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Plan of talk

Desiderata: Simple MHD model that can
reduce to ideal MHD when appropriate but
allows reconnection when not

Dynamical MRxXMHD: Force-free magnetic
flelde=Euler fluid in each relaxation region

Contrast 2 cases: Laminar flow (axisymmetry);
Chaotic streamlines (non-axisymmetry)

Preliminary numerical implementation
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Basic ideas
d Confinement is maintained by thin transport barriers
(interfaces) [';; dividing the plasma into toroidal sub-regions Q;

4 Force balance across interfaces [I';; allows stepped pressure

& flow proiiles d Within the sub-regions Q,, use force-free

T ‘\‘:‘\k\\\\“m 4 magnetic fields, so no jXB force — field
| i

i “\\\H\I\H““F" ™Y and fluid are decoupled
(’\i_ﬁ' S=2" 0 Scope of applicability
Interfaces may be separ- » “smart finite element” discretization for ideal-
atrices of magnetic islands / MHD 2D equilibrium calculations (incl. flow)

Kelvin’s cat’s eyes in fluid _ o
» new, quasi-relaxed, MHD allowing islands &

chaos in 3D equilibrium and dynamics
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MRxMHD: M stands for Multi-region (aka waterbag)
RXx stands for Relaxed; ..D stands for Dynamics

dFull ideal-MHD constraints apply only within the interfaces [

d Within the sub-regions Q, use generalized Taylor relaxation
theory — relax nearly all the ideal-MHD constraints except for
conservation of macroscopic magnetic helicity, entropy, and
microscopic mass

1 Cross-helicity not constrained, so fluid and magnetic field
couple only at interfaces, which are current/vortex sheets

 Generalize minimum energy equilibrium approach by instead
extremizing the MHD action (Hamilton’s Principle)

 Detalls in Dewar et al 2015
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Euler-Lagrange Equations within Q.

« Mass conservation (microscopic constraint)

dp
8t__v( v)

* Op © Isothermal equation of state
p=mp (NB.1,=C%)
 OA © Beltrami equation
VxB =B (N.B. = jxB=0)
« { © Momentum equation (Euler fluid)

p(@a_v + v Vv> = —Vp
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Piecewise-constant vorticity w = V X v:
w; = 20,e; & v =0;Rey = w; X V= —20Rep= —Vv§

* Check Ideal Ohm’s Law solvability condition for ®:

—q.Rr(v-B-128¢\o —
Vx (vxB) = QR(V-B-17t)e, =0 vOV
So rigid-body flow is compatible with ideal MHD for any axi-

symmetric B, including MRxMHD's force-free Beltrami field!

« Steady toroidal Euler flow momentum equation:

v p
wxv+V<—¢+ln—> =0
2 Po
2
« Gives Bernoulli equation _v7¢ + lnpﬁ = 0: In agreement
0

with, e.g., McClements & Hole 2010’s ideal MHD result.
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Static solution of Compressible Euler
Fluid egs In arb. Q (Sato & Dewar arxiv):

« Dot momentum equation pv-Vv = —7Vp
with v /p and integrate to give Bernoulli
: 9 -
equation v~ /2 + 71In(p/pg) = const
on each flow line.

* Only solution valid for arbitrarily chaotic flow
within Q is (with suitable choice of global
constant Po) P = Po exp(—v?/27)

» Glves nonlinear Beltrami equation:

V XV = agexp(—v?/27)v
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» Relaxed (Beltrami) fluid solution: vorticity
parallel to flow

* Rigid toroidal flow solution: vorticity
perpendicular to flow

« Toroidal kinetic energy terms in Bernoulli
eguations have opposite signs in the two solns.

 Unlike rigid toroidal flow, relaxed fluid does
not in general satisfy ideal Ohm’s Law
solvability condition V x (v x B) = 0.



Australian

«=0 Nend - OQpen questions

* Are there steady 3-D MRxMHD solution
that satisfy VX (vx B) = 07?

e Can fluid relaxation be related to inverse
cascade theory?

* Do adjacent non-axisymmetric layers with
different mean velocities necessarily
exchange angular momentum or Is there a
d'Alembert’s paradox? — Do non-
axisymmetric steady flow equilibria exist in
general, or only oscillatory solutions?
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Preliminary SPECF implementation |

Starting equation:

V xu = 0 (Vorticity-free)
p = poe~*'/2% (Bernoulli relationship)
V- pu = 0 (ConthIty)

We get that

2

u
V. B_E(Vf + Vo) = O, *

where f is a single valued per function
and
u= Vf + VO = Vf +l/JthH +l/Jva€

This ensures that the toroidal and
poloidal loop integral ¢ u - dl equal to

Yy and Yy, the toroidal and poloidal
vorticity flux, respectively.

2

Using the Chebyshev-Fourier reps in
SPEC, writing f into

= foiTis(s) sin(m0 - n;g),
il

casting the equation * into matrix
form

Au) fr = Bnn) - (3.

in which matrix A and B depend on f
due to the Boltzmann exponential
factor, and are calculated iteratively
by taking the last solution of f until
converged.

The boundary condition is
u-n=u;=0.

Force Balance: [[pye 2t + %BZ]] =0
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Casel: Axisymmetric test case (this is some random geometry...)

If B is low ~r2/R?, the exponential factor to pressure does not influence force balance
So we need high g~r/R (in our case f~1/3)

Constrain rotational transform (Helicity is not avaliable currently)

No flow Toroidal flow Poloidal flow
Max Mach? ~ 0.7 Max Mach? ~ 0.7
03 Force 03 Force
02 balance 02 balance
0.1 not much 01 Changed
o N changed| ~ °
0.2 -0.1 -0.1
0.1 -0.2 -0.2
N 0 -0,3L : ‘ -0.3 OV 3 a in

P 0.6 0.8

1 » 1:2 1.4 .
rarrower region
-0. Lu” —07
02 07 03}
-0.3

0.2

0.6 0.8 1 1.2 1.4

R 0.1+

| know | need to add
many interfaces to match
Michael’s solution...

-0.1 ¢

-0.2¢

-0.3 7

07 08 09 { : 07 08 0. 1 11 12 13 14

No flow at core because illly defined v5rticity il x
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Case 2: Reverse field pinches, single helical axis (SHAX)
Very small beta, flow plays no role in force balance

No flow Toroidal flow Poloidal flow
Max Mach? ~ 0.7 Max Mach? ~ 0.7

2
Jul Jul?
04+ 07
03F 0.6
02+
05
01}
04
N O0F
01Ff %
02F 0.2
03+ 01
ik
0
16 1.8 2 22 24
R
2
Ju]
04} 0.7
03} 0.6
02+
05
01}
04
N O0f
01+ 03
021} 0.2
03+
0.1
041
0
16 18 2 22 24
R
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Case 3: Stellerator test case (toroidal periodicity = 5)

Note: zero f case

No viscosity is used. There is d‘Alembert's paradox in our case.
One need to consider interface as a boundary layer (not finished).
But regardless of the lack of boundary layer, we get solutions.

Field
Poincaré

Poloidal
flow only
|u|? plot

Toroidal
flow only
|u|? plot
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« Have shown that MRxMHD Is compatible
with ideal MHD for axisymmetric toroidal flow
equilibria

« Have found that the most general non-
axisymmetric “relaxed Euler flow” equilibria

cannot reduce to the axisymmetric toroidal
flow equilibria

* Have implemented a preliminary version of
the SPEC code with flow (SPECF)

 Have enunciated some open questions that
need to be addressed

14
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Abstract

Multiregion Relaxed MHD toroidal states with flow
R.L. Dewar,' Z.S. Qu,' N. Sato,? S.R. Hudson,®> M.J. Hole'
'"Mathematical Sciences Institute, The Australian National University, Canberra
2Research Institute for Mathematical Sciences, Kyoto University, Japan
3Princeton Plasma Physics Laboratory, USA
*e-mail: robert.dewar@anu.edu.au

The action-based formulation' of Multiregion Relaxed MHD (MRxMHD) encompasses
both steady-flow statics, and dynamics on a slower timescale than Taylor relaxation. We
consider the case of a toroidal plasma laminated into multiple nested annular toroidal
relaxation regions, separated by interfaces supporting current sheets. Unlike ideal MHD,
Taylor relaxation allows reconnection at resonant surfaces to occur within these regions.
However, the physical applicability of the model depends on the interfaces between them
being ideal, i.e. stable against reconnection for times much longer than the relaxation
timescale.

It has been postulated? that plasma flow may stabilize such current sheets even if they
occur on surfaces that resonate with boundary perturbations in 3D geometries such as
stellarators, or tokamaks with resonant magnetic perturbation (RMP) coils. This motivates
the extension, now under development, of the 3D-MRxMHD-based equilibrium code SPEC?
to allow plasma flow with reasonably general flow profiles. However, it is not clear* that
stationary 3D states with other than rigid-rotation flow exist, motivating development of a
3D MRxMHD initial value code to model oscillatory states and nonlinear instabilities.

The formulation of Ref. 1 describes the plasma in each region as an ideal Euler fluid,
which is too general for practical purposes as it allows all the turbulent complexity of such
a fluid. This motivates developing a Taylor-like relaxation model® for fluids, based on
minimizing total energy with constant mass, entropy and fluid helicity (or, equivalently,
minimizing fluid helicity at constant mass, entropy and energy). This leads to a compressible
Beltrami equation, V X v = ayexp (—v?/21)Vv, where a, and T are constant in each region,
7 being the square of the isothermal sound speed in that region. The simplest case is oy = 0,
i.e. the flow has zero vorticity, but, because our relaxation regions are not simply connected,
non-trivial rotation profiles can still be treated.
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kinetic energy — MHD potential energy +
Lagrange multiplier constraint terms:

« MHD Lagrangian density in region |
MHD _ v’ p 3_2

NN

« Constrained Lagrangian in region |

Q;

« Helicity and entropy macroscopic invariants

K, = / S; = / P In <m£> dV
2110 Q, 7 —1 pY
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