<u>Title...</u>

Ideal MHD is used for. . . .

1. Equilibrium:

- i. Grad-Shafranov solvers; VMEC and NSTAB; . .
- ii. Reconstruction: e.g. EFIT, V3FIT, STELLOPT; . .
- iii. Linearly Perturbed Equilibria: e.g. IPEC, . .
- 2. Stability:
 - i. kink,
 - ii. ballooning,
 - iii. peeling-ballooning,
- 3. Tearing mode analysis:
 - i. calculation of Δ'

All of these codes presuppose an ideal MHD equilibrium with nested flux surfaces and smooth profiles

Use of RMPs to suppress ELMs requires 3D ideal MHD

"MHD represents the simplest self-consistent model describing the macroscopic equilibrium and stability properties of a plasma."

"There is a general consensus that any configuration meriting consideration as a fusion reactor must satisfy the equilibrium and stability limits set by ideal MHD. If not, catastrophic termination of the plasma on a very short time scale .. is the usual consequence" **Ideal Magnetohydrodynamics**, J.P. Friedberg

Ideal Force-Balance : $\nabla p = j \times B$ i. continuous solutions are physically unacceptable

$$\nabla p = \mathbf{j} \times \mathbf{B}$$
 yields $\mathbf{j}_{\perp} = \mathbf{B} \times \nabla p / B^2$. Note: \mathbf{j} is current density. (1)

$$\nabla \cdot \underbrace{(\sigma \mathbf{B} + \mathbf{j}_{\perp})}_{\mathbf{j}} = 0 \text{ yields } \mathbf{B} \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_{\perp}.$$
(2)

$$\mathbf{B} \cdot \nabla p(\psi) = 0$$
 yields $\mathbf{B} \cdot \nabla \psi = 0$. Use $\psi \equiv$ toroidal flux as surface label. (3)

Introduce angle,
$$\theta \equiv \bar{\theta} + \lambda(\bar{\theta}, \zeta)$$
, s.t. $\mathbf{B} \cdot \nabla \theta \equiv \mathbf{B} \cdot \nabla \bar{\theta}(1 + \lambda_{\theta}) = \iota(\psi) \mathbf{B} \cdot \nabla \zeta$ (4)

Straight fieldline coordinates,
$$(\psi, \theta, \zeta)$$
, allows $\sqrt{g} \mathbf{B} \cdot \nabla = \iota \,\partial_{\theta} + \partial_{\zeta}, \quad \mathbf{B} \cdot \nabla \zeta = \sqrt{g}^{-1}.$ (5)

Fourier,
$$\sigma \equiv \sum_{m,n} \sigma_{m,n}(\psi) e^{i(m\theta - n\zeta)}$$
, Eqn(2) becomes $(tm - n)\sigma_{m,n} = i(\sqrt{g}\nabla \cdot \mathbf{j}_{\perp})_{m,n}$ (6)

Resonant parallel current density : $\sigma_{m,n} = \frac{p'}{x} + \delta(x)$, where $x \equiv t - n/m$. (7)

$$\operatorname{Current} = \int_{\mathcal{S}} \mathbf{j} \cdot d\mathbf{s} = \int_{\epsilon}^{\delta} dx \int_{0}^{\pi/m} d\theta \left(\sigma \mathbf{B} \cdot \nabla \zeta \sqrt{g} + \mathbf{j}_{\perp} \cdot \nabla \zeta \sqrt{g} \right) \sim p'[\ln(\delta) - \ln(\epsilon)] \to \infty \text{ as } \epsilon \to 0.$$
(8)

{ Pressure gradients *near* rational surfaces produce infinite currents }

+ { rational surfaces are dense } = no pressure allowed in solutions to ideal force-balance.

Ideal Force-Balance : $\nabla p = j \times B$ i. continuous solutions are physically unacceptable

$$\nabla p = \mathbf{j} \times \mathbf{B}$$
 yields $\mathbf{j}_{\perp} = \mathbf{B} \times \nabla p / B^2$. Note: \mathbf{j} is current density. (1)

$$\nabla \cdot \underbrace{(\sigma \mathbf{B} + \mathbf{j}_{\perp})}_{\mathbf{j}} = 0 \text{ yields } \mathbf{B} \cdot \nabla \sigma = -\nabla \cdot \mathbf{j}_{\perp}.$$
(2)

 $\mathbf{B} \cdot \nabla p(\psi) = 0$ yields $\mathbf{B} \cdot \nabla \psi = 0$. Use $\psi \equiv$ toroidal flux as surface label. (3)

Introduce angle,
$$\theta \equiv \bar{\theta} + \lambda(\bar{\theta}, \zeta)$$
, s.t. $\mathbf{B} \cdot \nabla \theta \equiv \mathbf{B} \cdot \nabla \bar{\theta} (1 + \lambda_{\theta}) = \iota(\psi) \mathbf{B} \cdot \nabla \zeta$ (4)

Straight fieldline coordinates,
$$(\psi, \theta, \zeta)$$
, allows $\sqrt{g} \mathbf{B} \cdot \nabla = t \,\partial_{\theta} + \partial_{\zeta}, \quad \mathbf{B} \cdot \nabla \zeta = \sqrt{g}^{-1}.$ (5)

Fourier,
$$\sigma \equiv \sum_{m,n} \sigma_{m,n}(\psi) e^{i(m\theta - n\zeta)}$$
, Eqn(2) becomes $[(\iota m - n)\sigma_{m,n} = i(\sqrt{g}\nabla \cdot \mathbf{j}_{\perp})_{m,n}]$ (6)

Ideal Force-Balance : $\nabla p = j \times B$

i. dense collection of alternating infinite currents

Multi-Region Relaxed MHD (MRxMHD)

equilibrium \equiv constrained, minimum-energy state consistent with given pressure, transform, and boundary.

1. Stepped Pressure Equilibrium Code (SPEC) extremizes

$$\mathcal{F} \equiv \sum_{i=1}^{N_R} \left\{ \int_{\mathcal{R}_i} \left(\frac{p}{\gamma - 1} + \frac{B^2}{2} \right) dv - \frac{\mu_i}{2} \left(\int_{\mathcal{R}_i} \mathbf{A} \cdot \mathbf{B} \, dv - H_i \right) \right\},$$

 $\underbrace{\delta \mathbf{B} \text{ is arbitrary in } \mathcal{R}_i}_{\text{i.e. islands in } \mathcal{R}_i}, \qquad \text{and} \qquad \underbrace{\delta \mathbf{B} = \nabla \times (\boldsymbol{\xi} \times \mathbf{B}) \text{ on } \mathcal{I}_i}_{\text{topological constraint}}.$

- 2. The equilibrium state: $\underbrace{\nabla \times \mathbf{B} = \mu_i \mathbf{B}}_{\text{Taylor relaxed}}$ in each \mathcal{R}_i , and $\underbrace{[[p + B^2/2]] = 0}_{\text{"ideal"}}$ across each \mathcal{I}_i .
- 3. Unification of Taylor relaxation and ideal MHD

 $\begin{array}{ll} \text{If} & 1 = N_R & \text{globally-relaxed, Taylor state,} & \nabla \times \mathbf{B} = \mu \mathbf{B} \\ \text{If} & 1 < N_R < \infty & \text{partial chaos, stepped-pressure} \\ \text{If} & N_R = \infty & \text{globally-ideal, ideal-MHD}, & \nabla p = \mathbf{j} \times \mathbf{B} \end{array}$

<u>Title...</u>

Early and recent publications

1)	Hole, Hudson & Dewar,	PoP 2006) (theoretical model)
2)	Hudson, Hole & Dewar,	PoP 2007	
3)	Dewar, Hole et al.	Entropy 2008	
4)	Hudson, Dewar et al.,	PoP 2012	(SPEC)
5)	Dennis, Hudson et al.	PoP 2013	(MRxMHD \rightarrow ideal as $N_R \rightarrow \infty$)
6)	Dennis, Hudson et al.,	PRL 2013	(helical states in RFP = double Taylor state)
7)	Dennis, Hudson et al.,	PoP 2014	(MRxMHD+flow)
8)	Dennis, Hudson et al.,	PoP 2014	(MRxMHD+flow+pressure anisotrophy)
9)	Loizu, Hudson et al.	PoP 2015	(first ever computation of $1/x \& \delta$ current-densities in ideal-MHD)
10)	Loizu, Hudson et al.	PoP, 2015	(well-defined, 3D ideal MHD with discontinuous transform, RMP penetration)
11)	Dewar, Yoshida et al.	JPP, 2015	(variational formulation of MRxMHD dynamics)
12)	Loizu, Hudson et al.,	PoP, 2016	(pressure amplification of RMPs)

Recent and upcoming invited talks

1)	Hudson, Dewar, et al.	2012	International Sherwood Fusion Theory Conference
2)	Dennis, Hudson, et al.	2013	International Sherwood Fusion Theory Conference
3)	Dennis, Hudson, et. al	2013	International Stellarator Heliotron Workshop
4)	Hole, Dewar, et al.	2014	International Congress on Plasma Physics
5)	Loizu, Hudson, et al.	2015	International Sherwood Fusion Theory Conference
6)	Loizu, Hudson, et al.	2015	APS-DPP
7)	Hudson, Loizu, et al.,	2016	Asia Pacific Plasma Theory Conference, 2016
8)	Loizu, Hudson, et al.	2016	Varenna Fusion Theory Conference

Ongoing Efforts

- 1) Linearly perturbed calculations
- 2) Vacuum benchmark, W7-X, OP1.1,
- 3) Non-stellarator symmetric capability
- 4) Free-boundary capability

Milestones

1) Publish vacuum verification

- 2) Complete free-boundary
- 3) W7-X calculations
- 4) Linear stability calculations
- 5) Include flow

Active Collaborators

- 1) S. R. Hudson, A. Bhattacharjee
- 2) R.L. Dewar, M. J. Hole
- 3) J. Loizu, P. Helander, C. Nuehrenberg
- 4) Z. Yoshida
- 5) H. AbdelHamid

SPEC vc M3D-C1

(already published) SPEC vs. Biot-Savart shown → (completed, not-yet published) (almost finished)

W7-X vacuum verification excellent agreement!

(collaboration with Dr. Hamdi)

- Princeton Plasma Physics LaboratoryAustralian National University (awarded 3 Australian Research Council Grants)Max-Planck Institute for Plasma PhysicsUniversity of Tokyo(indirect collaboration via Prof.Dewar)University of Tokyo(presently visiting PPPL)
- 1) How can an equilibrium code be verified against an initial-value code?
- 2) Can self-organized stationary states in tokamaks [Jardin et al. PRL] be explained as constrained minimum energy states? (preliminary discussions with A. Bhattacharjee, H. Abdelhamid)

2016 2016 2016 / 2017 2017

2017

 \checkmark

 \checkmark

MRxMHD explains self-organization of Reversed Field Pinch into internal helical state

EXPERIMENTAL RESULTS

Overview of RFX-mod results

P. Martin et al., Nuclear Fusion, 49 (2009) 104019

Fig.6. Magnetic flux surfaces in the transition from a QSH state . . to a fully developed SHAx state . . The Poincaré plots are obtained considering only the axisymmetric field and dominant perturbation"

NUMERICAL CALCULATION USING STEPPED PRESSURE EQUILIBRIUM CODE Taylor relaxation and reversed field pinches G. Dennis, R. Dewar, S. Hudson, M. Hole, 2012 20th Australian Institute of Physics Congress

Excellent Qualitative agreement between numerical calculation and experiment \rightarrow this is first (and perhaps only?) equilibrium model able to explain internal helical state with two magnetic axes

