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The Reversed Field Pinch is a toroidal 
plasma confinement device (like a tokamak)

Burning Plasma Assessment Committee, Burning Plasma: Bringing a Star to Earth, 
The National Academies Press (2004).
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Typically unstable ⇒ low confinement

A more stable state has recently been observed

It’s helical, self-organised (i.e. formed spontaneously)
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Poor confinement Better confinement

Right figure source: David Shand, Nature Physics Cover 5:8,  August 2009
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MRXMHD conserves plasma quantities in a 
finite number of plasma volumes

Linear force-free field: J = r⇥B = µB

MRXMHD: J = r⇥B = µiB

Nonlinear force-free field: J = r⇥B = µ(x)B

Figure source: M.J. Hole, S.R. Hudson and R.L. Dewar, Nuclear Fusion 47, 746 (2007)
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Experimental Poincaré plots

Quasi-single 
helicity

Single Helical 
Axis

Top figure source: P. Martin et al., Nuclear Fusion 49, 104019 (2009).
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MRXMHD gives a good qualitative explanation of the 
high-confinement state in Reversed Field Pinches

With a minimal model we reproduced the helical pitch and 
structure of the Quasi-Single Helicity state in RFP

MRXMHD is a well-formulated model that interpolates 
between linear force-free fields and nonlinear force-free 

fields

Work supported by ARC project DP110102881

With MRXMHD we reproduced the second magnetic axis.  
This is the first equilibrium model to be able to reproduce 

such structures.


