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A self-organized helical state has been
observed in RFP experiments

B, Small & Reversed at Edge

Magnetic Field Structure of the RFP
Limited confinement Better confinement now observed
observed in “traditional” when helical state forms in RFX-mod

axisymmetric RFP states

This structure occurs even for an axisymmetric plasma boundary,
i.e. it is self-organized.



ldeal MHD can model the Single-Helical

AXis state

[ .,
[ (7

/ \ 0.20[
. ;;55‘ 0.15 E'"\

\\.\\
l=9 ..\\.

)
1>9 %oy

------ axisymmetric
helical 1= 057

R E \

\ N e/ 0.05

\ / 0.00 F

~0.051

“Experimental” Theoretical .
Poincaré plot! reconstruction

using VMEC?

[I] P.Martin et al., Nuclear Fusion 49, 104019 (2009).
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...but the safety factor profile must be carefully chosen

[I] P.Martin et al., Nuclear Fusion 49, 104019 (2009).
[2] D.Terranova et al., PPCF 52, 124023 (2010).



Helical states with non-trivial topology are
also observed

Double-Helical _Single Helical
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[I] P.Martin et al,, Nuclear Fusion 49, 104019 (2009).



Helical states with non-trivial topology are
also observed

Double-Helical _Single Helical
Axis state Axis state

ldeal MHD (with assumed nested flux surfaces) cannot

model the Double-Helical Axis state.
[I] P.Martin et al,, Nuclear Fusion 49, 104019 (2009).



Helical states with non-trivial topology are
also observed
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Double-Helical _Single Helical
Axis state Axis state

We seek a minimally constrained model for all RFX helical

states
[I] P.Martin et al,, Nuclear Fusion 49, 104019 (2009).
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Taylor’s theory is a good description of
axisymmetric Reversed Field Pinches

Taylor’s theory: Plasma quantities are only conserved globally

|ldeal MHD: Plasma quantities conserved on every flux surface

[ Goal: minimal description of helical states in RFP ]
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Taylor’s theory is that a turbulent plasma will

minimize its energy... | o
E:/( S 132> A%
vy—1 2
. . - Co
...with conserved magnetic helicity o,
H = /A - B dV (+ gauge terms) C'|

...and conserved enclosed fluxes = &19

Motivation: with small resistivity, both energy and helicity will decay

H = / J-BdV ~n Z kB, ... but energy more quickly
k (for short length-scale

E = n/J JdV ~nY k’Bf  turbulence)
k



Multiple-Region Relaxed MHD (MRXMHD)
extends [aylor Relaxation

* Relaxed regions R ;, separated by

* nested, ideal, toroidal barrier
interfaces Z;, which

* independently undergo Taylor
relaxation.

* Magnetic islands and chaos are
allowed between the toroidal
current sheets

* EFach plasma region has constant
pressure, creating a piecewise
constant pressure profile




Multiple-Region Relaxed MHD (MRXMHD)
approaches ideal MHD as N— o0

p

A

[I] G.Dennis et al., Phys. Plasmas 20, 032509 (201 3).
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“Experimental” Poincare plots
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Top figure source: P. Martin et al., Nuclear Fusion 49, 104019 (2009).
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Conclusions

MRXMHD gives a good qualitative explanation of the
high-confinement state in Reversed Field Pinches

With a minimal model we reproduced the helical pitch and
structure of the Quasi-Single Helicity state in RFP

With MRXMHD we reproduced the second magnetic axis.
This is the first equilibrium model to be able to reproduce
the Double-Axis state.

MRXMHD is a well-formulated model that interpolates
between Taylor’s theory and ideal MHD



Future Work

More detailed experimental comparisons with RFX

Considering RFX helical states with pressure

Apply the same methodology to 3D structures in
tokamaks

Generalize MRXMHD to include flow



