Differentiating the coil geometry
with respect to the plasma boundary

1) The Simplest Possible Algorithm® (SPA) for designing stellarator coils is described.

2) The coil geometry has “maximum freedom”, and the target function is “minimally
constrained”.

3) Fast, reliable and insightful numerical algorithms are enabled by exploiting 1t and
2d derivatives with respect to the coil geometry and the “target surface”.

1) P. Merkel, Nucl. Fus., 27 867 (1987)
2) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A., 194 49 (1994)
3) M. Landreman, Nucl. Fusion, 57 046003 (2017)



Vacuum fields in given domain uniquely defined by
supplied boundary conditions

1. Given volume V, with closed boundary, S = 0V.
2. Vacuum fields satisty V x B = 0, which suggests B = V.

3. Given a suitable boundary condition, e.g. B-n on §.

4. Divergence-free fields, V - B = 0, implies constraint of net flux }{ B-ds=0.
S

5. Toroidal flux ¥ = jg A - dl, (require one loop integral per “hole”).
L

6. In V, solution to V - V® = 0 is unique.

Task is to design coils that provide required B - n on given surface.



Minima of “regularized” functional give required set
of external current-carrying coils

1.

Introduce x;(l), i =1,..., N¢, to represent closed current-carrying curves.

. Let x(0,() = & represent plasma boundary.

With finite degrees-of-freedom, cannot exactly recover arbitrary B, =B -n on S.

Instead, minimize quadratic-flux functional with penalty on length,

1
Fx;, X] :% §B3ds +wl, where L[x;]= Zf x| dl. (1)
S i

. Numerically need to find minima, perform sensitivity studies, and advantageous to

construct derivatives.

o0F

5Xi

= (.

Optimal coils for given surface are defined by

X

1
Simple to include (i) an additional factor f 5 Wm.n By, n|ds to reflect that some

)
“error fields” are more important to control than others; and (ii) additional “engi-

neering’ penalties, such as coil-coil distance.



Variations in line integrals with respect to
variations in the line: length

L = j£(x’-x’)1/2 dl (1)
5L = jg(x' XY V2(x - 5x!) i ()
= %5){ X (% x) T3 X" dl - jgéx x(x - x') Y2 dl (3)

Correct, but not transparent. Do tangential variations, dx x x’ = 0, change length?



Variations in line integrals with respect to
variations in the line: length

L = f(x’ x2 dl
oL = jg(x' xN)TV2(x - 6x!) dl
= %5){ X (% x) T3 X" dl - jgéx X (x" - x) V2 dl
Correct, but not transparent. Do tangential variations, dx x x’ = 0, change length?
Use (0x x x')+ (x' xx"") = (0x - x') - (x' - x") — (0x - x") - (x - X/).
x' x x"
(X’ . X/)3/2

N
curvature

oL = —f((SxXX')-H,, where Kk =

(1)

(3)



The Biot-Savart law gives the magnetic field,
variation in curves gives variation in magnetic field

1. The magnetic field is from Biot-Savart,

r3

!/
Bi(x) = I § * 3Nl 1)

aXZ‘
ol

2. For simplicity, set I; = 1. (Trivial solutions avoided, ignore toroidal flux constraint.)

where I; is the current and r(6,(,1) = %(0,¢) — x;(I) and x| =

3. Variations in the curve induce variations in the field,

3 |
where R = =22 — — and Tis the “idemfactor”, e.g. T =1ii+jj+kk.
T T

4. Let me go through the algebra more slowly.



Variations in line integrals with respect to
variations in the line: magnetic field

r3

!
B = f(x ><I.)dl, where r=X—x, r=+r-r, x =0)x

(1)



Variations in line integrals with respect to
variations in the line: magnetic field

!/

B = f'(x ?r)dl, where r=x—x, r=+r-r, X' =9x (1)
r

5B — %(5}{ Xr)dl _f'(x x6x)dl+3j£(x xr)(r-dx)dl




Variations in line integrals with respect to
variations in the line: magnetic field

!/
B = f'(x jr) dl, where r=Xx—x, r=+r-r, X =09)x (1)
r
/ / / ]
5B — %(6){ ;(r) i _f'(x ><35x) dl—l—Sjg(x ><r)5(r 0X) d
r r r

_ j{(5X><x’)dl_gjg(éxxr)(r-x’)dl_jg(x’xéx)dl+3 (x’xr)(r-éx)dl

r3 ro



Variations in line integrals with respect to
variations in the line: magnetic field

B = f (x ;; r) dl, where r=Xx—x, r=+r-r, X =09)x (1)
(6x" x r) (x" x %) (x' X r)(r - ox)
‘B = f 3 dl —f' 3 dl + Sj{ p dl
/ . / / _
_ f((?xzx)dl_gjg(éxxrl(r X)dl—jé(x X35X)dl+3 (x ><r)5(r 5X)dl
T r r T
/ L~ / .
_ 2%(5x>;x)dl_3%(5xxr)5(r X)dl t3 (x ><r)5(r 5X)dl )
r r r

Correct, but not “transparent”. Do tangential variations, dx x x’ = 0, change B 7



Variations in line integrals with respect to
variations in the line: magnetic field

B = f' (x ;; r) dl, where r=Xx—x, r=+r-r, X =09)x (1)
(6x" x r) (x" x %) (x' X r)(r - ox)
‘B = f 3 dl —f' 3 dl + Sj{ p dl
/ . / / _
_ f((?xzx)dl_gjg(éxxrg(r X)dl—jg(x X35X)dl+3 (x ><r)5(r 5X)dl
T r r T
/ L~ / .
_ 2%(5x>;x)dl_3%(5xxr)5(r X)dl t3 (x ><r)5(r 5X)dl )
r r r

Correct, but not “transparent”. Do tangential variations, dx x x’ = 0, change B 7

User X [rx (0x xx')]=rx [6x(r -x')—x'(r-0x)] = (r x ix) (r-x") — (r x X') (r- %)

r /
5B — jg[(dxxx r)3r 0x xXx i 3)




Variations in line integrals with respect to

variations in the line: magnetic field

!/
B = %(X;; r) dl, where r=x—x, r=+r-r, x =9x
SB — y{(&cr‘; r) i _j{(x :353() dl—|-3j£ (x ><I‘T)5(r'5x)
/ o~ / / .

_ f((?xzx)dl_gjg(éxxrg(r X)dl—jg(x X35X)dl+3 (x ><r)5(r 0X)

T r r r
(0x x x') (0x X r)(r-x') (x' x r)(r- ox)

= f 3 dl — % > dl +3 pe

Correct, but not “transparent”. Do tangential variations, dx x x’ = 0, change B 7

(1)
dl

dl

dl (2)

User X [rx (0x xx')]=rx [6x(r -x')—x'(r-0x)] = (r x ix) (r-x") — (r x X') (r- %)

ox X x/

B jg[(dxxx’-r)?)r

7o

r3

[ a

< common factor

(3)




Variations in line integrals with respect to
variations in the line: magnetic field

B = f' (x ;; r) dl, where r=Xx—x, r=+r-r, X =09)x (1)
(6x" x r) (x" x %) (x' X r)(r - ox)
‘B = f 3 dl —f' 3 dl + Sj{ p dl
/ . / / _
_ f((?xzx)dl_gjg(éxxrg(r X)dl—jg(x X35X)dl+3 (x ><r)5(r 5X)dl
T r r T
/ L~ / .
_ 2%(5x>;x)dl_3%(5xxr)5(r X)dl t3 (x ><r)5(r 5X)dl )
r r r

Correct, but not “transparent”. Do tangential variations, dx x x’ = 0, change B 7

User X [rx (0x xx')]=rx [6x(r -x')—x'(r-0x)] = (r x ix) (r-x") — (r x X') (r- %)

_— jg[(dxxx’-r)Sr_&cxx’] y 5

I
— f(éxxx’)'<ﬁ__) dl, wherev-I1=1.-v=v, 4)



Variations in line integrals with respect to
variations in the line: magnetic field

B = f(x;; r) dl, where r=Xx—x, r=+r-r, X =09)x (1)
5B — f(c?x ;(r) i _f'(x ><35x) dl+3j£ (x ><r)5(r-5x) d
r T r
/ o/ / / _
_ f(c?xzx)dl_gjg(éxxrg(r x)dl_jé(x X35X)dl—|—3}((x ><r)5(r 5X)dl
r r r r
/ o/ / '
_ 2%(5x>;x)dl_3%(5xxr)5(r X)dl t3 (x ><r)5(r 5X)dl )
r r r

Correct, but not “transparent”. Do tangential variations, dx x x’ = 0, change B 7

User X [rx (0x xx')]=rx [6x(r -x')—x'(r-0x)] = (r x ix) (r-x") — (r x X') (r- 0x)

ox xx'-r)3r IOx xx
5B — jgl( " )3r _ - ]dl (3)
‘B = j{(&:XX')-Rdl (5)

This is concise, and shows that tangential variations, dx x x’ = 0, do not alter the field.



The first variation with respect to variations in the
curve is easy to calculate

1
1. The first variation of the penalized quadratic-flux, F[x;,X| = / §Bid8 +wl, is
S

v

5X1’

)
dl, where a

% 5X@'

oOF = 5X7; .

i

= X, X ( R;. Bn ds+wf<.:i> . (1)
S

2. “Slow motion” steepest-descent algorithm is easy to implement,

oOF OF
i <
- 1{(5}%)@; 0. 2)

3. Coils cannot continuously pass through surface, as this would produce infinities;
so the descent algorithm preserves

aXi a

or  ox;

cdx; X dXg,

1
the Gauss linking integral = ypm jg % x;
T a

Xa|3
and thereby avoids the trivial solution that the coils are removed to infinity.

Flexible Optimized Coils Using Space (FOCUS) curves
Caoxiang Zhu, Stuart R. Hudson et al., “New method to design stellarator coils without the

winding surface”, Nucl. Fusion 58, 016008 (2017)



Second derivatives can be calculated,
allows fast algorithms and sensitivity analysis

1. Let ¢ = {x;,}, degrees-of-freedom that parameterize external currents.

For example, x;(1) = z;(1)i+ v;(1)j + zi(l)z where

x;(l) = Z |25 ,, cos(nl) + 3, sin(nl)]

n

yi(l) = > [y5, cos(nl) + 5, sin(nl)]

n

zi(l) = Z z{ , cos(nl) + 2, sin(nl)]

1
2. F(c+dc) = F(c) + VF - dc + 55&” Vi F-éc

3. Inverting Hessian allows Newton method.
[C. Zhu, S.R. Hudson et al., Plasma Phys. Control. Fusion, in press (2018)]

4. Eigenvalues of Hessian describe sensitivity to coil placement errors.
[C. Zhu, S.R. Hudson et al., Plasma Phys. Control. Fusion, in press (2018)]

5. A piecewise-linear representation is under construction.



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 %)
1. Parametrized surface, x(6, (), tangent vectors xy = 8_;( and x; = 8_}5’
normal n = —2 = %¢ d(area) ds = |xg X x¢|d0dC.

‘Xg X XC|7

where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 0
1. Parametrized surface, x(6, (), tangent vectors xy = 8—; and x; = 8_}5’
normal n = —2 = %¢ , d(area) ds = |xp x x¢|dOdC. (1)
X X X¢]|
where |xg X x¢| = [(x0 X x¢).(xg X x¢)]}/2.
2. Variations x(0, () — x(0, () + dx(0, () induce 0xg = Jpdx, Ox¢ = 0¢dx

[(xg X x¢). (%9 % x¢)] 712 2(x0 X x¢).(6%0 X X¢ + X9 X 5%¢)  (2)

b | =

5‘){3 X Xc| =



Variations of surface integrals with changes in the

surface: surface area and mean curvature
ox ox

1. Parametrized surface, x(6, (), tangent vectors xy = 0 and x; = 8—C,
normal n = —2 = %¢ , d(area) ds = |xp x x¢|dOdC. (1)
‘Xg X XC|
where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.

2. Variations x(0, () — x(6, () + dx(6, {) induce
[(x0 % x¢).(x0 X XC)]*l/Q 2 (xp X x¢).(0x9 X X¢ + X9 X 0%¢)  (2)

(3)

1
5|X9 X Xc| = 5
n- ((5){9 X Xe — 5XC X XQ)



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 0
1. Parametrized surface, x(6, (), tangent vectors xy = 8_;( and x; = 8_}5’
X
normal n= 2 ¢ , d(area) ds = |xp x x¢|dOdC.
‘Xg X XC|
where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.

2. Variations x(0, () — x(6, () + dx(6, {) induce
1

5|X9 X XC| = 5[()(9 X XC).(XQ X Xc)]il/z 2(X9 X XC).((SXQ X X¢ + Xg X (SXg) (2)

= n-((SXgXXC—CSXCXXQ)

= 0xp-(x¢ xn)—0x¢ - (xp X n)

e
= W
~— ~—



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 0
1. Parametrized surface, x(6, (), tangent vectors xy = a—; and x; = 8—}5,
normal n = —2 = %¢ , d(area) ds = |xp x x¢|dOdC. (1)
‘Xg X XC|
where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.
2. Variations x(0, () — x(6, () + dx(6, {) induce
1
5|X9 X XC| = 5[()(9 X XC).(XQ X Xc)]il/z 2 (Xg X XC).((SXQ X X¢ + Xg X (SXg) (2)

—~
w
S—

= n-((SXgXXC—CSXCXXQ)

—
e
~—r

= 0xp-(x¢ xn)—0x¢ - (xp X n)

]5|X9 X X¢|dOd¢ = _/5X'(Xg’9 X N+ x¢0p X n)did(

—|‘[6X . (X@C X n-—+ Xga(: X 1’1) deC (5)



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 0
1. Parametrized surface, x(6, (), tangent vectors xy = a—; and x; = 8—}5,
X
normal n= 2 ¢ , d(area) ds = |xp x x¢|dOdC.
‘Xg X XC|
where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.

2. Variations x(0, () — x(6, () + dx(6, {) induce
1

5|X9 X XC| = 5[()(9 X XC).(XQ X Xc)]il/z 2(X9 X XC).((SXQ X X¢ + Xg X (SXg)

= n-((SXgXXC—CSXCXXQ)

= 0xp-(x¢ xn)—0x¢ - (xp X n)

]5|X9 X X¢|dOd¢ = _/5X'(Xg’9 X N+ x¢0p X n)did(
—|‘[6X (X@C X H+X98C X 1’1) deC

= —f@x - (x¢0p — xp0¢) X 1 dOd(



Variations of surface integrals with changes in the
surface: surface area and mean curvature

0 0
1. Parametrized surface, x(6, (), tangent vectors xy = a—; and x; = 8—}5,
X
normal n= 2 ¢ , d(area) ds = |xp x x¢|dOdC.
‘Xg X XC|
where |xg X x¢| = [(xo X x¢).(xg x x¢)]}/2.

2. Variations x(0, () — x(6, () + dx(6, {) induce
1

5|X9 X XC| = 5[()(9 X XC).(XQ X Xc)]il/z 2(X9 X XC).((SXQ X X¢ + Xg X (SXg)

= n-((SXgXXC—CSXCXXQ)

= 0xp-(x¢ xn)—0x¢ - (xp X n)

]5|X9 X X¢|dOd¢ = _/5X'(Xg’9 X N+ x¢0p X n)did(
—|‘[6X : (X@C X H+X98C X 1’1) deC
= —f@x - (x¢0p — xp0¢) X 1 dOd(

= — / 0x-n(V -n)ds, and only normal variations matter.



The quadratic-flux is an analytic function of the
surface. So, what happens if the surface varies?

1. The variation in F resulting from variations, dx; and Jx, in the geometry of the ¢-th coil
and the surface is

2 _ _
O°F = %5){1 j{ oy - 0x ds dl, (1)
52 F ,
il x(Rs-VB,+Bs-VR,+B, R -H)n, (2)

where

i. Bgs = B — B,n is projection of B in the tangent plane to X, and Rg = R — R n,

ii. the mean curvature can be written H= —n (V - n),

iii. the calculus of variations of the quadratic-flux w.r.t. surface variations was presented
by Dewar et al. [Phys. Lett. A 194, 49 (1994)].

3. The shape of the optimal coils must change with the surface to preserve V. F = 0,

VeF(c+ de, s+ ds) = V2, F - dc + V2, F - §s = 0, and from this

oc

96 =~ (VicF) VAT (3)



Part Two:
Can the surface be varied to simplify the coils
under the constraint of conserved plasma properties?

1. Introduce a measure of coil complexity, C(c), that we wish to minimize,

!/ 4 1t
: . X X' XX
e.g. integrated torsion, C = dl
/ "2
|x" x x|

which quantifies the “non-planar-ness” of the coils.
2. Introduce a plasma property, P(X), that we wish to constrain.

3. Can minimize coil complexity subject to constrained plasma properties, i.e. extremize
G(x) = C(x4(x)) + A[P(x) — Pol , (1)

where A\ is a Lagrange multiplier.

5. Solutions satisfy (?;i?’ . SC + )\27_3 = 0.
X X X




Example: rotational-transform on axis depends on
“ellipticity” and torsion of axis.

1. Rotational-transform on axis, ¢,
can be produced in vacuum [Mercier (1964)]

i. by shaping the boundary
(i.e., rotating ellipse),

ii. by shaping the magnetic axis
(through torsion),

iii. or by both;

(e—1)* N 2e

by = I (1) 1
2 2 0 ARV -
€ + 12 € + 1 0.000 0.051 0.1G2 0.153 (0.204 0.255
. 2
2. There is freedom to change boundary at ¢, = const. 7o/ "
_ ) _ : ) contours of ¢,:
which can be used to simplify the coils. dotted from Equ(1);
. solid from coil field;
3. A two-parameter family of surfaces parametrized by ellipticity, 1+~
€, and integrated axis torsion, 7, with R = 1.0 and a = 0.2, dashed ¢, = 3+ 4y ~ 0.276

is constructed; coils constructed using FOCUS, ¢, measured
numerically.



A circular cross-section with axis torsion gives simpler
coils than a rotating ellipse with circular magnetic axis

1. “Simple” in this case means more planar.
2. The following have

i. the same rotational-transform on axis, ¢, ~ 0.276, and good flux surfaces,
ii. total volume = 0.799m?, 18 coils, Npp = field-periods = 1,

iii. average length and complexity of the coils is

(L) = 3.07m and (C) = 0.66m !, and (L) = 2.88m and (C) = 0.12m 1.

3. Color indicates mean curvature.



Another example:
one purely elliptical, the other purely torsion

1. The following have

i. the same rotational-transform on axis, + =~ 0.101, and good flux surfaces,

ii. total volume = 0.7986m>, 18 coils, Npp = 1,

The average complexity of the coils is:

(C) = 0.800m 1, (C) = 0.005m L.




Summary

1) The Simplest Possible Algorithm® (SPA) for designing stellarator coils is described.

2) The coil geometry has “maximum freedom”, and the target function is “minimally
constrained”. (Additional constraints can be added.)

3) Fast, reliable and insightful numerical algorithms are enabled by exploiting 1t and
2"d derivatives with respect to the coil geometry and the “target surface”.

Some relevant papers

1) P. Merkel, Nucl. Fusion 27, 867 (1987)
2) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A 194, 49 (1994)
3) M. Landreman, Nucl. Fusion 57, 046003 (2017)

4) Caoxiang Zhu, Stuart R. Hudson et al., “New method to design stellarator coils without the
winding surface”, Nucl. Fusion 58, 016008 (2017)

5) Caoxiang Zhu, Stuart R. Hudson et al., “Designing stellarator coils using a Newton method”,
Plasma Phys. Control. Fusion, in press (2018)

6) Caoxiang Zhu, Stuart R. Hudson et al., “Hessian matrix approach for determining error field
sensitivity to coil deviations”, Plasma Phys. Control. Fusion, in press (2018)






Variations of surface integrals with changes in the
surface area and mean curvature.

surface:

area =

|X9 X Xc| =

dxg x x¢| =

d(area) =

/ ds, where ds = |xg X X¢| dfd(, and xp = Jgx (1)

S

[(x0 % x¢) - (%9 % x¢)]'/? (2)

n- (0xg X X¢ — 0X¢ X Xg), where n = (xg X X¢)/|xo X x¢| (3)

/ Jgdx - x¢ X n dfd¢ — / Jc0x - xg X n dfd( (4)

S S

—f 0X - (Xco X N+ xXc0p X n) dOd( (5)
S

+/ 0X - (Xxg¢ X N+ Xp0¢ x n) dOd( (6)
S

—[ X - (X<89 — Xgag) X n d@dc (7)
S

—/ 0x-(nx V) xnds, where n=Vs/|Vs| and V=Vsd; +V03dp+ VI, (8)
S

—/6X-n(v-n)ds (9)
S

—[ 0x - H ds, mean curvature H=n(V - n) (10)
S

1) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A., 194 49 (1994)
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