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The Reversed Field Pinch is a toroidal
plasma confinement device (like a tokamak)

Conducting
Shell

Magnetic Field Structure of the RFP

Figure source: Burning Plasma Assessment Committee, Burning Plasma: Bringing a Star to Earth,
The National Academies Press (2004).
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Magnetic Field Structure of the RFP

Typically unstable = low confinement
A more stable state has recently been observed

It’s helical, self-organised (i.e. formed spontaneously)
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Magnetic Field Structure of the RFP

Poor confinement Better confinement

Right figure source: David Shand, Nature Physics Cover 5:8, August 2009
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MRXMHD conserves plasma quantities in a
finite number of plasma volumes

Linear force-free field: [ J=V xB=uB J

/\ MRXMHD: | J=V xB =B

e ————

Nonlinear force-free field: | J =V x B = u(x)B

Figure source: M.J. Hole, S.R. Hudson and R.L. Dewar, Nuclear Fusion 47,746 (2007)
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The plasma equilibrium is a minimum energy
state

Energy

Continuous flux surface energy

0.5078

0.5076¢

0.5074

0.5072¢

0.5077

0.5068

0.5066

(an upper bound)

Single-volume energy

/ (a lower bound)

0.5064
0

0.2 0.4 0.6 0.8
Flux surface chosen as barrier

1

Elevation (2)

Flux surfaces at ¢ =0

04f

o
N




The plasma equilibrium is a minimum energy
state

Energy

0.5078

0.5076¢

Continuous flux surface energy

(an upper bound)

Minimum energy

0.5074¢ axisymmetric state
0.5072'

0.507
0.5068

Single-volume energy
0.50667 / (a lower bound)
0.5064 - — ' .
0 0.2 0.4 0.6 0.8 1

Flux surface chosen as barrier

Elevation (2)

Flux surfaces at ¢ =0

04f

o
N




The plasma equilibrium is a minimum energy

state
Continuous flux surface energy
(an upper bound)
0.5078 \’ .
o.5076r /N ...
Minimum energy
0.5074+ axisymmetric state
DN
o0 0.5072'
V
c
L 0.507¢
helical state
0.5068
Single-volume energy
0.5066 / (a lower bound)
0.5064 - - ' '
0 0.2 0.4 0.6 0.8 1

Flux surface chosen as barrier

Elevation (2)

Flux surfaces at ¢ =0

04f

o
N




The plasma equilibrium is a minimum energy

state
Continuous flux surface energy
(an upper bound)
0.5078 \’ .
0.5076r / A\. ~ "
Minimum energy

0.5074¢ axisymmetric state

>N

20 0.5072

V

c

Ll 0.5077

helical state
0.5068 -

Single-volume energy

0.5066 / (a lower bound)
0.5064 - - | |
0 0.2 0.4 0.6 0.8 1

Flux surface chosen as barrier

Elevation (2)

Flux surfaces at ¢ =0

04f

o
N




Experi

o

mental Poincare plots

— e

Quasi-single _Single Helical
helicity AxXis

Top figure source: P. Martin et al., Nuclear Fusion 49, 104019 (2009).
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MRXMHD gives a good qualitative explanation of the
high-confinement state in Reversed Field Pinches

With a minimal model we reproduced the helical pitch and
structure of the Quasi-Single Helicity state in RFP

With MRXMHD we reproduced the second magnetic axis.
This is the first equilibrium model to be able to reproduce
such structures.

MRXMHD is a well-formulated model that interpolates

between linear force-free fields and nonlinear force-free
fields

Work supported by ARC project DPI 1010288



