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 The action-based formulation1 of Multiregion Relaxed MHD (MRxMHD) encompasses 
both steady-flow statics, and dynamics on a slower timescale than Taylor relaxation. We 
consider the case of a toroidal plasma laminated into multiple nested annular toroidal 
relaxation regions, separated by interfaces supporting current sheets. Unlike ideal MHD, 
Taylor relaxation allows reconnection at resonant surfaces to occur within these regions. 
However, the physical applicability of the model depends on the interfaces between them 
being ideal, i.e. stable against reconnection for times much longer than the relaxation 
timescale.  
 It has been postulated2 that plasma flow may stabilize such current sheets even if they 
occur on surfaces that resonate with boundary perturbations in 3D geometries such as 
stellarators, or tokamaks with resonant magnetic perturbation (RMP) coils. This motivates 
the extension, now under development, of the 3D-MRxMHD-based equilibrium code SPEC3 
to allow plasma flow with reasonably general flow profiles. However, it is not clear4 that 
stationary 3D states with other than rigid-rotation flow exist, motivating development of a 
3D MRxMHD initial value code to model oscillatory states and nonlinear instabilities. 
 The formulation of Ref. 1 describes the plasma in each region as an ideal Euler fluid, 
which is too general for practical purposes as it allows all the turbulent complexity of such 
a fluid. This motivates developing a Taylor-like relaxation model5 for fluids, based on 
minimizing total energy with constant mass, entropy and fluid helicity (or, equivalently, 
minimizing fluid helicity at constant mass, entropy and energy). This leads to a compressible 
Beltrami equation, ∇ × 𝐯 = 𝛼&exp	(−𝑣./2τ)𝐯, where 𝛼& and 𝜏 are constant in each region, 
𝜏 being the square of the isothermal sound speed in that region. The simplest case is 𝛼& = 0, 
i.e. the flow has zero vorticity, but, because our relaxation regions are not simply connected, 
non-trivial rotation profiles can still be treated. 
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