"The construction of straight-field-line coordinates adapted to the invariant sets of non-integrable magnetic fields (the periodic orbits, KAM surfaces) based on a set of almost-invariant, quadratic-flux minimizing surfaces"

or, more simply,

"Chaotic coordinates", for the LHD magnetic field

Stuart R. Hudson & Yasuhiro Suzuki

Princeton Plasma Physics Laboratory, U.S.A. National Institute for Fusion Science, Japan

Introduction

Understanding the structure of chaotic magnetic fields is important for understanding confinement in 3D devices (such as magnetic islands, "good" flux surfaces = KAM surfaces, "broken" flux surfaces = cantori, chaotic field lines, . . .)

Even for non-integrable fields, straight field line (action-angle) coordinates can be constructed on sets that are invariant under the field-line flow, namely the periodic orbits

(remember that irrational invariant sets, the KAM surfaces & cantori, can be closely approximated by periodic orbits).

by almost invariant surface we mean a rational "quadratic-flux minimizing surface", which is closely related to a rational "ghost-surface"

main result

A collection of "almost-invariant" surfaces can be constructed quickly, and the upward magnetic field-line flux across these surfaces determines how important each surface is in confining the plasma.

The magnetic field is given in cylindrical coordinates, and arbitrary, toroidal coordinates are introduced.

$$R = R(\rho, \theta, \zeta) = \sum_{m,n} R_{m,n}(\rho) \cos(m\theta - n\zeta)$$

$$\phi = \zeta$$

$$Z = Z(\rho, \theta, \zeta) = \sum_{m,n} Z_{m,n}(\rho) \sin(m\theta - n\zeta)$$

$$\mathbf{B} = B^{R} \mathbf{e}_{R} + B^{\phi} \mathbf{e}_{\phi} + B^{Z} \mathbf{e}_{Z} = B^{\rho} \mathbf{e}_{\rho} + B^{\theta} \mathbf{e}_{\theta} + B^{\zeta} \mathbf{e}_{\zeta}$$

In practice, we will have a discrete set of toroidal surfaces that will be used as "coordinate surfaces".

The Fourier harmonics, $R_{m,n}$ & $Z_{m,n}$, of a discrete set of toroidal surfaces are interpolated using piecewise cubic polynomials.

 $\begin{pmatrix} B^{R} \\ B^{\phi} \\ B^{Z} \end{pmatrix} = \begin{pmatrix} R_{\rho} & R_{\theta} & R_{\zeta} \\ \phi_{\rho} & \phi_{\theta} & \phi_{\zeta} \\ Z & Z_{\rho} & Z_{z} \end{pmatrix} \begin{pmatrix} B^{\rho} \\ B^{\theta} \\ B^{\zeta} \end{pmatrix}$

If the surfaces are smooth and well separated, this "simple-minded" interpolation works.

Begin with circular cross section coordinates, centered on the magnetic axis.

A regularization factor is introduced, e.g. $R_{m,n}(\rho) = \rho^{m/2} \bar{X}_{m,n}(\rho) + R_{m,n}(0)$ to ensure that the interpolated surfaces do not overlap near the coordinate origin=magnetic axis.

A magnetic vector potential, in a suitable gauge, is quickly determined by radial integration.

$$\mathbf{A} = A_{\theta}(\rho, \theta, \zeta) \nabla \theta + A_{\zeta}(\rho, \theta, \zeta) \nabla \zeta$$

$$\sqrt{g} B^{\rho} = \partial_{\theta} A_{\zeta} - \partial_{\zeta} A_{\theta}$$

$$\sqrt{g} B^{\theta} = -\partial_{\rho} A_{\zeta}$$

$$\sqrt{g} B^{\zeta} = \partial_{\rho} A_{\theta}$$

$$\begin{array}{rcl} \partial_{\rho} A_{\theta,m,n} & = & (\sqrt{g} B^{\zeta})_{m,n} \\ \partial_{\rho} A_{\zeta,m,n} & = & - & (\sqrt{g} B^{\theta})_{m,n} \end{array}$$

hereafter, we will use the commonly used notation

$$\mathbf{A} \equiv \psi \nabla \theta - \chi \nabla \zeta$$

 ψ is the toroidal flux, and χ is called the magnetic field-line Hamiltonian

The magnetic field-line action is the

$$S \equiv \int_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{l}$$

line integral of the vector potential

 \mathcal{C} is an arbitrary "trial" curve

piecewise-constant, piecewise-linear

For
$$\zeta \in (\zeta_{i-1}, \zeta_i)$$

$$\rho(\zeta) = \rho_i$$

$$\theta(\zeta) = \theta_{i-1} + \dot{\theta} \quad (\zeta - \zeta_{i-1})$$

$$\theta(\zeta)$$
 $\rho(\zeta)$

where $\dot{\theta} \equiv (\theta_i - \theta_{i-1})/\Delta \zeta$ is constant,

$$S \equiv \sum_{i=1}^{N} \int_{\zeta_{i-1}}^{\zeta_i} d\zeta \, \mathbf{A} \cdot d\mathbf{l} \equiv \sum_{i=1}^{N} \sum_{m,n} \left[\psi_{mn}(\rho_i) \, \dot{\theta} - \chi_{mn}(\rho_i) \right] \int_{\zeta_{i-1}}^{\zeta_i} d\zeta \cos(m\theta - n\zeta)$$

the piecewise-linear approximation allows the cosine integral to be evaluated analytically, i.e. method is FAST

$$\int_{\zeta_{i-1}}^{\zeta_i} d\zeta \cos(m\theta - n\zeta) = \frac{\sin(m\theta_i - n\zeta_i) - \sin(m\theta_{i-1} - n\zeta_{i-1})}{m\dot{\theta} - n}$$

To find extremizing curves, use Newton method to set $\partial_0 S=0$, $\partial_9 S=0$

$$\frac{\partial S}{\partial \rho_i}=0$$
 reduces to $\frac{\partial S_i}{\partial \rho_i}=0$, which can be solved locally, $\ \rho_i=\rho_i(\theta_{i-1},\theta_i)$

$$\frac{\partial S}{\partial \theta_i} = \partial_2 S_i(\theta_{i-1}, \theta_i) + \partial_1 S_{i+1}(\theta_i, \theta_{i+1})$$

tridiagonal Hessian, inverted in O(N) operations, i.e. method is FAST

Not required to follow magnetic field lines, and does not depend on coordinate transformation.

The trial-curve is constrained to be periodic, and a family of periodic curves is constructed.

Usually, there are only the "stable" periodic field-line and the "unstable" periodic field line,

However, we can "artificially" constrain the poloidal angle, i.e. $\theta(0)$ =given constant, and search for extremizing periodic curve of the constrained action-integral $S \equiv \int_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{l} - \nu \left[\theta(0) - \theta_0 \right]$

A rational, quadratic-flux minimizing surface

is a family of periodic, extremal curves of the constrained action integral, and is closely to related to the rational ghost-surface,

$$\varphi_2 \equiv \frac{1}{2} \int_{\Gamma} w |B_n|^2 dS,$$

which is defined by an action-gradient flow between the minimax periodic orbit and the minimizing orbit.

The "upward" flux = "downward" flux across a toroidal surface passing through an island chain can be computed.

$$\int_{\partial \mathcal{V}} \mathbf{B} \cdot d\mathbf{S} \equiv \int_{\mathcal{V}} \nabla \cdot \mathbf{B} = 0 \quad \text{the total flux across any closed surface of a divergence free field is zero.}$$

$$\int_{\mathcal{S}} \mathbf{B} \cdot d\mathbf{s} \equiv \int_{\partial \mathcal{S}} \mathbf{A} \cdot d\mathbf{l} \qquad \Psi_{p/q} \equiv \int_{O} \mathbf{A} \cdot d\mathbf{l} - \int_{X} \mathbf{A} \cdot d\mathbf{l}$$
toroidal angle, ξ

consider a sequence of rationals, p/q, that approach an irrational,

If $\Psi_{p/q} \to 0$ as $p/q \to \iota$, then KAM surface exists

If $\Psi_{p/q} \rightarrow \Delta$, where $\Delta \neq 0$, then the KAM surface is "broken", and $\Psi_{p/q}$ is the upward-flux across the cantorus

To illustrate, we examine the standard configuration of LHD

The initial coordinates are axisymmetric, circular cross section,

$$R = 3.63 + \rho \ 0.9 \cos \theta$$

$$Z = \rho 0.9 \sin \theta$$

which are *not* a good approximation to flux coordinates!

We construct coordinates that *better* approximate straight-field line flux coordinates,

by constructing a set of rational, almost-invariant surfaces, e.g. the (1,1), (1,2) surfaces

838 / 841

A Fourier representation of the (1,1) rational surface is constructed,

$$R = R(\alpha, \zeta) = \sum_{m,n} R_{m,n} \cos(m \alpha - n \zeta)$$

$$Z = Z(\alpha, \zeta) = \sum_{m,n} Z_{m,n} \sin(m \alpha - n \zeta),$$

where α is a straight field line angle

Updated coordinates: the (1,1) surface is used as a coordinate surface.

The updated coordinates are a better approximation to straight-field line flux coordinates, and the flux surfaces are (almost) flat

Now include the (1,2) rational surface

Updated coordinates: the (1,1) surface is used as a coordinate surface the (1,2) surface is used as a coordinate surface

Now include the (2,3) rational surface

Note that the (1,1) and (1,2) surfaces have previously been constructed and are used as coordinate surfaces, and so these surfaces are flat.

Updated Coordinates:

the (1,1), (2,3) & (1,2) surfaces are used as coordinate surfaces

New Coordinates, the (10,9) surface is used as the coordinate boundary the (1,1) surface is used as a coordinate surface the (2,3) surface is used as a coordinate surface the (1,2) surface is used as a coordinate surface

Poincare plot

Straight field line coordinates can be constructed over the domain where invariant flux surfaces exist

Straight field line coordinates can be constructed over the domain where invariant flux surfaces exist

Lets take a closer look

Now, examine the "edge"....

Near the plasma edge, there are magnetic islands and field-line chaos

But this is no problem. There is no change to the algorithm! The rational, almost-invariant surfaces can still be constructed. The quadratic-flux minimizing surfaces \approx ghost-surfaces pass through the island chains,

Now, lets look for the ethereal, last closed flux surface.

(from dictionary.reference.com)
e·the·re·al [ih-theer-ee-uhl]

Adjective

- **1.** light, airy, or **tenuous**: an ethereal world created through the poetic imagination.
- **2.extremely delicate** or refined: *ethereal beauty*.
- **3.**heavenly or celestial: *gone to his ethereal home*.
- **4.**of or pertaining to **the upper regions of space**.

Hereafter, will not Fourier decompose the almost-invariant surfaces and use them as coordinate surfaces. This is because they become quite deformed and can be very close together, and the simple-minded piecewise cubic method fails to provide interpolated coordinate surfaces that do not intersect.

poloidal angle, ϑ

To find the significant barriers to field line transport, construct a hierarchy of high-order surfaces, and compute the upward flux

 $\Psi_{10/7}$

 $\Psi_{40/27}$

 $\Psi_{30/20}$

 $\Psi_{110/73}$

 $\Psi_{80/53}$

 $\Psi_{290/192}$

 $\Psi_{210/139}$

 $\Psi_{340/225}$

 $\Psi_{130/86}$

 $\Psi_{180/119}$

 $\Psi_{230/152}$

 $\Psi_{50/33}$

 $\Psi_{120/79}$

 $\Psi_{70/46}$

 $\Psi_{90/59}$

 $\Psi_{290/190}$

 $\Psi_{200/131}$

 $\Psi_{310/203}$

 $\Psi_{420/275}$

 $\Psi_{110/72}$

 $\Psi_{350/229}$

 $\Psi_{240/157}$

 $\Psi_{130/85}$

 $\Psi_{20/13}$

 $\Psi_{90/58}$

 $\Psi_{70/45}$

 $\Psi_{50/32}$

 $\Psi_{80/51}$

 $\Psi_{30/19}$

 $\Psi_{10/6}$

The construction of chaotic coordinates simplifies anisotropic diffusion

$$\frac{\partial T}{\partial t} = \nabla \cdot (\kappa_{\parallel} \nabla_{\parallel} T + \kappa_{\perp} \nabla_{\perp} T) + Q,$$

free-streaming along field line particle "knocked" onto nearby field line

In chaotic coordinates, the temperature becomes a surface function, T=T(s), where s labels invariant (flux) surfaces or almost-invariant surfaces.

If T=T(s), the anisotropic diffusion equation can be solved analytically, $\frac{dT}{ds} = \frac{c}{\kappa_{\parallel} \varphi + \kappa_{\perp} G}$, where c is a constant, and

 $\varphi = \int \int d\theta d\phi \sqrt{g} B_n^2$, is related to the quadratic-flux across an invariant or almost-invariant surface, $G = \int \int d\theta d\phi \sqrt{g} g^{ss}$, is a geometric coefficient.

> An expression for the temperature gradient in chaotic fields S.R. Hudson, Physics of Plasmas, 16:010701, 2009 Temperature contours and ghost-surfaces for chaotic magnetic fields S.R.Hudson and J.Breslau

Physical Review Letters, 100:095001, 2008

When the upward-flux is sufficiently small,

so that the parallel diffusion across an almost-invariant surface is comparable to the perpendicular diffusion, the plasma cannot distinguish between a perfect invariant surface and an almost invariant surface

Comments

- 1) Constructing almost-invariant surfaces is very fast, about 0.1sec each surface, and each surface may be constructed in parallel. (In fact, each periodic curve on each surface can be constructed in parallel.)
- 2) To a very good approximation, the pressure becomes a surface function, $p=p(\rho)$, (where the pressure, temperature satisfy an anisotropic diffusion equation)
- 3) Chaotic-coordinates are straight-field line coordinates on the periodic orbits (and the KAM surfaces), and

are *nearly* straight field line coordinates throughout the domain (ϑ is linear, ψ is constant).

Eqn(1)
$$\mathbf{A} = \psi \nabla \theta - \chi(\psi, \theta, \zeta) \nabla \zeta$$
 $\chi(\psi, \theta, \zeta) = \chi_0(\psi) + \epsilon \chi_1(\psi, \theta, \zeta)$ $\dot{\theta} \approx \chi'_0(\psi)$ $\dot{\psi} \approx 0$

- 1) The last closed flux surface can be determined using a systematic, reliable method, and the upward magnetic-field line flux across near-critical cantori near the plasma edge can be determined. There is not one "plasma boundary". Depending on the physics, there is a hierarchy of "partial boundaries", which coincide with the surfaces of locally minimal flux.
- 2) Chirikov island overlap estimate is easily estimated from Eqn(1) above, and Greene's residue criterion is easily calculated by the determinant of the Hessian.

List of publications, http://w3.pppl.gov/~shudson/

Generalized action-angle coordinates defined on island chains

R.L.Dewar, S.R.Hudson and A.M.Gibson Plasma Physics and Controlled Fusion, 55:014004, 2013

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces

Robert L.Dewar, Stuart R.Hudson and Ashley M.Gibson Journal of Plasma and Fusion Research SERIES, 9:487, 2010

Are ghost surfaces quadratic-flux-minimizing?

S.R.Hudson and R.L.Dewar Physics Letters A, 373(48):4409, 2009

An expression for the temperature gradient in chaotic fields

S.R.Hudson Physics of Plasmas, 16:010701, 2009

Temperature contours and ghost-surfaces for chaotic magnetic fields

S.R.Hudson and J.Breslau Physical Review Letters, 100:095001, 2008

Calculation of cantori for Hamiltonian flows

S.R.Hudson Physical Review E, 74:056203, 2006

Almost invariant manifolds for divergence free fields

R.L.Dewar, S.R.Hudson and P.Price Physics Letters A, 194(1-2):49, 1994

The fractal structure of chaos is related to the structure of numbers

islands & chaos emerge at every rational

 \rightarrow about each rational n/m, introduce excluded region, width r/m^k

KAM Theorem

(Kolmogorov, Arnold, Moser)

 \rightarrow flux surface can survive if $|\omega - n/m| > r/m^k$, for all n, m

we say that ω is "strongly-irrational" if ω avoids all excluded regions

Greene's residue criterion → the most robust flux surfaces are associated with alternating paths

$$\rightarrow$$
 Fibonacci ratios $\frac{0}{1}$, $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{8}{13}$, $\frac{13}{21}$, $\frac{21}{34}$, ...

For non-integrable fields, field line transport is restricted by KAM surfaces and cantori

- → KAM surfaces are closed, toroidal surfaces that **stop** radial field line transport
- → Cantori have "holes" or "gaps"; but cantori can severely "slow down" radial field line transport
- → Example: all flux surfaces destroyed by chaos, but even after 100 000 transits around torus the field lines cannot get past cantori

Chaotic coordinates "straighten out" chaos

phase-space is partitioned into (1) regular ("irrational") regions and (2) irregular (" rational") regions with "good flux surfaces", temperature gradients with islands and chaos, flat profiles

Chaotic coordinates simplify anisotropic transport

The temperature is constant on ghost surfaces, T=T(s)

- 1. Transport along the magnetic field is unrestricted
- → consider parallel random walk, with <u>long</u> steps≈ collisional mean free path
- 2. Transport *across* the magnetic field is *very small*
- →consider perpendicular random walk with **short** steps≈ Larmor radius

3. Anisotropic diffusion balance
$$\kappa_{\parallel} \nabla_{\parallel}^2 T + \kappa_{\perp} \nabla_{\perp}^2 T = 0$$
, $\kappa_{\parallel} \gg \kappa_{\perp}$, $\kappa_{\perp} / \kappa_{\parallel} \sim 10^{-10}$

- 4. Compare solution of numerical calculation to ghost-surfaces
- 5. The temperature adapts to KAM surfaces, cantori, and ghost-surfaces!

i.e.
$$T=T(s)$$
, where $s=const.$ is a ghost-surface

from $T=T(s,\theta,\phi)$ to T=T(s) is a fantastic simplification, allows analytic solution

$$\frac{d T}{d s} \propto \frac{1}{\kappa_{\parallel} \varphi_2 + \kappa_{\parallel} G}$$

Temperature contours and ghost-surfaces for chaotic magnetic fields S.R. Hudson et al., Physical Review Letters, 100:095001, 2008 Invited talk 22nd IAEA Fusion Energy Conference, 2008

Invited talk 17th International Stellarator, Heliotron Workshop, 2009

An expression for the temperature gradient in chaotic fields S.R. Hudson, Physics of Plasmas, 16:100701, 2009

free-streaming along field line

particle "knocked"

onto nearby field line