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Abstract
Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic 
constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid 
element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium 
model [1] all these constraints are relaxed save for global magnetic flux and helicity.
A Lagrangian [2] is presented that leads to a new variational formulation of magnetized fluid 
dynamics, relaxed magnetohydrodynamics (RxMHD), all static solutions of which are Taylor 
equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers 
to relaxation, separating the plasma into multiple relaxation regions, a further generalization, 
multiregion relaxed magnetohydrodynamics (MRxMHD) [3], is developed.
These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm 
and Kulsrud [4] — the formation of an initial shielding current sheet after perturbation by boundary 
rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed 
through a reconnection sequence [5], is calculated using RxMHD.
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[3] S.R. Hudson, R.L. Dewar, G. Dennis , M.J. Hole, M. McGann, G. von Nessi and S. Lazerson, 
Phys. Plasmas 19, 112502 (2012)
[4] T.S. Hahm and R.M. Kulsrud, Phys. Fluids 28, 2412 (1985)
[5] R.L. Dewar, A. Bhattacharjee, R.M. Kulsrud and A.M. Wright, Phys. Plasmas 20, 082103 (2013)



Generalization of Taylor 
Relaxation

• This presentation answers in the affirmative the 
question  “Is there a reduced magneto-hydro 
dynamics that leads to Taylor’s relaxed 
equilibrium states in the static limit?” by using 
Hamilton’s Principle to derive self-consistent 
dynamics from an RxMHD Lagrangian.

• A question for the future is:  “Is there a natural 
helicity transport mechanism via reconnection 
across toroidal current sheets that relaxes 
rotational transforms to irrational values?”



Hamilton’s Action Principle 
in domain Ω:   𝛿S = 0
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where v = dr/dt is velocity,  𝜌 is mass density,  p is 
pressure and B is magnetic field
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 𝛿L is O(𝜖) Eulerian variation of action density L ,
𝜖𝝃 is Lagrangian displacement of fluid element positions r 

on boundary ∂Ω



Holonomic constraints

• RxMHD =  Relaxed MHD (only 𝜌 holonomically 
constrained — no effect on static equilibrium — 
magnetic helicity and entropy constrained only globally):

• IMHD = Ideal MHD (𝜌, B and p holonomically constrained,  

i.e. locally “frozen in” to fluid elements):

�� = ���·(��)

�� = ���·(��), �p = ��(�·�p + �p�·�), �B = ���A
�A = ���B + ���

• MRxMHD =  Multi-Relaxed MHD (multiple RxMHD 
regions Ωi separated by current sheet transport barriers ∂Ωi, 
with holonomic constraints on either side, ±, of ∂Ωi to keep B 
tangential to the current sheets):

�� = ���·(��) in �i, �Atgt = (���B + ���)tgt on ��±i



Global constraints

• RxMHD =  Relaxed MHD (mass and flux automatic, 
entropy and magnetic helicity are constrained globally within 
Ω using Lagrange multipliers 𝜏 and 𝜇 respectively):

• IMHD = Ideal MHD (none — mass, entropy and magnetic 
flux and helicity within Ω all automatically conserved as a 
consequence of the holonomic constraints):

• MRxMHD =  Multi-Relaxed MHD (mass and flux 
automatic, entropy and magnetic helicity are constrained 
globally within the multiple RxMHD regions Ωi using 
Lagrange multipliers 𝜏i and 𝜇i giving p and q profile control).

L = LMHD + �
� ln(Cp/��)

� � 1
+ µ

A·B
2µ0

where 𝛾 and C are thermodynamic gas constants.



An application of MRxMHD:  
3D equilibrium code SPEC

• Relaxed regions Pi , separated by

• nested toroidal transport barrier 
interfaces Ii , which

• freeze in flux and confine piecewise 
flat pressures (with pressure jumps ≡ 
[[ p]] i across current sheets).

• Arbitrarily refinable as long as 
magnetic surfaces  Ii exist

• Minimizes energy starting with an 
initial guess (e.g. a VMEC equilibrium)

• Allows islands and chaos between 
the toroidal current sheets



MRxMHD equations

• Require Hamilton’s Principle:  𝛿S = 0 for all 

independent variations of r, p and A, where:
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• Resulting Euler–Lagrange equations are:

p = �i� (isothermal equations of state in each region)

(Beltrami equations)

• Continuity:
d�

dt
= ���·v
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= ��p (momentum equation)

��B = µB�
p + B2
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i
= 0 (pressure jump conditions at interfaces)



• SPEC interfaces must be current sheets so a delta 
function JXB force can balance the ∇p delta function 

• Force balance criterion is simply                              
where [[ p]] denotes the jump, p+ − p– , between the 
two sides,  ±, of the interface

• In addition we have tangentiality,  B·n & J·n = 0, which 
implies the existence of two 2D scalar potentials         
f±(θ,ζ) such that B±θ  = ∂θ f± , B±ζ  = ∂ζ f± . Here ∂i , i 
=θ,ζ,  are the covariant derivatives on the interface, 
regarded as 2D Riemannian manifold with metric gi,j. 
Force balance gives Hamilton-Jacobi equation.

Jump and boundary conditions on 
a current sheet



Rotational transform paradox in 
MRxMHD toroidal relaxation

• A KAM argument shows 3-D toroidal equilibrium 
current sheets can in general only exist if rotational 
transforms on both sides of sheet are strong irrationals

• Starting with non-equilibrium tori, relaxation of torus 
shape with conserved fluxes & helicities leads to 
uncontrolled change of rotational transforms — no 
apparent relaxation mechanism to reach desired irrationals

• A possible resolution is to allow helicity transport 
between regions through partial reconnection



Hahm-Kulsrud-Taylor (HKT) Slab Model
• Simple slab model for 

resonant current sheet 
formation near x = 0 in 
response to symmetrical 
periodic perturbation at 
boundaries x = ±a

• Hahm & Kulsrud, Phys. Fluids 
1985, found 2 solutions:

• shielding current sheet on x = 0

• island with no current sheet
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y is |unperturbed poloidal field| at boundaries and �� 1



Construction essentially based on 
linear Grad-Shafranov (GS) equation 

(on x,y plane cut along current sheets)
B = �z ��� + F (�)�z

�2� + ⇥�[µ0p(�) + 1
2F (�)2] = 0

Choose p and F profiles such that 

then poloidal stream function    obeys (except at cuts) a Poisson eq.

with general solution

where       is any harmonic function, i.e. it obeys Laplace’s equation 

Local force balance implies GS equation (except at cuts)
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E.g. conformal mapping solutions
The linearity of this GS allows easy analytic solution, 
For example, the powerful conformal mapping 
method, which relies on fact that real (or imaginary) 
part of an analytic complex function obeys Laplace’s 
equation: �2 Ref(x + iy) = 0

Also �2 Re g(f(x + iy)) = 0

So one harmonic solution can be mapped (conformally) 
into another simply by composing with a suitably 
chosen function of a complex variable.

Also, we can introduce current sheets by finding a 
complex function with branch cuts:



Equilibrium condition on cuts
Cuts in x,y plane correspond to current sheets, so jump condition

applies.  Using                                and linear GS 

assumption:

B2 = |��|2 + F 2

p(�) + 1
2F (�)2 = const� Ba

y

a �

we get simplified jump condition
(taking µ0 = 1)
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�
= 0

which is automatically 
satisfied in HKT model if cut 
is on x = 0 line symmetry line



Plasmoid solutions with partial current 
sheets using conformal mapping

• partial current sheets 
between x = ±L + nλ

• “plasmoids” between 
current sheets

• zoomed view of end of 
Sweet-Parker current 
sheet

R.L. Dewar, A. Bhattacharjee, R.M. Kulsrud and A.M. Wright
Phys. Plasmas 20, 082103 (2013):



2RxMHD HKT model 

• Linearity of Beltrami equation leads to easily solvable, 
linear GS equation (Poisson in small-𝜇 limit.)

• Symmetry about, and straightness of, current sheet at x 
= 0:  gives most geometrically simple 2-region geometry

HK-style model is natural application of MRxMHD because:

Relaxation scenario:

• Switch-on:  ripple on upper and lower boundaries slowly 
increased from zero (plane slab) to final amplitude

• A shielding current sheet at x = 0 resonance develops

• Kruskal-Kulsrud damping:  evolution through equilibria

• Connect equilibrium sequence by helicity conservation



Extension of HK shielding solution 
Helicity conservation requires three extensions of HK solution:  
Instead of the HK harmonic component ︎𝜓1 we use ansatz

1.    is a solution of the Beltrami equation                             
It is only harmonic in the small-𝜇 limit. Likewise

(�2 + µ2) �� = 0��

��(x, y) � 2��a

sinh k1a

�
| sinh k1x| cos ky

+ �S
k1

µ
| sinµx|

�
� � cos µx

k1(µ) � (k2 � µ2)1/2 � k only as µ� 0

2. The term in 𝛾S was introduced in Dewar et al. 2013 to 
allow control of the total current in the sheet

3. The term in    is required for poloidal flux conservation

where:

�



𝜇 is a variable
• In plane slab, before ripple is turned on, the 

unperturbed equilibrium flux function is

�0(x) � B0

µ0
(1� cos µ0x)

• As amplitude parameter 𝛼 is increased from 0,         
𝜇 must change to preserve helicity and fluxes:



Current sheet has a strong 
d.c. component

• HK implicitly assumed the total current in the sheet was 
zero, but MRxMHD switch-on shows there is a nonzero 

total current                          proportional to 𝛾S :J =
2��ak1�

sinh k1a
�S



Conclusions
• Multi-region generalization of Taylor relaxation has been 

extended to a self-consistent dynamics through 
Hamilton’s Principle of Stationary Action.

• A rippled slab model has been used to illustrate the 
formation of a resonant current sheet as boundary 
ripple is switched on

• In future a topologically more complex “plasmoid” 
scenario for the MRxMHD interfaces, combined with 
helicity transport through reconnection, will be  
explored to see if it resolves the KAM equilibrium 
existence paradox and connects continuously to island 
solution


