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MHD with rotation & anisotropy 
• Inclusion of anisotropy and flow in equilibrium MHD equations 

[R. Iacono, et al Phys. Fluids B 2 (8). 1990] 
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MHD with rotation & anisotropy 
• Inclusion of anisotropy and flow in equilibrium MHD equations 
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Equilibrium eqn becomes: 
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[R. Iacono, et al Phys. Fluids B 2 (8). 1990] 

φRBF =

• Frozen flux condition + axis-symmetry + neglect poloidal flow ⇒ 
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MHD with rotation & anisotropy 
• Inclusion of anisotropy and flow in equilibrium MHD equations 
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Equilibrium eqn becomes: 
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[R. Iacono, et al Phys. Fluids B 2 (8). 1990] 

Set of 5 profile constraints  

φRBF =

• Frozen flux condition + axis-symmetry + neglect poloidal flow ⇒ 
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• If two temperature Bi-Maxwellian model chosen 
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EFIT TENSOR: reconstruction code 
• Adds kinetic constraints to magnetic-only constraints of EFIT 
• Soloviev benchmarks computed for isotropic, anisotropic and flow 
   (Reveals Jφ sensitive to heat transport constraints) 
• Installed for both MAST and JET 

 [Fitzgerald, Appel, Hole, Nucl. Fusion 53 (2013) 113040]  

Solution Convergence Extended Soloviev: 
βt=0.07, Mφ=0.8, ∆=-0.004,  

pressure flux 

Soloviev:  
βt=0.07 

Presenter
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Pressure surfaces displaced wrong way – perhaps strongly a function of toroidal rotation? 
Pronounce Soloviev



Jφ a strong function of transport model 
e.g. ITER-like plasma 

p ⊥ /p|| ~ 1.06  

Extended Soloviev  

EFIT TENSOR 

( ) ( )ψρψρ |||| , T
m
kBp B=

( ) ( )ψρψρ ⊥⊥ = T
m
kBp B,

Presenter
Presentation Notes
(Extended Soloviev equilibriu)

when considering anisotropy (even between anisotropy models) – consistent with previous findings on q profile in the presence of anisotropy.

Implication for constraining Pll/Pperp from physics: depends on transport/anisotropy model. 

Delta>0 = Pll> Pperp.  What is p||/pperp?
Mach number? Anisotropy?



HELENA+ATF 
• Companion code written to enable stability studies.  
• Can be used to study how equilibrium changes with anisotropy 

Zhisong Qu 



Jφ|| dominant outboard 

HELENA+ATF 

MAST-like equilibrium Jφ components 

[Qu, Fitzgerald, Hole, Plasma Phys. Control. Fusion 56 (2014) 075007]  

• Companion code written to enable stability studies.  
• Can be used to study how equilibrium changes with anisotropy 

Jφnl core 
localised 
 
 
 

s ∝ √r 
flux  

surfaces of 
constant p||.  

Zhisong Qu 



Most significant 
difference in Jp 
which can effect 
change in stability 

Anisotropy modifies poloidal current 

p||/p⊥ ≈ 1.25 (anisotropic) 

Zhisong Qu 

p* = (p||+ p⊥)/2 (isotropic) 

• EFIT TENSOR reconstructions of MAST #18696 at 290ms 
 Anisotropic: p|| and p⊥ constrained to values from  TRANSP 
 Isotropic: p* = (p||+ p⊥)/2  

Presenter
Presentation Notes
Is change in Jp responsible for change in core q – why is change not as large as for latter case ? 



Anisotropy on MAST: #29221 
• MAST #29221 
• 1.6MW NB heating  
• Ip = 0.9MA, βn~3 
• Magnetics shows TAEs, tearing 

modes fishbones, long-lived modes 

possible TAE  Magnetics 

n=1 

Long-lived 
modes 

Tearing 
modes 



Beam + thermal population:  p|| / p⊥≈ 1.7 

p||, 
p⊥ 

p||/p⊥ = 1.7 at s=0.5 outboard  

HELENA+ATF / EFIT TENSOR: p* = (p||+ p⊥)/2 (isotropic) 

HELENA+ATF / EFIT TENSOR: p||, p⊥  (anisotropic) 

p|| 

p⊥ 



HELENA+ATF / EFIT TENSOR: p* = (p||+ p⊥)/2 (isotropic) 

HELENA+ATF / EFIT TENSOR: p||, p⊥  (anisotropic) 

• What is the 
impact on 
stability due 
to this q 
profile? 

Beam + thermal population:  p|| / p⊥≈ 1.7 

p||/p⊥ = 1.7 at s=0.5 outboard  

p||, 
p⊥ 

p|| 

p⊥ 
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• Compressional 
 Double-adiabatic (CGL) 

• Collisionless, 𝑝𝑝∥ and 𝑝𝑝⊥ do independent work 
• No streaming particle heat flow 
• Does not reduce to MHD in the isotropic limit 

 New Single adiabatic (SA) model 
• 𝑝𝑝∥ and 𝑝𝑝⊥ doing joint work 
• Account for the isotropic part of the perturbation 
• Can reduce to MHD in isotropic limit 

Stability: New single adiabatic model 

[Fitzgerald, Hole, Qu, PPCF 57 (2015) 025018 ] 
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Can reduce to MHD in isotropoic limit. What does the equation mean?



• Compressional 
 Double-adiabatic (CGL) 

• Collisionless, 𝑝𝑝∥ and 𝑝𝑝⊥ do independent work 
• No streaming particle heat flow 
• Does not reduce to MHD in the isotropic limit 

 New Single adiabatic (SA) model 
• 𝑝𝑝∥ and 𝑝𝑝⊥ doing joint work 
• Account for the isotropic part of the perturbation 
• Can reduce to MHD in isotropic limit 

Stability: New single adiabatic model 

[Fitzgerald, Hole, Qu, PPCF 57 (2015) 025018 ] 

• Incompressional 

*A B Mikhailovskii, Instabilities in a confined plasma, IOP publishing (1998) 
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• Compressional 
 Double-adiabatic (CGL) 

• Collisionless, 𝑝𝑝∥ and 𝑝𝑝⊥ do independent work 
• No streaming particle heat flow 
• Does not reduce to MHD in the isotropic limit 

 New Single adiabatic (SA) model 
• 𝑝𝑝∥ and 𝑝𝑝⊥ doing joint work 
• Account for the isotropic part of the perturbation 
• Can reduce to MHD in isotropic limit 

• Implemented  in CSCAS (CSMIS-A) and MISHKA (MISHKA-A) 

Stability: New single adiabatic model 

[Fitzgerald, Hole, Qu, PPCF 57 (2015) 025018 ] 

• Incompressional 

*A B Mikhailovskii, Instabilities in a confined plasma, IOP publishing (1998) 

[Qu, Hole, Fitzgerald, PPCF submitted 09/02/2015] 
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• Benchmark result Generalised Bussac condition: marginal 
stability of n=1 internal kink for ε=0.1, circular cross section 

MISHKA-A agrees with Bussac criterion 

𝑝𝑝⊥
𝑝𝑝||

=
1

1 − 𝛼𝛼(1 − 𝜓𝜓𝑛𝑛) 

Bussac condition = solid lines 
MISHKA-A = points [Qu, Hole, Fitzgerald, PPCF submitted 09/02/2015] 

Presenter
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isotropic n=1, γ=0 

Incompressible continuum for MAST 

f /fA 

s 
0 1 

0 

1 

Rmag = 0.914 
fA at magnetic axis = 280kHz 

Presenter
Presentation Notes
Different location of magnetic axis explains difference in fA



anisotropic isotropic n=1, γ=0 

Rmag = 0.914 
fA at magnetic axis = 280kHz 

Rmag = 0.928 
fA at magnetic axis = 260kHz 

Incompressible continuum for MAST 
n=1, γ=0 

f /fA f /fA 

s s 

p||/p⊥ = 1.7 at s=0.5 outboard  

isotropic ∆fTAE < anisotropic ∆fTAE  
⇒anisotropic modes likely to have less continuum damping 

0 1 

0 

1 

0 1 

0 

1 
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88kHz 75kHz 

mode profile broader with anisotropy 
anisotropic isotropic n=1, γ=0 n=1, γ=0 

f /fA f /fA 

s s 

0 1 

0 

1 

0 1 

0 

1 

s s 

p||/p⊥ = 1.7 at 
s=0.5 outboard  

(a) (b) 

(c) (d) 

Presenter
Presentation Notes
Frequency not able to resolve between different modes experimentally
Wave particle interaction might be able to resolve components. 



Ongoing work in Anisotropy and Flow 
• What is the impact of different radial structure on anomalous 

transport?  
 Couple EFIT TENSOR, MISHKA-A to wave-particle interaction code 

HAGIS for self-consistent evolution 

• Explore the impact of anisotropy and flow on a wide range of 
MAST plasma conditions 

G. Bowden, A. Könies: Implemented complex contour 
algorithm into CKA to compute continuum damping in 3D 



 

∇ × B = J,

• Simplest model to approximate global, macroscopic force-
balance is magnetohydrodynamics (MHD). 

 

∇p = J × B,

 

∇ ⋅ B = 0

3D equilibria in toroidal plasmas 
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∇ × B = J,

• Simplest model to approximate global, macroscopic force-
balance is magnetohydrodynamics (MHD). 

 

∇p = J × B,

 

∇ ⋅ B = 0

3D equilibria in toroidal plasmas 

• Toroidal symmetry ⇒ field lies in nested flux surfaces 
 

θ 

φ 

poloidal flux  
surfaces of 
constant p||.  
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∇ × B = J,

• Simplest model to approximate global, macroscopic force-
balance is magnetohydrodynamics (MHD). 

 

∇p = J × B,

 

∇ ⋅ B = 0
• Non-axisymmetric  ⇒ field does not lie in nested flux surfaces 

        unless surface currents allowed. 
 

3D equilibria in toroidal plasmas 

island
chains

MRXMHD

nested

chaotic field regions

interfaces

flux
surfaces
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∇ × B = J,

• Simplest model to approximate global, macroscopic force-
balance is magnetohydrodynamics (MHD). 

 

∇p = J × B,

 

∇ ⋅ B = 0
• Non-axisymmetric  ⇒ field does not lie in nested flux surfaces 

        unless surface currents allowed. 
• Existing 3D solvers (e.g. VMEC) assume nested flux surfaces.  
 

3D equilibria in toroidal plasmas 

island
chains

MRXMHD

nested

chaotic field regions

interfaces

flux
surfaces

[CTH stellarator, Hanson et al, IAEA 2012] 
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New system comprises:  
 N plasma regions Pi in relaxed states. 

 Regions separated by ideal MHD barrier Ii. 

 Enclosed by a vacuum V, 

 Encased in a perfectly conducting wall W 

Generalised Taylor Relaxation: 
Multiple Relaxed Region MHD (MRXMHD) 

• Assume each invariant tori  Ii act as ideal MHD barriers to 
relaxation, so that Taylor constraints are localized to subregions.  
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MRXMHD approaches ideal MHD as N→∞ 



Stepped Pressure Equilibrium Code, SPEC 
[Hudson et al Phys. Plasmas 19, 112502 (2012)] Hudson 

Vector potential is discretised using mixed Fourier & finite elements 

& inserted into constrained-energy functional 

Force balance solved using multi-dimensional Newton method 
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•  Coordinates (s,ϕ, ζ) 
•  Interface geometry 

•  Exploit gauge freedom 

•  Fourier  

•  Finite-element 

• Derivatives wrt A  give  Beltrami field  
• Field in each annulus computed independently, distributed across multiple cpu’s 
• Field in each annulus depends on enclosed toroidal flux, poloidal flux, interfaces  ξ 

• Interface geometry adjusted to satisfy force balance  
• Angle freedom constrained by spectral condensation,  
• Dertivative matrix ∇F[ξ]  computed in parallel using finite difference 

[ ] [ ][ ]{ } 02/ ,
2 =+= nmBpξF

BB µ=×∇



Example: DIIID with n=3 applied error field 

formation of 
magnetic 
islands 

 at rational 
surfaces 

• 3D boundary, p, q-profile from STELLOPT reconstruction [Sam Lazerson] 
•  Irrational interfaces chosen to coincide 

with pressure gradients.  

P 
(ψ

) 

•  Island formation is permitted 
•  No rational “shielding currents” included 

in calculation. 

STELLOPT 

SPEC 

q 
ψ 

Hudson [Hudson et al Phys. Plasmas 19, 112502 (2012)] 

Presenter
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Spontaneously formed helical states 
• The quasi-single helicity state is a stable helical state in 

RFP: becomes purer as current is increase 

[Fig. 6 of P. Martin et 
al., Nuclear Fusion 49, 
104019 (2009)] 

“Experimental” Poincaré plot 

Increasing current 

Dennis, Hudson, Terranova, Dewar, Hole, Escande 



Spontaneously formed helical states 
• The quasi-single helicity state is a stable helical state in 

RFP: becomes purer as current is increase 

[Fig. 6 of P. Martin et 
al., Nuclear Fusion 49, 
104019 (2009)] 

“Experimental” Poincaré plot 

Increasing current 

• Ideal MHD with assumed nested flux surfaces can 
not model the DAX state 

Dennis, Hudson, Terranova, Dewar, Hole, Escande 



Spontaneously formed helical states 

• Ideal MHD with assumed nested flux surfaces can 
not model the DAX state 

• Might MRXMHD with 2 barriers offer a minimal 
description to describe DAX and SHAX states in the 
RFP? 

• Model RFX-mod QSH state by a 2-interface 
minimum energy MRXMHD state.  

[Fig. 6 of P. Martin et 
al., Nuclear Fusion 49, 
104019 (2009)] 

• The quasi-single helicity state is a stable helical state in 
RFP: becomes purer as current is increase 

[G. R. Dennis et al , Phys. Rev. Lett. 111, 055003, 2013] 

“Experimental” Poincaré plot 

Increasing current 

Dennis, Hudson, Terranova, Dewar, Hole, Escande 

Presenter
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Slide 26 (the energy as a function of chosen ideal barrier) often triggered questions about local minima on the diagram.  I found the best way to respond to these was to comment that comparing the energies of configurations with different constraints was akin to comparing the energies of two ideal MHD solutions with different q profiles.




Plasma is a minimum energy state 
• RFP bifurcated state has lower energy (preferred) than 

comparable axis-symmetric state 

Presenter
Presentation Notes
The energy minimisation was done assuming a toroidal periodicity of 7, i.e. n was restricted to be a positive or negative multiple of 7. 
I think my final simulations were with
n = {-35, -28, -21, -14, -7, 0, 7, 14, 21, 28, 36} and m = {0, 1, 2, 3, 4, 5}



Spontaneously formed helical states 

[Fig. 6 of P. Martin et 
al., Nuclear Fusion 49, 
104019 (2009)] 

“Experimental” Poincaré plot 

Soft X-ray data 

MRXMHD 
Poincaré plot 
G. R. Dennis 
PRL 

Presenter
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• Extended MRxMHD to include non-zero plasma flow and plasma 
anisotropy  
[G.R. Dennis, S.R. Hudson, R.L. Dewar, M.J. Hole, Phys. Plas. 21, 042501 (2014)] 

   [G.R. Dennis, S.R. Hudson, R.L. Dewar, M.J. Hole, Phys. Plas.  21, 072512 (2014)] 
 
• Generalized straight field line coordinates concept to fully 3D 

plasmas 
[R. L. Dewar, S. R. Hudson, A. Gibson, Plasma Phys. Control. Fusion, 55, 014004, 2013] 
 

• Related helical bifurcation of a Taylor relaxed state to a tearing 
mode 
[Z. Yoshida and R. L. Dewar , J. Phys. A: Math. Theor. 45, 365502, 2012] 

   [M. J. Hole, R. Mills, S. R. Hudson and R. L. Dewar Nucl. Fusion 49 (2009) 065019] 
 
• Developed techniques to establish pressure jump a surface can 

support.  
[M. McGann, ANU PhD thesis, 2013] 

 

Recent progress in MRxMHD 



• Developed “plasmoids”, representing partial magnetic island 
chains 
[R. L. Dewar et al, Phys. Plas. 20, 082103, 2013.] 
 

• Computed the high-n stability of a pressure discontinuity in a 3D 
plasma. 
[D. Barmaz, ANU Masters Thesis 2011] 

 
• Related ghost surfaces and isotherms in chaotic fields 

[S. R. Hudson and J. Breslau, Phys. Rev. Let., 100, 095001, 2008] 
 

Recent progress in MRxMHD 



Conclusions:  Anisotropy and Flow 
• Added anisotropy and toroidal flow to equilibrium 

reconstruction code EFIT TENSOR, and HELENA+ATF  
• Developed new single adiabatic stability model which includes 

anisotropy and flow, reduces to ideal MHD as anisotropy and 
flow reduced 

• Implemented Single Adiabatic CGL and incompressible 
stability treatments into continuum code CSMIS and stability 
code MISHKA-A  

• Shown anisotropy changes the radial structure of TAE modes. 
 

• Does it change (wave-particle) anomalous transport?  
• Explore the impact of anisotropy and flow on a wide range of 

MAST plasma conditions 
 



Conclusions: MRxMHD 
• Introduced/ motivated multi-region relaxed MHD, and SPEC 

3D MHD code 
• Demonstrated application of SPEC to describe DIIID plasma 

with an applied error field 
• Applied MRxMHD to reverse field pinch, explained transition 

from a double helical-axis to single helical axis state as a 
sequence of minimum energy MRxMHD states.    
 

• Extend SPEC to free boundary, including vacuum region and 
external conductors 
 Enables calculation of stability to external modes  and response due to 

Resonant Magnetic Perturbation (RMP) coils 

• Explain helical states in MAST (e.g. long-lived modes), and 
sawtooth reconnection cycle 

• Address stability of chaotic field configurations  

Presenter
Presentation Notes
Explain emergent properties of MRxMHD: ie. Characteristcs at interface



 



• Pressure different parallel and perpendicular to field due 
mainly to directed neutral beam injection 

“MHD with anisotropy in velocity, pressure” 

Presenter
Presentation Notes
[G. F. Chew, 
M. L. Goldberger and 
F. E. Low Proc. R. Soc. Lond. A July 10, 1956 236 1204 112-118;]



• Pressure different parallel and perpendicular to field due 
mainly to directed neutral beam injection 

top view 

beam 

field 

beam 

“MHD with anisotropy in velocity, pressure” 
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F. E. Low Proc. R. Soc. Lond. A July 10, 1956 236 1204 112-118;]
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• Pressure different parallel and perpendicular to field due 
mainly to directed neutral beam injection 

⇒ Pressure is a tensor 

“MHD with anisotropy in velocity, pressure” 

top view 

beam 

field 

beam 
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Expected impact of anisotropy 

• If p⊥ > p||, an increase will occur in 
centrifugal shift : 

[R. Iacono, A. Bondeson, F. Troyon, and R. 
Gruber, Phys. Fluids B 2 (8). August 1990] 

• Obtain p⊥ and p|| from moments of 
distribution function, computed by TRANSP 
[M J Hole, G von Nessi, M Fitzgerald, K G McClements, J Svensson, PPCF 53 (2011) 074021] 

• If p|| sig. enhanced by beam, p|| 
surfaces distorted and displaced 
inward relative to flux surfaces 

Broad 
pressure 
profile 

Peaked 
pressure 
profile 

Parallel 
pressure 
contours(solid) 

Flux 
surfaces 
(dashed) 

 [Cooper et al, Nuc. Fus. 20(8), 1980]  

• Small angle θb  between beam, field ⇒ p|| > p⊥  
• Beam orthogonal to field, θb=π/2 ⇒ p⊥ >p|| 
 

Presenter
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Centrifugal vs Shafranov? 



VMEC / SPEC comparison reveals chaos 
Different toroidal cross-sections at λ = 0.4  


	� Advanced MHD models of anisotropy, flow and chaotic fields
	MHD with rotation & anisotropy
	MHD with rotation & anisotropy
	MHD with rotation & anisotropy
	EFIT TENSOR: reconstruction code
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Anisotropy on MAST: #29221
	Beam + thermal population:  p|| / p⊥≈ 1.7
	Beam + thermal population:  p|| / p⊥≈ 1.7
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Stepped Pressure Equilibrium Code, SPEC
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Conclusions:  Anisotropy and Flow
	Conclusions: MRxMHD
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Expected impact of anisotropy
	Slide Number 43

