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Plan of talk 

• Desiderata: Simple MHD model that can 

reduce to ideal MHD when appropriate but 

allows reconnection when not 

• Dynamical MRxMHD: Force-free magnetic 

field⇔Euler fluid in each relaxation region 

• Contrast 2 cases: Laminar flow (axisymmetry); 

Chaotic streamlines (non-axisymmetry) 

• Preliminary numerical implementation 
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 Within the sub-regions Ωi, use force-free 

magnetic fields, so no jXB force — field 

and fluid are decoupled 
 

 Scope of applicability 
 

 “smart finite element” discretization for ideal- 

MHD 2D equilibrium calculations (incl. flow) 
 

 new, quasi-relaxed, MHD allowing islands & 

chaos in 3D equilibrium and dynamics 

Basic ideas 

 Confinement is maintained by thin transport barriers 

(interfaces) Γi,j dividing the plasma into toroidal sub-regions Ωi 
 

 Force balance across interfaces Γi,j allows stepped pressure 

& flow profiles 

Laminated MHD concept 

Interfaces may be separ-

atrices of magnetic islands / 

Kelvin’s cat’s eyes in fluid 



MRxMHD:  M stands for Multi-region (aka waterbag) 

Rx stands for Relaxed; ..D stands for Dynamics  

 

4 

 Within the sub-regions Ωi use generalized Taylor relaxation 

theory – relax nearly all the ideal-MHD constraints except for 

conservation of macroscopic magnetic helicity, entropy, and 

microscopic mass  

 Cross-helicity not constrained, so fluid and magnetic field 

couple only at interfaces, which are current/vortex sheets 

 Generalize minimum energy equilibrium approach by instead 

extremizing the MHD action (Hamilton’s Principle) 

 Details in Dewar et al 2015  

Full ideal-MHD constraints apply only within the interfaces Γi,j 

MRxMHD theory 



Euler-Lagrange Equations within Ωi 

• Mass conservation (microscopic constraint) 
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• δp ➮ Isothermal equation of state 

• δA ➮ Beltrami equation 

• ξ   ➮  Momentum equation (Euler fluid) 

Result:  Euler-Lagrange equations 



• Check Ideal Ohm’s Law solvability condition for Φ:  

 ∇ × v × B = Ω𝑖𝑅 ∇ ∙ B −
1

𝑅

𝜕𝐵𝜙

𝜕𝜙
e𝜙 = 0    ✔️✔️ 

So rigid-body flow is compatible with ideal MHD for any axi-

symmetric B, including MRxMHD’s force-free Beltrami field! 
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Piecewise-constant vorticity ω ≡ ∇ × v: 
  ω𝑖 = 2Ω𝑖𝐞𝑍⟺ 𝐯 = Ω𝑖𝑅e𝜙⟹ω𝑖 × v = −2Ω𝑖2𝑅e𝑅= −∇𝑣𝜙2  

Steady axisymmetric toroidal flow 

• Steady toroidal Euler flow momentum equation: 

𝛚× 𝐯 + ∇
𝑣𝜙
2

2
+ ln
𝜌

𝜌0
= 0 

 • Gives Bernoulli equation −
𝑣𝜙
2

2
+ ln

𝜌

𝜌0
= 0: in agreement 

with, e.g., McClements & Hole 2010’s ideal MHD result. 

 



Static solution of Compressible Euler 
Fluid eqs in arb. Ω  (Sato & Dewar arxiv): 

• Dot momentum equation                      

with         and integrate to give Bernoulli 

equation 

on each flow line.  

• Only solution valid for arbitrarily chaotic flow 

within Ω is (with suitable choice of global 

constant      ) 
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• Gives nonlinear Beltrami equation: 

“Relaxed” non-axisymmetric flow 
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Incompatibility of the two solutions 

• Relaxed (Beltrami) fluid solution: vorticity 

parallel to flow 

 
• Rigid toroidal flow solution: vorticity 

perpendicular to flow 

• Toroidal kinetic energy terms in Bernoulli 

    equations have opposite signs in the two solns. 

• Unlike rigid toroidal flow, relaxed fluid does 

not in general satisfy ideal Ohm’s Law 

solvability condition ∇ × v × B = 0. 



Open questions 

• Are there steady 3-D MRxMHD solution 

that satisfy ∇ × v × B = 0? 

• Can fluid relaxation be related to inverse 

cascade theory? 

• Do adjacent non-axisymmetric layers with 

different mean velocities necessarily 

exchange angular momentum or is there a 

d’Alembert’s paradox? — Do non-

axisymmetric steady flow equilibria exist in 

general, or only oscillatory solutions? 
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Starting equation:  

 

𝛻 × 𝒖 = 0 (Vorticity-free) 

𝜌 = 𝜌0𝑒
−𝑢2/2𝜏 (Bernoulli relationship) 

𝛻 ⋅ 𝜌𝒖 = 0 (Continuity)  

 

We get that 

𝛻 ⋅ 𝑒−
𝑢2

2𝜏 𝛻𝑓 + 𝑽0 = 0, ∗ 
 

where 𝑓 is a single valued per function 

and 

𝒖 = 𝛻𝑓 + 𝑽0 = 𝛻𝑓 + 𝜓𝑡𝑉𝛻𝜃 + 𝜓𝑝𝑉𝛻𝜉. 

 

This ensures that the toroidal and 

poloidal loop integral  𝒖 ⋅ 𝒅𝒍 equal to 

𝜓𝑡𝑉 and 𝜓𝑝𝑉, the toroidal and poloidal 

vorticity flux, respectively. 

Using the Chebyshev-Fourier reps in 

SPEC, writing 𝑓 into  

𝑓 = 𝑓𝑒,𝑖𝑇𝑙,𝑖 𝑠 sin(𝑚𝑖𝜃 − 𝑛𝑖𝜉) ,

𝑖,𝑙

 

casting the equation * into matrix 

form 

𝐴(𝒇𝑛−1) ⋅ 𝒇𝑛 = 𝐵(𝒇𝑛−𝟏) ⋅
𝜓𝑡𝑉
𝜓𝑝𝑉
, 

 

in which matrix 𝐴 and 𝐵 depend on 𝑓 
due to the Boltzmann exponential 

factor, and are calculated iteratively 

by taking the last solution of 𝑓 until 

converged.  

 

The boundary condition is 

𝒖 ⋅ 𝒏 = 𝑢𝑠 = 0. 

Force Balance: [[𝑝0𝑒
−
𝑢2

2𝜏 +
1

2
𝐵2]] = 0 

Preliminary SPECF implementation I 
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Case1: Axisymmetric test case (this is some random geometry…) 

If 𝛽 is low ~𝑟2/𝑅2, the exponential factor to pressure does not influence force balance 

So we need high 𝛽~𝑟/𝑅 (in our case 𝛽~1/3) 
Constrain rotational transform (Helicity is not avaliable currently) 

No flow Toroidal flow 
Max Mach2 ~ 0.7 

Poloidal flow 
Max Mach2 ~ 0.7 

Force 

balance 

not much 

changed 

Force 

balance  

changed 

I know I need to add 

many interfaces to match 

Michael’s solution… 

No flow at core because illly defined vorticity flux 

Flow faster in 

narrower region 𝒖~𝟏/𝑹 

Preliminary SPECF implementation 2 
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Case 2: Reverse field pinches, single helical axis (SHAx) 

Very small beta, flow plays no role in force balance 

No flow Toroidal flow 
Max Mach2 ~ 0.7 

Poloidal flow 
Max Mach2 ~ 0.7 

Preliminary SPECF implementation 3 
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Case 3: Stellerator test case (toroidal periodicity = 5) 

Note: zero 𝛽 case 

No viscosity is used. There is d‘Alembert's paradox in our case.  

One need to consider interface as a boundary layer (not finished). 

But regardless of the lack of boundary layer, we get solutions. 

Field 

Poincaré 

Poloidal 

flow only 

𝒖 2 plot 

Toroidal 

flow only 

𝒖 2 plot 

Preliminary SPECF implementation 4 
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Conclusion 

• Have shown that MRxMHD is compatible 

with ideal MHD for axisymmetric toroidal flow 

equilibria 

• Have found that the most general non-

axisymmetric “relaxed Euler flow” equilibria 

cannot reduce to the axisymmetric toroidal 

flow equilibria 

• Have implemented a preliminary version of 

the SPEC code with flow (SPECF) 

• Have enunciated some open questions that 

need to be addressed 



Abstract 
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kinetic energy – MHD potential energy + 
Lagrange multiplier constraint terms: 

• MHD Lagrangian density in region i 
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• Constrained Lagrangian in region i 

• Helicity and entropy macroscopic invariants 

Derived from MRxMHD Lagrangian 


