectral-width”, [Hirshman & Breslau, Phys. Plasmas, 1998], giving optimal Fourier resolution. The Bel-
trami fields in each annulus are constructed in parallel, and a Newton method (with quadratic-convergence)
is implemented to adjust the interface geometry to satisfy force-balance. Convergence studies of three-
dimensional equilibrium solutions with non-trivial pressure and islands and chaotic fields will be presented.
We study the effect of a small resonant perturbation to an otherwise axisymmetric equilibrium. Movies will
be shown illustrating a sequence of equilibria with increasing pressure. Near and above the ideal stability
boundary, the nonlinear plasma response may be an order of magnitude greater than the applied perturbation,
and may be of opposite phase.


