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Finite Larmor Radius Effects at the Tokamak Edge
and the associated MHD Equilibria

W. W. Lee, R. B. White and S. R. Hudson

Princeton Plasma Physics Laboratory

1) We present a novel mechanism for producing the equilibrium potential
well near the edge of a tokamak. Briefly, because of the difference in
gyroradii between electrons and ions, an equilibrium electrostatic
potential is generated in the presence of spatial inhomogeneity of the
background plasma, which, in turn, produces a well associated with the
radial electric field, Er, as observed at the edge of many tokamak
experiments. We will show that this theoretically predicted Er field,
which can be regarded as producing a long radial wave length zonal

flow, agrees well with many recent experimental measurements on JET.
NSTX and C-MOD.

2) The properties of associated gyrokinetic MHD and the schemes for

achieving related equilibria will also be discussed.
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Results from the first particle code simulations of the i gradient-dri ilities in a
sheared slab geometry are reported. In the linear stage of the instability, the results are in very good

with the of the mode , growth rate, and radial mode structure.
Ton energy transport caused by the instability is found to be the process primarily responsible for nonlinear
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with inally stable e have been observed.
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FIG. 4. Simulation results of (a) the saturation amplitude and

FIG. 5. Ambipolar (k,=0) mode structures at the onset of
(b) the resultant ion temperature profiles.

simulation and at saturation for n; ==, Ly /Lp=112,

Naitou, Tokuda and Kamimura, JCP 38, 265 (1980): attempted to eliminate this extra charge density.
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Gyrokinetic approach in particle simulation
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A new scheme for particle simulation based on the gyroph ged Vlasov ion has been
developed. Il is suitable for studying linear and li low-fr microinstabilities and
the i port in Ily confined pl:

The scheme retains the
gyroradius effects but not the gyromotion; ll is, therefore, far more efficient than conventional

ones. Furthermore, the reduced Vlasov equation is also amenable to analytical studies.

was first discussed from the gyrokinetic point of view.

* Gyrokinetic Poisson’s Equation
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* Origin of this extra ion charge density due to spatial inhomogeneity
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On higher order corrections to gyrokinetic Vlasov-Poisson equations
in the long wavelength limit
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Linear Upshift of ITG Gradient due to Equilibrium Ion Density

* Gyrophase-Averaged Equilibrium Ion Number Density
i 1,1
n(x)=n+ ip?TVinT

* ITG simulation using GTC* (a/rho =125)

Calculations for the Radial Electric Field
[W. W. Lee and R. B. White, PoP 2017 (to appear) ]
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* Gyrokinetic Quasineutrality: 7 = Ne > nfc + n;

* Focus of Present Calculation: npOl + nimho — g for nd¢ =nd°
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JET Ohmic Discharge
: _ 141 C.Hillesheim, E.Delabie, H.Meyer,C.F.Maggi, L.Meneses,E.Poli, and JETContributors,
Particle and Gyro-Center Densities Phys. Rev. Letters, 116, 065002 (2016).
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Comparisons between the direct calculation of Ve from the actual
particles (black) and that from the pressure balance (red)
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* The pressure balance is
calculated from the lowest
order approximation in k p;,
and higher order is needed.

* It should not be confused
with the poloidal velocities T e T e w
produced by the electric field r

at the tokamak edge, which comes from the charge imbalance.

* This presentation gives a possible theoretical explanation for the
formation of observed radial electric field wells at edge pedestals
through finite Larmor radius (FLR) effects of the plasma particles.
The well can be regarded as producing a long radial wavelength
global zonal flow.

* The surprising agreement between our model, based on
equilibrium profiles with no turbulence, and the experimental
measurements based on steady state profiles with turbulence,
should be a topic of interest in the tokamak community.

« It is possible these two totally different states are
thermodynamically related through the Woltjer-Taylor State. This
is the topic for the second part of the talk.




Magnetohydrodynamics for Collisionless Plasmas from the
Gyrokinetic Perspective
[W. W. Lee, Phys. Plasmas 23, 070705 (2016)]
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* New Pressure Balance:
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* From Woltjer-Taylor State of

V xB=aB
* We obtain
1 2 Vipl
Vo (1—=—pi—— ) =0
47" py
« And the solutions are: VpL =0,

and, at large radius, pL = exp(=2r/p;).

« It resembles the profiles used in the study for edge potential well on pp. 7.

Gyrokinetic MHD
« Fully Electromagnetic Gyrokinetic Vlasov Equation:
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* Gyrokinetic Vlasov Equation in General Geometry

[Lee and Qin, PoP (2003), Porazic and Lin, PoP (2010); Startsev et al. APS (2015)]
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Gyrokinetic Current Densities

[Qin, Tang, Rewoldt and Lee, PoP 7, 991 (2000); Lee and Qin, PoP 10, 3196 (2003).]
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° Gyrokinetic MHD Equations: a reduced set of equations but in full toroidal geometry
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* MHD Equilibrium Summary 11

1. For a given ion pressure profile, we should obtain
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this is then the equilibrium solution that satisfies the quasineutral condition of

Vdy=0

* This set of gyrokinetic equations can indeed be used to study
steady state electromagnetic turbulence to understand the physics of
radial electric field wells.

» It can also recover the equilibrium MHD equations in the
absence of fluctuations.

« It will be interesting to couple a 3D global EM PIC code, e.g., GTS
[Wang et al., 2006] with a 3D MHD equilibrium code, e.g., SPEC
[Hudson et al., 2012] for transport minimization purposes.

* A SciDAC proposal, “First Principles Based Transport and
Equilibrium Module for Whole Device Modeling and Optimization”
has been submitted to DoE.




