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Abstract. Understanding the difference between hard and soft limits is crucial for effective disruption prediction 

and avoidance in tokamak plasmas.  We present several computational examples of both hard and soft beta 

limits.   In the examples presented here, we begin the simulation with the plasma stable to all modes.  During the 

simulation the plasma crosses a stability boundary due to evolving profiles, loss of control, or injection of mass, 

energy, and or flux.  This can lead to saturation or disruption.   Effective real-time disruption prediction requires 

that we can distinguish between the two. 

 

1.0 Introduction: 

 

The goal of the present work is to give an overview of the work our group is doing in the area 

of nonlinear disruption prediction.    We seek to better understand and develop a predictive 
capability for when approaching and crossing a MHD linear instability boundary leads to a 
thermal quench and subsequent disruption (hard limit), and when it just leads to increased 

transport or small amplitude oscillations (soft limit).    Recent advances in implicit numerical 
algorithms for solving the 3D extended magneto-hydrodynamic equations in strongly 

magnetized plasmas have enabled massively parallel simulations of the internal global 
dynamics of tokamaks that can use very large time steps which allow one to span the 
timescales of ideal MHD stability, magnetic reconnection, and particle, energy, and 

momentum transport.   M3D-C1 [1] is a flexible initial value code system that can solve a 
range of plasma models including 2-variable reduced MHD, 4-variable reduced MHD, full 

resistive single fluid MHD, and 2-fluid extended MHD.  It employs high-order finite 
elements with C1 continuity in all three spatial dimensions and uses a split-implicit time 
advance.   An internal Grad-Shafranov equilibrium solver computes or resolves the initial 

equilibrium (eg. from a geqdsk file) on the finite-element grid.  It has options for 2D 
nonlinear, 3D linear and 3D nonlinear computations.    In addition, a new multi-region and 

flexible adaptive meshing capability [2] allows efficient simulation of highly localized 
modes, and also simulation of the self-consistent interaction of the plasma with a resistive 
wall [3].    

 
2.0 Hard disruptive limits: 

 

2.1 Current Ramp-down Disruption:   
 

In NSTX discharge 129922, the applied loop voltage was suddenly reversed at the end of the 
discharge, causing the plasma to disrupt.  M3D-C1 full MHD 3D simulations of this event 

show that as the current reverses near the outside, edge ballooning modes with toroidal mode 
number (10, 9, 11) first become unstable.  As these grow, they drive both higher and lower 
mode numbers, and this process continues until stochastic processes cause a thermal quench 
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which subsequently causes a current quench.   We see in Figure 1 (right top) a graph of the 
kinetic energy in select toroidal modes (n).   M3D-C1 uses Hermite cubic finite elements  

 
in the toroidal direction, 64 in this calculation, which should allow accurate computation of 
modes up to n=20.   Numerical convergence studies show that the solution is well converged 

up until about 5 ms, when the 
nonlinearly driven toroidal 
harmonics with n > 20 are not well 

represented.    We are presently 
exploring using higher-order 

dissipative terms in the  
equations that will damp these very 
high toroidal harmonics and allow 

the computation to proceed.   
Figure 1 (left) shows Poincaré 

plots (top), the toroidal derivative 
of the plasma pressure at one 
toroidal plane (middle) and the 

toroidal current density at one 
toroidal plane (bottom) during 

three times just proceeding the 
induced  thermal quench.   It is 
seen that the unstable 

eigenfunction initially resides at 
the plasma boundary as the current 

starts to reverse. As time goes on, 
it affects more of the plasma, 
causing the volume of the 

stochastic region to increase and a 
thermal quench to occur. 
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Figure 1:  Left shows Poincare plots(top), the toroidal derivative 

of the plasma pressure at one toroidal plane (middle), and the 

toroidal current density at one toroidal plane (bottom) during 

three times just preceding the thermal quench.   Right shows 

kinetic energy in select toroidal harmonics (top), time traces of 

the plasma current and loop voltage (middle) and plasma  as a 

function of time.   Also shown is the  vs time in a companion 2D 

(axisymmetric) calculation with the same transport coefficients 

demonstrating that the -drop is a intrinsically 3D effect.

Figure 2:  Bottom graph shows Z-position of magnetic axis vs time.  At 

time t = 7000 A the calculation was transferred from 2D to 3D.  Top 

frame shows kinetic energy in different toroidal harmonics, and 
middle frame shows current in plasma and wall and thermal energy in 

plasma during the last 1000+ A . 
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2.2 3D Vertical Displacement Event (VDE):   
 

We have used the new resistive wall capability in M3D-C1 to model a fully 3D vertical 
displacement event in NSTX shot 132859. In these initial calculations, we have increased the 

vessel resistivity by a factor of 10 in order to ease computational requirements.  A calculation 
with more realistic vessel resistivity will be presented elsewhere. [4]  

 
Figure 3:  Leftmost figure shows initial toroidal current with superimposed mesh and vessel shown.    Right figures 

show the poloidal flux   (top) and its toroidal derivative (bottom) at three times during the thermal quench. 

Once vertical control is lost, the plasma drifts downward with the linear growth rate until it 
makes contact with the vessel and disrupts. The evolution goes through the five phases shown 

in Fig. 2.   In the first phase, the plasma remains axisymmetric and just drifts downward at a 
nearly constant exponential rate.   In Phase 2, a n=2 tearing mode starts to grow, joined by a 
n=3 tearing mode in Phase 3.  In Phase 4, the n=1 external mode becomes strongly unstable 

and higher-n modes begin to grow as well.   Finally, in Phase 5, the plasma gets scraped off 
by the wall and eventually disappears.   During these phases, both inductive and halo currents 

are induced in the wall.   The inductive current, shown in the middle frame in Fig. 3, is 
initially opposite in direction to the plasma current (to repel the plasma) but then switches to 
the same direction as the plasmas current as the plasma current decays.   Forces from these 

induced and conductive currents will be given in [4].   Figure 3 illustrates the initial toroidal 
current (left) and the poloidal flux contours (right) at three times during the late phases of the 

VDE when the plasma is interacting with the lower vessel.   Halo current flows along the 
contours closest to the plasma that intersect the vessel.  The contours of the toroidal 
derivatives of the poloidal flux in the bottom frames show the poloidal mode structure. 

 

2.3 Island Overlap Disruption:   

 
We are participating in a nonlinear MHD benchmark exercise as part of the MHD ITPA 
known as JA-2.    In the initial phase, we are looking at the nonlinear growth of magnetic 

islands in cylindrical equilibrium that initially have either one or two unstable tearing modes.   

Typical results are shown in Fig. 4 where we compare the island growth in a low-  
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cylindrical equilibrium with 2 linearly unstable modes,  (2,1) and(3,2),  and with a safety 

factor profile:  
1/2

2
2( ) 1.40 1 ( / ) / 0.5476q r r a  

  
, and an equilibrium unstable to a single (2,1) 

tearing mode with  2( ) 1.15 1 ( / ) / 0.6561q r r a  
 

.   It is seen in Fig. 4 that the (2,1) island 

for the q0=1.4 case grows to a much larger amplitude, and when the (3,2) island gets large 
enough, they interact to form a large stochastic region which would likely lead to a thermal 

quench and consequently full disruption.   In contrast, the equilibrium with q0=1.15 grows 

 
Figure 4:  Comparison of evolution of cylindrical equilibrium with two unstable tearing modes (q0=1.40, solid lines an 

d top row) and with a single unstable tearing mode (q0 =1.15, dashed lines and bottom row) 

to only about 15% of the minor radius and saturates without creating a stochastic region.  

These calculations used values of the Lundquist number of S=105and Magnetic Prandtl 
number of PM=1, with an aspect ratio of A=10.   They are now being extended to include 

sheared toroidal rotation, toroidal geometry, and non-circular flux surfaces. 
 
3.0 Soft limits: 

 
3.1 Heating past the beta limit: 

 
We have identified regions in parameter space 
where central heating of the plasma up to and 

beyond the ideal MHD beta limit does not lead to a 
disruption, but instead to increased transport which 

self-regulates the pressure increase [5].  Shown in 
Figure 5 is a NSTX plasma discharge 124379 at 
time 0.64 s.   Increasing the central neutral beam 

heating causes an internal (4,3) mode to go 
unstable near the q = 1.33 surface.  This instability 

distorts the magnetic surfaces in such a way that 
parallel thermal conductivity acts to reduce the 
pressure in the center of the discharge to the point 

where it becomes linearly stable and the magnetic 
surfaces reform. Figure 5 (upper) shows the 

Poincaré plots of the magnetic field and (lower) the 
incremental change in the electron temperature 
(from the start of the calculation) at four different 

Figure 5: Poincare plots (top) and change in temperature 

(bottom) from the start of the calculation at 4 times. 
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times in the 3D calculation.   It can be seen that the surfaces initially deform, then become 
stochastic in the center, but eventually completely heal and the configuration returns to 

axisymmetry to a high degree by the final time t=6000 A. 
 

    

Figure 6:  Mid-plane temperature at start and end of the calculation shown in Fig. 5.   Energy is transferred from 

center to mid-radius 

The perturbed temperature snapshots in Figure 5 show that initially a single mode grows up 
(n=3, m=4), and then nonlinearly couples to other modes, and finally the temperature re-

symmetrizes and becomes constant on flux surfaces.  (Note that because of the change in the 
shift of the magnetic axis, the final temperature snapshot shows in-out distortion).  Figure 6 

shows mid-plane profiles of the electron temperature at the final time for the fully 3D 
calculation and for a companion 2D calculation with the same (M3D-C1) code using exactly 
the same heating and transport coefficients but with axisymmetry maintained throughout 

(thus, making it 2D).  It is seen that the effect of the 3D instability was to lower the 
temperature in the center, and to slightly raise the temperature at mid-radius, such that the 

integral of the thermal energy (as measured by ) stays unchanged from the 2D calculation.    
The net effect of the localized 3D MHD instability was to increase the effective thermal 

transport in the center of the discharge.    This is an example of a soft -limit. 
           

3.2 Self-organized non-sawtoothing stationary states with q0=1.   
 
Tokamak discharges normally undergo sawtooth oscillations [7].  The kinetic energy in a 

=0.06% simulation of a sawtoothing 
discharge is shown in Fig. 7 in red.  

However, for the same configuration, if 

we increase the   to 2%, the kinetic 

energy does not oscillate in time but 
reaches a stationary state with a non-zero 

kinetic energy as shown in the black 
curve in Fig. 7.   We find that under 
certain conditions, and for sufficiently 

high plasma- , the plasma can self-
organize to produce a shear-free region 

in the center with q~1.   This ultra-low 
shear configuration with q=1 is unstable 

to a (1,1)  interchange mode [6].  This 
pressure-driven mode has several effects: 

 Figure 7:  Kinetic energy vs time for a sawtoothing discharge (in 
red) and a non-sawtoothing stationary state with q0 = 1. 
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(i) It acts to reduce the central pressure by convection,  (ii) it leads to a (1,1) component in 
the magnetic field in the center, and (iii) it leads to a stationary (1,1) electric potential    via 

 V B  .   The (1,1) component of the magnetic field and the (1,1) component of the 

electric potential combine together via B   to nonlinearly generate a (0,0) dynamo voltage 

that prevents q0 from decreasing further and thus sustains the configuration. 
     

 
Figure 8:  (a) shows the difference in the safety factor and pressure profiles for the 3D stationary state and a companion 
2D calculation with the same transport coefficients.  (b) shows a Poincaré plot of the stationary state, not showing the 

central region with q=1 where surfaces do not exist.  (c) velocity potential contours in the central q=1 region at 4 
different toroidal angles showing the (1,1) structure of the driven velocity field. 

This (1,1) mode also causes other islands to form through toroidal and other mode coupling.   

This non-sawtoothing stationary state could explain “flux-pumping” the “hybrid” discharges 
in DIII-D [8] and other tokamaks.   We are now extending our previous study [9] to include 

the effects sheared toroidal rotation, and to map out the region in parameter space where 
these stationary states are expected to occur. 
 

3.3 Edge-Localized modes:  

 

We have participated in a ELM benchmarking activity by modeling the evolution of KSTAR 
discharge #7328 at time t~4.36 s and comparing with other nonlinear codes and with 
experimental measurement [10].   Figure 9 shows the initial current (a) and the perturbed  

pressure at two times in the simulation using a uniform resistivity in the closed field-line 
region with S=106, dropping to S=1 in the open field line region.   Figure 10 shows mid-plane 

profiles of the pressure at two times near the end of the calculation.   It is clear that the ELM 
instability is highly localized to the plasma edge, reducing the edge pressure gradient and 
sending blobs of plasma out to the open-field line region, leaving the pressure in the core 

region of the plasma unaffected.   This appears to be in contrast to some earlier published 
ELM simulations where the perturbation extends far into the plasma core [11].   

 
We are now extending these simulations to NSTX plasmas and to include Lithium pellet 
injection, showing that injection of Lithium pellets into a pedestal near marginal stability can 

trigger an edge localized mode (ELM) without further disrupting the discharge [12]. 
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Figure 9: (a) Toroidal current density at time 0,  (b) Perturbed pressure at time t=180 A, (c) Perturbed pressure at 

time t=360 A (colors normalized to maximum value at that time). 

 

 
Figure 10:  Mid-plane pressure profile at three times for calculation presented in Figure 9. 

 
4.0 Concluding Remarks 

 

The concept of using stability maps or real-time linear stability analysis to avoid disruptions 
needs to be informed by the likelihood that crossing a linear stability boundary leads to a 

disruption.  The present work is a step in providing that information.   The examples of 
instabilities given in Sec. 3.1, 3.2, and 3.3 are those of configurations that do become linearly 

unstable to ideal or resistive MHD modes but that are self-regulating and do not lead directly 
to a disruption.  The examples we showed of instabilities that lead to a disruption involve 
either free-boundary instabilities or overlapping magnetic islands.  Future work with the 

nonlinear MHD stability code M3D-C1 will include investigating instabilities involving 
mode-locking, and more generally will seek to find criteria to distinguish catastrophic vs non-

catastrophic instabilities.   The longer term goal is to better understand the sequence of events 
that lead to a plasma disruption, and to identify regimes that are less disruption-prone. 
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