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Abstract
Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic 
constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid 
element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed  equilibrium 
model all these constraints are relaxed save for global magnetic flux and helicity.

A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, 
relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that 
some long-lived macroscopic current sheets can act as barriers to relaxation [1], separating the plasma 
into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is 
developed.

These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm 
and Kulsrud — the formation of an initial shielding current sheet after perturbation by boundary 
rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed 
through a reconnection sequence [2], is calculated using RxMHD.

[1] Helical bifurcation and tearing mode in a plasma — a description based on Casimir foliation
Z Yoshida & RL Dewar, J Phys A 45 365502 (2012); 

[2] Plasmoid solutions of the Hahm–Kulsrud–Taylor equilibrium model 
RL Dewar, A Bhattacharjee, RM Kulsrud and AM Wright, Phys Plasmas 20, 082103 (2013)



Generalizations of 
Taylor Relaxation

• Shows there is a reduced magneto-hydro-
dynamics that leads to Taylor’s relaxed equilibrium 
states in the static limit by using Hamilton’s 
Principle to derive self-consistent dynamics from 
a relaxed MHD (RxMHD) Lagrangian.

• Calculates the modulated current sheet driven 
by a resonant perturbation at a rational surface 
by treating the plasma as two relaxation regions 
– 2-region example of multi-relaxed MHD 
(MRxMHD)

This presentation



Hamilton’s Action Principle 
in domain Ω:   𝛿S = 0
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L d3x denotes the action.  Its first variation is:

MHD Lagrangian density is
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where v = dr/dt is velocity,  𝜌 is mass density,  p is 
pressure and B is magnetic field
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 𝛿L is O(𝜖) Eulerian variation of action density L ,
𝜖𝝃 is Lagrangian displacement of fluid element positions r 

on boundary ∂Ω



Holonomic constraints

• RxMHD =  Relaxed MHD (only 𝜌 holonomically 
constrained — no effect on static equilibrium — 
magnetic helicity and entropy constrained only globally):

• IMHD = Ideal MHD (𝜌, B and p holonomically constrained,  

i.e. locally “frozen in” to fluid elements):

�� = ���·(��)

�� = ���·(��), �p = ��(�·�p + �p�·�), �B = ���A
�A = ���B + ���

• MRxMHD =  Multi-Relaxed MHD (multiple RxMHD 
regions Ωi separated by current sheet transport barriers ∂Ωi, 
with holonomic constraints on either side, ±, of ∂Ωi to keep B 
tangential to the current sheets):

�� = ���·(��) in �i, �Atgt = (���B + ���)tgt on ��±i



Global constraints

• RxMHD =  Relaxed MHD (mass and flux automatic, 
entropy and magnetic helicity are constrained globally within 
Ω using Lagrange multipliers 𝜏 and 𝜇 respectively):

• IMHD = Ideal MHD (none — mass, entropy and magnetic 
flux and helicity within Ω all automatically conserved as a 
consequence of the holonomic constraints):

• MRxMHD =  Multi-Relaxed MHD (mass and flux 
automatic, entropy and magnetic helicity are constrained 
globally within the multiple RxMHD regions Ωi using 
Lagrange multipliers 𝜏i and 𝜇i giving p and q profile control).

L = LMHD + �
� ln(Cp/��)

� � 1
+ µ

A·B
2µ0

where 𝛾 and C are thermodynamic gas constants.



MRxMHD equations

• Require Hamilton’s Principle:  𝛿S = 0 for all 

independent variations of r, p and A, where:
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• Resulting Euler–Lagrange equations are:

p = �i� (isothermal equations of state in each region)

(Beltrami equations)

• Continuity:
d�

dt
= ���·v

�
dv
dt

= ��p (momentum equation)

��B = µB�
p + B2

2µ0
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i
= 0 (pressure jump conditions at interfaces)



• SPEC interfaces must be current sheets so a delta 
function JXB force can balance the ∇p delta function 

• Force balance criterion is simply                              
where [[ p]] denotes the jump, p+ − p– , between the 
two sides,  ±, of the interface

• In addition we have tangentiality,  B·n & J·n = 0, which 
implies the existence of two 2D scalar potentials         
f±(θ,ζ) such that B±θ  = ∂θ f± , B±ζ  = ∂ζ f± . Here ∂i , i 
=θ,ζ,  are the covariant derivatives on the interface, 
regarded as 2D Riemannian manifold with metric gi,j. 
Force balance gives Hamilton-Jacobi equation.

Jump and boundary conditions on 
a current sheet



A resolution of the MRxMHD 
rotational transform quandary?

• A KAM argument shows 3-D toroidal equilibrium 
current sheets can in general only exist if rotational 
transforms on both sides of sheet are strong irrationals

• But, starting with non-equilibrium tori, relaxation of 
torus shape with conserved fluxes & helicities leads to 
uncontrolled change of rotational transforms — no 
apparent relaxation mechanism to reach desired irrationals

• In this presentation we show that a current sheet 
generated on a rational surface by a resonant 
perturbation causes a jump in rotational transform 
(above a small threshold in perturbation amplitude), 
thus removing the resonance on the 2 sides of the current 
sheet even before reconnection has occurred.



Hahm-Kulsrud Rippled Slab Model
• Simple slab model for 

resonant current sheet 
formation near x = 0 in 
response to symmetrical 
periodic perturbation at 
boundaries x = ±a

• Hahm & Kulsrud, Phys. Fluids 
1985, found 2 solutions:

• shielding current sheet on x = 0 (shown in red)

• island with no current sheet

� = aBa
y

�
x2

2a2 + �
sinh(ka) | sinh(kx)| cos(ky)

�

� = aBa
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where Ba
y is |unperturbed poloidal field| at boundaries and �� 1



2-region MRxMHD HKT model 

• Linearity of Beltrami equation leads to easily solvable, 
linear GS equation (Poisson in small-𝜇 limit.)

• Symmetry about, and straightness of, current sheet at x 
= 0:  gives most geometrically simple 2-region geometry

HK-style model is natural application of MRxMHD because:

Relaxation scenario:

• Switch-on:  ripple on upper and lower boundaries slowly 
increased from zero (plane slab) to final amplitude

• A shielding current sheet at x = 0 resonance develops

• Kruskal-Kulsrud damping:  evolution through equilibria

• Connect equilibrium sequence by helicity conservation



Grad-Shafranov-Beltrami equations

B = �z ��� + F (�)�z

where    is cross-sectional average of   ,

with boundary conditions such that    is constant on boundary 
and on cuts.

Grad-Shafranov equation for force-free field in slab geometry:

(�2 + µ2) �� = 0

(Beltrami equation) is satisfied by requiring: 

�2� + FF � = 0

��B = µB

�2� = µF with F (�) = C � µ�

General Solution:

and    obeys a homogeneous Beltrami equation:

�
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(�2 + µ2)� = C,  giving
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(1� cos µx)
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is plane slab solution,      is the cross-sectional average of      ,F

�

Bz



Extension of HK shielding solution 
Helicity conservation requires three extensions of HK solution:  
Instead of the HK harmonic component ︎𝜓1 we use ansatz

1.    is a solution of the Beltrami equation                             
It is only harmonic in the small-𝜇 limit. Likewise

(�2 + µ2) �� = 0��

��(x, y) � 2��a

sinh k1a

�
| sinh k1x| cos ky

+ �S
k1

µ
| sinµx|

�
� � cos µx

k1(µ) � (k2 � µ2)1/2 � k only as µ� 0

2. The term in 𝛾S was introduced in Dewar et al. 2013 to 
allow control of the total current in the sheet

3. The term in    is required for poloidal flux conservation

where:

�



𝜇 is not fixed
• In plane slab, before ripple is turned on, the 

unperturbed equilibrium flux function is

• As amplitude parameter 𝛼 is increased from 0,         
𝜇 must change to preserve helicity and fluxes:

�0(x|µ0) �
B0

µ0
(1� cos µ0x)



Current sheet has a strong 
d.c. component

• HK implicitly assumed the total current in the sheet was 
zero, but MRxMHD switch-on shows there is a nonzero 

total current                          proportional to 𝛾S :J =
2��ak1�

sinh k1a
�S



Current sheet reverses 
for small perturbations

Fully shielded case:  Plots of the jump in the gradient of ψ, vs. y 
for μ0 = 1.4 and selected small values of α, showing the 
occurrence of current-density reversal for the two smallest 
values.



Current reversal causes “half-islands”

α = 0.003

α = 0.005

Fully shielded case: Level surfaces of ψ (magnetic surfaces) in the case μ0 = 1.4, α = 0.003, 
showing the occurrence of a small half-islands bisected by the reversed-current section of 
the current sheet.

No current reversal — 
no half-islands



Fluxes and rotational transform I
α = 0.001

Poloidal flux as a function of 
x0 (= x along y-axis), showing 
discontinuity in slope at x = 0 
caused by current sheet

Toroidal flux as a function of x
along y-axis, showing discontinuity 
at x = 0 caused by half-island. 

(Dashed curves are 
for plane slab, α = 0)

Rotational transform (1/q)

��(x0)/��(x0)

showing jump or large 
slope near x0 = 0.



Fluxes and rotational transform II
α = 0.005

(Dashed curves are 
for plane slab, α = 0)

Discontinuity in toroidal flux has 
gone as there are no half-islands 
above a threshold in α c. 0.0045

Much stronger jump in 
rotational transform



Conclusions
• Multi-region generalization of Taylor relaxation has been 

extended to a self-consistent dynamics through 
Hamilton’s Principle of Stationary Action.

• A rippled slab model has been used to illustrate the 
formation of a resonant current sheet as boundary 
ripple is switched on

• For very small ripple amplitudes current reversal occurs 
in the current sheet and unperturbed sheared magnetic 
field exhibits topological change, with small half-islands, 
locking rotational transform to resonant value

• For larger ripple amplitude rotational transform jumps


