## Ideal and Relaxed equilibrium β-limits in classical stellarators

<u>J. Loizu</u><sup>1</sup>, S. R. Hudson<sup>2</sup>, C. Nührenberg<sup>1</sup>, and J. Geiger<sup>1</sup> *1. Max-Planck-Institut für Plasmaphysik, Greifswald, Germany* 2. Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA

An unprecedented numerical investigation is carried out to understand the equilibrium  $\beta$ -limit in a classical stellarator [1]. The SPEC code [2, 3] is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high  $\beta$ . Two modes of operation are considered: a *zero-net-current* stellarator and a *flux-conserving* stellarator, in which the rotational transform is mantained constant. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium  $\beta$ -limit predicted by ideal-MHD, above which a separatrix forms. The latter, which has no ideal equilibrium  $\beta$ -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high  $\beta$  (Figure 1), thereby providing a "relaxed  $\beta$ -limit". We compare our results to the High-Beta-Stellarator theory [4] and derive a new robust prediction for the critical value of  $\beta$  above which chaos emerges (Figure 2). Implications for the interpretation of high- $\beta$  equilbria in the Large Helical Device in Japan are discussed.

## **Preference: Oral Contribution**



Figure 1. Example of equilibrium with chaotic magnetic field-lines emerging radially outwards from the pressure pedestal.



Figure 2. Volume of chaos as a function of  $\beta$  for a stellarator with 3 (left) and 5 (right) field periods.

## References

- [1] J. Loizu et al., submitted to Journal of Plasma Physics (2017)
- [2] S. R. Hudson et al., Physics of Plasmas 19, 112502 (2012)
- [3] J. Loizu et al., Physics of Plasmas 23, 112505 (2016)
- [4] J. P. Freidberg, Ideal MHD, Cambridge University Press (2014)

Corresponding author: J. LOIZU joaquim.loizu@ipp.mpg.de