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Introduction 
 

Understanding the structure of chaotic magnetic fields is important for 

understanding confinement in 3D devices  
( magnetic islands, “good” flux surfaces = KAM surfaces, “broken” flux surfaces = cantori, chaotic field lines, . . .) 

 

Even for non-integrable fields, straight fieldline (i.e. action-angle) 

coordinates can be constructed on the invariant sets, e.g. the periodic orbits 
(the irrational invariant sets, i.e. the KAM surfaces & cantori, can be closely approximated by periodic orbits) 

 

Chaotic coordinates are based on a selection of “almost-invariant” 

quadratic-flux minimizing (QFM) surfaces. 

 

In chaotic coordinates, the chaotic structure of the magnetic field is 

revealed, the flux surfaces are straight and the islands are “square”.   



In practice, we will have a discrete set of toroidal surfaces that will be used as coordinate surfaces. 

 

The Fourier harmonics, Rm,n & Zm,n, of the toroidal surfaces are interpolated using cubic/quintic polynomials. 

 

 

A regularization factor is introduced, e.g.    

to ensure that the interpolated surfaces do not overlap near the coordinate origin=magnetic axis. 

The magnetic field is given in cylindrical coordinates, 

and arbitrary, toroidal coordinates are introduced.  

ζ 

ϑ 

ρ 

(if the surfaces are smooth and well separated, this “simple-minded” interpolation works.) 

Begin with circular cross section coordinates, 

centered on the magnetic axis. 



hereafter, we will use the notation 

 

ψ  is the toroidal flux, and χ is called the magnetic field-line Hamiltonian 

A magnetic vector potential, in a suitable gauge,  

is quickly determined by radial integration. 



The magnetic fieldline action is the line integral of the 

vector potential 

piecewise-constant, piecewise-linear 

 

the integrals are evaluated analytically, i.e. method is FAST 

Numerically, a curve is represented as a piecewise-constant, piecewise-linear. 
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The derivatives of the magnetic fieldline action give 

the equations defining magnetic fieldlines 

where  and   ,   

 Introduce (i) a surface, P( , ), and on the surface 
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 Introduce the quadratic flux  
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The construction of    extremal curves    of the action        

can be generalized to  extremal surfaces of the quadratic flux. 
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QFM surfaces are a family of extremal curves of the 

constrained-area action-integral 
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    (  ) ,    where  is a Lagrange multiplier

 Using an identity of vector calculus,     
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reduces to                 , which can be solved locally,  

tridiagonal Hessian, inverted in O(N) operations,    i.e. method is FAST 

This is “global” integration, and it is not required to follow magnetic field lines. 

To find extremizing curves, use Newton method to set  ∂ρS=0,   ∂ϑS=0  



ρ  

poloidal angle, ϑ 

ϑO 

“stable” 

periodic orbit 

ϑX 

“unstable” 

periodic orbit 

QFM surfaces  family of periodic pseudo fieldlines, 

of the pseudo field B=B -  × 
Usually, there are only the “stable” periodic fieldline and the “unstable” periodic fieldline, 

However, we can “artificially” constrain the poloidal angle, via   d=const., and construct a 

family of periodic pseudo fieldlines that pass directly through the island  

A rational, quadratic-flux minimizing surface  
is a family of periodic, extremal curves of  the constrained action integral, and 

is closely to related to the rational ghost-surface,  
which is defined by an action-gradient flow between the minimax periodic orbit and the minimizing orbit. 

 



The “upward” flux = “downward” flux across a toroidal 

surface passing through an island chain can be computed. 

consider a sequence of rationals, p/q, that approach an irrational, 

poloidal angle, ϑ 

ρ  

If Ψp/q→∆, where ∆ ≠ 0, then the KAM surface is “broken”, and Ψp/q is the upward-flux across the cantorus 

the total flux across any closed surface of a divergence free field is zero. 



An example calculation using the M3D-C1 field 

s shown. 
Z 

R 



The field near the edge of LHD is chaotic, 

because of the overlap of low-order islands. 
Z 

R 

(10,6) 

(10,7) 

(10,5) 

The magnetic field is provided by HINT2 
(but this calculation is for the standard vacuum) 

 

A selection of QFM surfaces is constructed, 
shown with black lines, with periodicities: 

             (10,23), (10,22), (10,21), . . . (near axis) 

    . . . ,  (10,9), (10,8), (10,7), (10,6), (near edge)  

 



For non-integrable fields, field line transport is restricted by 

KAM surfaces and cantori 
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510  iterations 

“noble” 

cantori 
(black dots) 

KAM surface 

cantor set 

complete barrier 

partial barrier 

 KAM surfaces are closed, toroidal surfaces  

     that stop radial field line transport 

       

 Cantori have “gaps” that fieldlines can pass through; 

     however, cantori can severely restrict radial transport 

 

 

 

 

 Example: all flux surfaces destroyed by chaos, 

     but even after 100 000 transits around torus 

     the fieldlines cannot get past cantori 
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The fractal structure of chaos is related to the structure 

of rationals and irrationals on the number line. 



Using these low-order QFM surfaces as coordinate surfaces, 

the low-order islands become straight. 
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850/443 



The Flux Farey tree shows the flux across the rational 

surfaces. 
 
•The flux across a rational surface is 

 

•The “more irrational” the periodicity, the lower the flux. 

 

•If p/q→0 as q →, a KAM surface exists. 

 

•Otherwise, the limiting p/q is the 

     flux across the cantorus; 

     this indicates the  importance of that  

       cantorus as a partial barrier. 

   

Flux Farey Tree 



super-critical 

Greene’s residue criterion determines the existence of 

irrational surfaces, including the last-closed flux surface. 

 
•The residue quantifies the “stability” of a periodic orbit 

     Rp/q= (2--1/)/4,          where  is eigenvalue of tangent map 

 

 

 Consider a sequence (pi,qi) s.t. p/q →, where  is irrational 

 

•If Rp/q→0,  

     the surface exists 

 

•If Rp/q→ 0.25 , 

      the surface is critical 

 

•If Rp/q→ , 

     the surface is destroyed 

near-critical 

sub-critical 



Now, back to the edge of LHD; 

construct a set of high-order QFM surfaces, 
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(10,7) 

(20,13) 

(30,19) 
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level 1 

level 2 

level 3 
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and use these surfaces as coordinate surfaces . . . 

QFM surfaces that lie close to  

low order separatrices 



In 

chaotic-coordinatesTM, 

the flux surfaces 

are straight, 

and the islands are 

square. 

 

These coordinates 

can simplify many 

calculations,  

e.g. 

pressure       = p(s) 

temperature = T(s) 

 



1. Transport  along  the  magnetic field  is unrestricted 

→ consider parallel random walk,  with long steps collisional mean free path 

 

2. Transport  across the magnetic field is very  small 

→consider perpendicular random walk with short steps Larmor radius                                                            

 

3. Anisotropic diffusion balance 

 

4. Compare solution of numerical calculation to ghost-surfaces 

                                                                                                                                                          

 

5. The temperature adapts to KAM surfaces, cantori, 

     and ghost-surfaces! 

     i.e. T=T(s), where s=const. is a ghost-surface 

 

6.  From T=T(s,,) to T=T(s) is a fantastic simplification, 

     allows analytic solution 

 

 

 

7. A long term goal of this effort into constructing 

     chaotic coordinates is to determine if the pressure relaxation 

     algorithm in HINT2 can be replaced.  

Chaotic coordinates simplify anisotropic transport: 

the temperature is constant on ghost surfaces, T=T(s) 
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To illustrate, we examine  

the standard configuration of LHD 
 

The initial coordinates are axisymmetric, circular cross section,         
R = 3.63 + ρ 0.9 cosϑ 

Z =             ρ 0.9 sinϑ               which are not a good approximation to flux coordinates! 

 

cylindrical  R poloidal angle, ϑ 
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Poincaré plot in cylindrical coordinates Poincaré plot in toroidal coordinates 



We construct coordinates that better approximate 

straight-field line flux coordinates,  
by constructing a set of rational, almost-invariant surfaces, e.g. the (1,1), (1,2) surfaces 

838 / 841 

(1,1) 

A Fourier representation of the (1,1) rational surface is constructed, 

R = R(α,ζ) = ∑ Rm,n cos(m α - n ζ) 

Z = Z(α,ζ) = ∑ Zm,n sin(m α - n ζ),                 where α is a straight field line angle 
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Updated coordinates: 

the (1,1) surface is used as a coordinate surface. 
 

The updated coordinates are a better approximation to straight-field line flux 

coordinates, and the flux surfaces are (almost) flat 
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(1,2) 
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Now include the (1,2) rational surface 
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Updated coordinates: 

the (1,1) surface is used as a coordinate surface 

the (1,2) surface is used as a coordinate surface 
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(1,1) 

(2,3) 

(1,2) 

cylindrical  R 
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poloidal angle, ϑ 

Now include the (2,3) rational surface 

 
Note that the (1,1) and (1,2) surfaces have previously been constructed 

and are used as coordinate surfaces, and so these surfaces are flat. 
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Updated Coordinates: 
the (1,1), (2,3) & (1,2) surfaces are used as coordinate surfaces 

(1,1) 
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poloidal angle, ϑ 
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New Coordinates, the (10,9) surface is used as the coordinate boundary 

                              the (  1,1) surface is used as  a   coordinate surface 

                              the (  2,3) surface is used as  a   coordinate surface 

                              the (  1,2) surface is used as  a   coordinate surface Poincare plot 
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poloidal angle, ϑ 
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(10,9) 
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poloidal angle, ϑ 



(10,8) 

(10,9) 
(1,1) 

(2,3) 
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poloidal angle, ϑ 



(10,7) 

(10,8) 

(10,9) 

(1,1) 

(2,3) 

(1,2) 

Straight field line coordinates can be constructed over the 

domain where invariant flux surfaces exist 
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poloidal angle, ϑ 



(10,7) 

(10,8) 

(10,9) 

(1,1) 

(2,3) 

(1,2) 

Straight field line coordinates can be constructed over the 

domain where invariant flux surfaces exist 

Near the plasma edge, there are magnetic islands, chaotic field lines. 

Lets take a closer look . . . . . 
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poloidal angle, ϑ 
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Now, examine the “edge” . . . .  
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poloidal angle, ϑ 
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Near the plasma edge,  

there are magnetic islands and field-line chaos 
 
But this is no problem. There is no change to the algorithm! 

The rational, almost-invariant surfaces can still be constructed. 

The quadratic-flux minimizing surfaces ≈ ghost-surfaces pass through the island chains, 
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Now, lets look for the ethereal, last closed flux surface. 
 
(from dictionary.reference.com) 

e·the·re·al   [ih-theer-ee-uhl] 

Adjective 

1.light, airy, or tenuous: an ethereal world created through the poetic imagination. 

2.extremely delicate or refined: ethereal beauty. 

3.heavenly or celestial: gone to his ethereal home. 

4.of or pertaining to the upper regions of space. 
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Perhaps the last flux 

surface is in here 

(10,7) (10,6) 

(20,13) 

(30,20) (30,19) 

(40,27) (50,33) 



(10,6) 

(10,7) 

(20,13) 

(30,19) 

(30,20) 

(40,27) 

(50,33) 
(80,53) 

(70,46) 

(50,32) 

(40,25) 

Hereafter, will not Fourier decompose the almost-invariant surfaces and use them as coordinate surfaces. 

This is because they become quite deformed and can be very close together, 

 and the simple-minded piecewise cubic method fails to provide interpolated coordinate surfaces that do not intersect. 
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(70,46) 

(90,59) 

(200,131) 

(110,72) 

(130,85) 
(240,157) 

(310,203) 

(290,190) 



ρ=0.962425 

ρ=0.962810 

(130,85) 

(90,59) 

(290,190) 

(200,131) 

(310,203) 

(110,72) 

(240,157) 

Δψ 

 

 

4.10-4 

(350,229) 

(420,275) 

ϑ=3.11705                                                                                                        ϑ=3.16614 

locally most noble (110 γ +420)/(72 γ +275) =1.5274230155…   

locally most noble (110γ+350)/(72 γ +29) =1.5281797735…   



local minimal flux 

local minimal flux 

local minimal flux 
(10,6) 

(10,7) 

To find the significant barriers to field line transport, 

construct a hierarchy of high-order surfaces, 

and compute the upward flux 



In chaotic coordinates, the temperature becomes a surface function, T=T(s), 

where s labels invariant (flux) surfaces or almost-invariant surfaces. 

 
If T=T(s), the anisotropic diffusion equation can be solved analytically, 

 

where c is a constant, and 

                           

                            is related to the quadratic-flux across an invariant or almost-invariant surface, 

 

                              is a geometric coefficient. 

The construction of chaotic coordinates simplifies anisotropic diffusion 

particle “knocked” 

onto nearby field line 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson, Physics of Plasmas, 16:010701, 2009 

Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R.Hudson and J.Breslau 

Physical Review Letters, 100:095001, 2008 

When the upward-flux is sufficiently small,  
so that the parallel diffusion across an almost-invariant surface is comparable to the perpendicular diffusion,  

the plasma cannot distinguish between a perfect invariant surface and an almost invariant surface 



1) Constructing almost-invariant surfaces is very fast, about 0.1sec each surface, and each 

surface may be constructed in parallel. (In fact, each periodic curve on each surface can be constructed in parallel.) 

 

2) To a very good approximation, the pressure becomes a surface function, p=p(ρ),                   
(where the pressure, temperature satisfy an anisotropic diffusion equation) 

 

3) Chaotic-coordinates are straight-field line coordinates on the periodic orbits 

       (and the KAM surfaces), and 

  

       are nearly straight field line coordinates throughout the domain (ϑ is linear, ψ is constant). 

 

 

 

1)  The last closed flux surface can be determined using a systematic, reliable method, and the 

upward magnetic-field line flux across near-critical cantori near the plasma edge can be 

determined. There is not one “plasma boundary”. Depending on the physics, there is a hierarchy of “partial 

boundaries”, which coincide with the surfaces of locally minimal flux. 

 
2) Chirikov island overlap estimate is easily estimated from Eqn(1) above, and Greene’s residue criterion is easily 

calculated by the determinant of the Hessian. 

Comments   

Eqn(1) 



Generalized action-angle coordinates defined on island chains 

R.L.Dewar, S.R.Hudson and A.M.Gibson 

Plasma Physics and Controlled Fusion, 55:014004, 2013 

 

Unified theory of Ghost and Quadratic-Flux-Minimizing Surfaces 

Robert L.Dewar, Stuart R.Hudson and Ashley M.Gibson 

Journal of Plasma and Fusion Research SERIES, 9:487, 2010  

 

Are ghost surfaces quadratic-flux-minimizing? 

S.R.Hudson and R.L.Dewar 

Physics Letters A, 373(48):4409, 2009 

 

An expression for the temperature gradient in chaotic fields 

S.R.Hudson 

Physics of Plasmas, 16:010701, 2009 

 

Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R.Hudson and J.Breslau 

Physical Review Letters, 100:095001, 2008  

 

Calculation of cantori for Hamiltonian flows 

S.R.Hudson 

Physical Review E, 74:056203, 2006 

 

Almost invariant manifolds for divergence free fields 

R.L.Dewar, S.R.Hudson and P.Price 

Physics Letters A, 194(1-2):49, 1994 

List of publications,     http://w3.pppl.gov/~shudson/ 



Chaotic coordinates “straighten out” chaos 

Poincaré plot of chaotic field 
(in action-angle coordinates of unperturbed field) 

Poincaré plot of chaotic field 
in chaotic coordinates 

     phase-space is partitioned into (1)   regular (“irrational”) regions      with “good flux surfaces”, temperature gradients 

                                                  and (2) irregular (“   rational”) regions      with islands and chaos, flat profiles 
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Generalized magnetic coordinates for toroidal magnetic fields 

S.R. Hudson, Doctoral Thesis, The Australian National University, 1996 
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new angle coordinate   → old angle coordinate   → 



1. Transport  along  the  magnetic field  is unrestricted 
→ consider parallel random walk,  with long steps collisional mean free path 

 

2. Transport  across the magnetic field is very  small 
→consider perpendicular random walk with short steps Larmor radius                                                            

 

3. Anisotropic diffusion balance 

 

4. Compare solution of numerical calculation to ghost-surfaces 
                                                                                                                                                          

 

5. The temperature adapts to KAM surfaces,cantori, 

     and ghost-surfaces! 

         i.e. T=T(s), where s=const. is a ghost-surface 

 

       from T=T(s,,) to T=T(s) is a fantastic simplification, allows analytic solution 

Chaotic coordinates simplify anisotropic transport 
 

The temperature is constant on ghost surfaces, T=T(s) 
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Temperature contours and ghost-surfaces for chaotic magnetic fields 

S.R. Hudson et al.,  Physical Review Letters, 100:095001, 2008 

Invited talk 22nd IAEA Fusion Energy Conference, 2008 

Invited talk 17th International Stellarator, Heliotron Workshop, 2009 

An expression for the temperature gradient in chaotic fields 

S.R. Hudson,  Physics of Plasmas, 16:100701, 2009 
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