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Abstract. The critical component of a collaborative project [1] between The
Australian National University (ANU) and Princeton Plasma Physics Laboratory
(PPPL) on constructing 3-D MHD equilibria, in a way fully compatible with the
existence of chaotic magnetic fields, is establishing the existence and stability of
good magnetic surfaces with irrational rotational transform that can sustain a
pressure jump. Physically, these would form electron transport barriers. The
existence of surfaces that satisfy force balance is quite well established [2] and
numerical implementations have already been done to confirm their existence.
However, the question of stability to displacements of the interface still has to be
investigated. It is of particular interest to study how high-n MHD stability relates
to the chaos theory limitations on existence [2]. In this project we adapt a theory
developed by Bernstein et al [4] for high-n MHD stability at an interface between a
vacuum magnetic field and a field-free plasma to the problem of general fields. We
study in particular the stability at the interface in the case close to zero magnetic
shear. We found a simple sufficient condition for high-n interface stability to
surface displacement: the interface is stable if all points of zero magnetic shear
have favorable curvature. We complete the theoretical approach by implementing
the results obtained on a test case.
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1. Introduction


The beginning of the 21st century is characterized by a strong increase in world


energy consumption, by fear of a new petrol crisis and by a growing preoccupation


with human influence on climate. All these elements induce an environment


extremely favorable for the development of new renewable energies. There is, in


particular, a big hope placed in nuclear fusion. It is expected to become one of the


main energy sources in the future.


The principle of the nuclear fusion reactors is to confine a plasma, i.e. a


quasineutral ionized gas, and to extract energy out of it. Two main types of machines


using toroidal magnetic field were conceived to achieve this objective : tokamaks and


stellarators.


A tokamak is a device that uses strong magnetic fields to confine the plasma.


It has an axisymmetric toroidal shape, as shown on figure 1. In a tokamak, the


magnetic field lines move around the torus in a helical fashion. This helical field is


generated by both a toroidal field (produced by electromagnets that surround the


torus) and a poloidal field (which results from a toroidal electric current that flows


inside the plasma). The plasma injected in such a reactor is generally made of a


mix of deuterium and tritium ions. The critical part of the concept is to manage to


gain energy by making these nuclei fuse.


The second most important type of fusion reactor, the stellarator, also uses


strong magnetic fields to confine the plasma. But this device differs from the


tokamak in the fact that there is no current driven through the plasma itself.


Furthermore, the stellarators are not azimuthally symmetric. As can be seen in


figure 4, their magnetic coils must have a more complex shape than that of the


tokamak, as they need to make the field lines helical.


A lot of interest and a lot of hope are placed in the new experimental devices,


such as the tokamak ITER (International Thermonuclear Experimental Reactor),


being constructed at the moment in France. But research still has a long way to


go before being able to construct a reactor that can produce electric energy at a


competitive price.


In parallel to the experimental research, theoreticians are very active to try


to understand the complex physics of plasma confinement. An important fraction


of the efforts of the theoreticians is, at the moment, concentrated on the study


of magnetohydrodynamic stability. Magnetohydrodynamic is a discipline that


describes the behaviour of an electrically conducting fluid in the presence of an


electromagnetic field. It is a theory of great interest in a lot of different fields like


the study of sunspots, terrestrial magnetism, gas discharges, auroras and interstellar


matter.
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Figure 1: Fusion device (tokamak) with A: the divertor B: the heating


system, C: the combustible supply, D: the vessel surrounded by the


magnetic coils, E: the lithium blanket, F: the electricity production [36]


In this work, we study three-dimensional MHD equilibria in a way fully


compatible with the existence of chaotic magnetic fields. We investigate the existence


and stability of good magnetic surfaces with irrational rotational transform1 that can


sustain a pressure jump. Physically, these would form electron transport barriers.


The existence of surfaces that satisfy force balance is quite well established [2].


However, the question of the stability to displacements of a 3D interface has not


previously been addressed (except for Bernstein et al [4] special case of β = ∞
sharp boundary).


In this paper, we first introduce the theoretical background necessary to


understand the problem. Section 2 gives a non-exhaustive overview of the studies


done so far on the stability at the interface in a multi-region plasma with a


discontinuous pressure profile. We compute the first and second variations of the


1the rotational transform is the number of poloidal transits (p) divided by the mean number of
toroidal transits (q) of a field line on a toroidal flux surface.
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Figure 2: Top : the complex coils of the stellarator W7X. Bottom: a


view inside the Japanese Large Helical Device (LHD)[37]


energy while applying a displacement in subsection 2.3 and present in details the


stability of pressure jump surface to short-wavelength modes in section 3. We


then focus on the stability at zero magnetic shear in sections 4 - 6 and finish by


implementing the results on a test case in 7.
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2. Theoretical review


2.1. Toroidal plasma equilibrium in 3 dimensions


A good way of modeling toroidal fusion plasma steady state [35] is to consider the


three following equations, in SI units:


∇p = J ×B (1)


∇×B = µ0J (2)


∇ ·B = 0 (3)


where the first one represents the force balance for the total pressure p, the second


is Ampère’s law and the third one is the Gauss’s law for magnetism. There are 2


main problems that arise in a 3D equilibrium:


• Magnetic islands form on rational flux surface. The field is chaotic around


magnetic islands and ergodically fills island separatrix region. Fortunately, not


all flux surfaces are destroyed.


• 3-dimensional equilibria have current singularities if ∇p 6= 0


In the present approach, the 3D MHD solvers are built on the premise that the


volume is foliated with toroidal magnetic flux surfaces (VMEC [31]), or adapt the


magnetic grid to compensate for proximity to low order rational surfaces (PIES [32]).


Unfortunately, these solvers cannot rigorously solve ideal MHD and the error usually


manifests as a lack of convergence [33]-[34]. Indeed, all experimentally realizable


devices encounter symmetry-breaking perturbations and it has been shown [9] that


the magnetic field lines are chaotic in a 3-dimensional device such as a tokamak or a


stellarator. In this paper we thus try to develop a theory that is structurally stable


against these symmetry-breaking perturbations.


2.2. Ideal and relaxed MHD multi-region plasma


Let us first recall here an important result of the Kolmogorov, Arnold and Moser


(KAM) theorem [11]. This theorem predicts that, in the case of symmetry-breaking


perturbations of the magnetic field, flux surfaces with a sufficiently irrational


rotational transform can exist.


Let us focus now on a self-consistent MHD equilibrium. In this case, it is


convenient to consider an equilibrium consisting of regions in which the magnetic


field is completely chaotic. These regions are separated by perfect flux surfaces, the


KAM barriers or interfaces (see figure 3).







2.2 Ideal and relaxed MHD multi-region plasma 7


Figure 3: Nested plasma regions, Pi, separated by N toroidal interfaces,


Ii, and a fixed wall IN+1, for the case N = 3. [8]


As stated before, the flux surfaces form only at irrational rotational transform.


We consider a configuration where the pressure gradient ∇p is equal to zero


everywhere in the plasma, except for the interfaces with irrational rotational


transform where a pressure difference can be supported. This implies that we obtain


a step function for the pressure profile [7] where the pressure and rotational transform


steps are positioned at flux surface interfaces.


In regions of constant pressure, the magnetic field can be described using the


Beltrami equation


µB =∇×B (4)


Which implies that the relation


J ×B = 0 (5)


is verified if and only if we consider a force free field. If we now apply the divergence


operator on both sides of equation 4, we notice that the right-hand side vanishes


∇µ ·B + µ∇ ·B =∇ ·∇×B = 0 (6)


Using Maxwell’s equation


∇ ·B = 0 (7)
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we see that ∇µ = 0 and thus µ is constant on a field line. The only solution in an


ergodic region is thus µ = const everywhere. It can also be a particular solution


when B is not ergodic (NB: 3-dimensional effects cause chaotic regions even without


turbulence).


In the Multi-region stepped-pressure-profile model, we obtain Beltrami


magnetic fields in every region, with different µi values in each of them. The Beltrami


equation is also used by Taylor [12] arising from his relaxed-MHD variational


principle for equilibrium of plasmas that undergo a strongly turbulent phase.


Taylor [12] looked at the relaxation of a plasma that has passed through a phase


of strong global overlap of magnetic islands. This overlap of magnetic islands then


leads the system to a minimum energy state [17], induced by tearing modes.


Taylor’s model was first developed to study strongly turbulent reversed field


pinches. But tokamak and stellarator are much more quiescent systems than the


reversed field pinches. In these two devices, global island overlap does not occur.


The relaxation is thus, at worst, local. When the rotational transform is strongly


irrational, island overlap is suppressed and these regions act as robust ideal MHD


barriers between the Taylor relaxed states. This leads to the expected equilibria


with stepped pressure profile. The pressure jump across the barrier interfaces is


counterbalanced by the corresponding magnetic field jumps, which may or may not


include jumps in rotational transform.


Taylor’s studies show that the main consequence of any small departure from


perfect conductivity is that topological properties of the magnetic field are no longer


preserved. As a consequence, lines of force may break and coalesce. He showed that


during the violent phase of the diffuse pinch, resistivity, microturbulence, inertia


or some other departure from perfect conductivity generate a relaxation of the


topological constraints. Taylor describes the evolution of a magnetic field in a


conducting fluid in a toroidal vessel, in a situation when the resistivity and viscosity


are supposed to be small.


The turbulence, allied with small resistivity, allows the plasma to access to


a particular minimum energy state in a time very short compared with the usual


resistive diffusion time. This is this process that is called plasma relaxation. The


system relaxes to the state of lowest energy compatible with the conservation of the


total magnetic helicity. The total toroidal magnetic flux should also be conserved.


The wall that encircles the plasma is considered as a magnetic surface too. This


allows us to use the Beltrami equation for the vacuum as well. The relaxation process


involves the reconnection of magnetic field lines. This is an interesting example of


the self-organization of a plasma. This relaxation process can be observed in many


different laboratory systems and even in astrophysical plasma [12].


As we have mentioned before, a small departure from perfect conductivity can







2.2 Ideal and relaxed MHD multi-region plasma 9


make the lines of force break and coalesce. It means that the integral of the scalar


product between the magnetic field and the magnetic vector potential
∫
A ·B is not


invariant for each line of force. Note that here we have used the vector potential A


defined by


B =∇×A (8)


whereA is assume to be a differentiable and single-valued function of position. Even


if
∫
A · B is not invariant for each line of force, the changes in the field topology


are only accompanied by very small changes in the field itself. The integral
∫
A ·B


over all the field lines will be almost unchanged as long as departures from perfect


conductivity are small and that is why
∫
A ·B can be taken as a good invariant on


the total volume, even if it is varying on each flux tube [20].


As the plasma is assumed to have a high conductivity, both the temperature


and the density are required to be high [16]. But this assumption is in contradiction


with the cooling by the wall, and this effect is worsened by the drainage along the


magnetic field lines leading to the wall. Unfortunately, such field lines are always


present because the assumption that the wall is a magnetic surface cannot totally


be met in real experiments.


Further research on the use of RXMHD (Relaxed Magnetohydrodynamics) to


model plasmas with magnetic-field-line chaos were undertaken in the last years.


Hole et al [7] already considered a periodic cylindrical model in which nested flux


surfaces exist everywhere. They show that analytic solutions for the magnetic field


can be computed when the pressure is constant. They used a variational treatment


to construct equilibrium solutions and confirmed previous results from Kaiser and


Uecker [13]: stable plasmas can exist in the case of a single-interface configuration if


there is a jump in the rotational transform at the plasma-vacuum interface. This can


be shown analytically for large n. Hole et al compared the stability of a pressureless


plasma with only one interface to a plasma with two interfaces in the limit when


the two interfaces became arbitrarily close one to the other. Both plasmas have the


same net jump in the rotational transform. Hole et al found that the two-interface


plasma was unstable even when the single-interface plasma was not. Since the single


interface models a physical barrier of finite thickness (modelled by the two ι barriers),


this suggests that rotational transform jumps should be avoided.


Another point worth being mentioned is that, in the model, the current density


must be infinite at any interface where there is a pressure jump. But this is


unphysical in a real plasma. Mills et al [6] argued that this paradox is due to the


assumption of a relaxed-MHD region between the coalescing interfaces, which allows


a tearing instability to occur. The single-interface configuration case can instead be


compared to a plasma containing a thin but finite ideal region, with constraints on
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Figure 4: Nested plasma regions, Pi, separated by N toroidal interfaces,


Ii, and a fixed wall IN+1, for the case N = 3. [39]


the helicity of every field line. Mills et al [6] tried to remove the singularity in the


current density by considering the pressure and magnetic field to vary continuously


between the values on each side of the interface. They showed that if the interface


is resolved as an ideal region of non-zero width, the rotational transform profile ι(r)


may pass through ideal resonances. The stability analysis must thus consider the


structure of the pressure profile in the barrier in the limit that it is spatially resolved.


2.3. RXMHD multi-interfaces plasmas: first and second energy variation


We consider a MHD model of an N -interface plasma as presented on figure 3. Our


system comprises N nested plasma regions surrounded by a vacuum region and


enclosed by a perfectly conducting wall. We denote Pi the different plasma regions,


and V the vacuum region. Each plasma region Pi is encased by the interface Ii.


The perfectly conducting wall W surrounds the vacuum region. The interface is a


magnetic surface and the magnetic fluxes through any loops in I or W are conserved.


We utilize a variational approach to study the equilibrium and investigate


stability. The potential energy (the sum of the thermal and the magnetic energy) of


an N -region plasma, where each region is described by either ideal or relaxed MHD,


can be written as


Utot =
N∑
i=1


(
Ui +


∫
Pi


B ·B
2µ0


dτ 3


)
+


∫
V


B ·B
2µ0


dτ 3 (9)


with


Ui =


∫
Pi


pi
γ − 1


dτ 3 (10)
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In MRXMHD (multi-region relaxed MHD), the interface Ii is assumed to be


impermeable to the heat and mass fluxes. All variations are also considered to be


slow compared with relaxation timescales. The mass and the entropy are conserved


within a plasma region with constant pressure pi. The potential Energy Utot has to


be minimized under two different constraints: the ideal gas law:


piV
γ
i = const (11)


and the magnetic helicity constraint:


HPi =
1


2µ0


∫
Pi


A ·Bdτ 3 = const (12)


The mass-entropy [1] (ideal gas) conservation constraint can be expressed in the


following way [13]


Mi =


∫
Pi


d3τp
1/γ
i const (13)


This identity is obtained from the relation for an isentropic gas


S =
pi
ργ


= const (14)


where ρ denotes the mass density.


Let us now consider the 2 following conditions that hold at a fluid interface.


n× JEK = n · v JBK (15)


n · JBK = 0 (16)


where E is the electric field, B the magnetic field, v the fluid velocity, n the outward


pointing unit normal vector and where JXK := X
∣∣∣
Pi+1


− X
∣∣∣
Pi


denotes the jump of


a quantity X across Ii. We use the two equations 15-16 and introduce the vector


potential A


E =
∂A


∂t
(17)


B =∇×A (18)


We then introduce the perturbing magnetic field b


b =∇× (ξ ×B) (19)


in P , which can be represented by


b =∇× a (20)


in V, where a is the perturbed vector potential. Comparing 19 and 20, we notice


that we can make the gauge choice


a = ξ ×B (21)
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This choice, called the “Newcomb gauge” in Mills et al [6], was shown to


be appropriate in both ideal and relaxed MHD, the only difference being the


continuation through a mode rational surface. Note that in this paper, the


equilibrium quantities are written using capital letters while the perturbations are


given by lower case letters. The boundary conditions are then given by


n× a± + ξB± = 0 (22)


In the previous expression, we used the displacement vector ξ which is determined


by


r = r0 + ξ (23)


where r is the location of the fluid element at time t, r0 the initial location of the


fluid element and we define ξ as


ξ = ξ · n (24)


Let us now cross equation 22 with the normal vector n. We obtain


n× (n× a±) + ξn×B± = 0 (25)


which gives the relation


−[a± − n(n · a±)] + ξn×B± = 0 (26)


and thus


−a±tgt = ξn×B± (27)


We then follow Spies et al [16] and introduce the functional


W =
N∑
i=1


MPi +MV −
1


2


N∑
i=1


µiHPi (28)


where HPi is the helicity and µi are Lagrangian multipliers. The terms MPi and MV


are given by


MPi =


∫
Pi


d3τ
1


2
|∇×A|2 (29)


MV =


∫
V


d3τ
1


2
|∇×A|2 (30)


The constraint of fixed helicity HPi is observed by varying W instead of Utot. Note


that we only consider the magnetic energy and not the thermal energy for the


variational approach. We expand W [5] to second order in perturbations from its


equilibrium value:


W = W0 + δW +
1


2
δ2W (31)
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δW is the first variation, linear in the perturbation, and δ2W the second variation,


quadratic in the perturbation. The system is in equilibrium if δW = 0 for every


possible displacement of the plasma. Furthermore, the plasma is stable if the second


variation δ2W is positive for every displacement.


Since we are interested in the stability at the interface, we need to compute


δ2W . We first consider the variation of MPi and use the property


δ


∫
Pi


d3τX =


∫
Pi


d3τδX +


∫
Ii


d2σ(n · ξ)X (32)


in equation 29. We thus obtain


δMPi =


∫
Pi


d3τB · (∇× a) +
1


2


∫
Ii


d2σ(n · ξ)B2
Pi


− 1


2


∫
Ii−1


d2σ(n · ξ)B2
Pi−1


(33)


We then make use of the identity [16]∫
Pi


d3τB · (∇× a)− a · (∇×B)


=


∫
Ii


d2σn · (a×B)−
∫
Ii−1


d2σn · (a×B)


and considering the boundary conditions 22, we get


δMPi =


∫
Pi


d3τa · (∇×B)− 1


2


∫
Ii


d2σ(n · ξ)B2
Pi


+
1


2


∫
Ii−1


d2σ(n · ξ)B2
Pi−1


(34)


Similarly, we find, for the vacuum


δMV =


∫
V


d3τa · (∇×B) +
1


2


∫
IN


d2σ(n · ξ)B2
V (35)


The helicity variation is obtained following the same method [16]:


δHPi = 2


∫
Pi


d3τa ·B +


∫
Ii


d2σ(n×APi) · (−aPi + ξ ×BPi)


−
∫
Ii−1


d2σ(n×APi−1
) · (−aPi−1


+ ξ ×BPi−1
) (36)


The second and third term on the right-hand side of the equation vanish because of


the boundary condition 22, and we are left with


δHPi = 2


∫
Pi


d3τa ·B (37)
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Putting everything together, we get


δW =
N∑
i=1


(δWPi + δWIi) + δWV (38)


where


δWPi =


∫
Pi


d3τa · (∇×B − µB) (39)


δWV =


∫
V


d3τa · (∇×B) (40)


And where, at the interface,


δWIi =


∫
Ii


d2σ · [(B2
Pi+1
−B2


Pi
)ξ] (41)


for i = 1, 2, ..., N − 1 and


δWIi =


∫
Ii


d2σ · [(B2
V −B2


Pi
)ξ] (42)


for i equal to N . Now, if we set the first variation of the energy functional to zero,


we obtain the following system of equations [5]


∇×B = µB in Pi (43)


P = const in Pi (44)


∇×B = 0 in V (45)


∇ ·B = 0 in V (46)


n ·B = 0 on Ii (47)
s
P +


B2


2


{
= 0 on Ii (48)


n ·B = 0 on W (49)


Pi+1 is replaced by the vacuum for i = N . The boundary conditions n ·B = 0 on Ii
and W are due to the flux constraints with respect to shrinkable loops in Ii and W .


The toroidal fluxes Ψ
(t)
Pi


and Ψ
(t)
V in Pi and V and the poloidal flux Ψ


(p)
V are fixed in


non-shrinkable loops:


Ψ
(t)
Pi


= const (50)


Ψ
(t)
V = const (51)


Ψ
(p)
V = const (52)


The system 43-49 constitutes a free-boundary problem for the determination of the


relaxed state B at the interface Ii.
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We can now derive the second variation of the energy, in the case where δW = 0.


Again, we use the property 32 to get [16]:


δ2WPi =


∫
Pi


d3τδ[a · (∇×B − µB)]


+


∫
Ii


d2σ(n · ξ)[a · (∇×B − µB)]


−
∫
Ii−1


d2σ(n · ξ)[a · (∇×B − µB)] (53)


using the equilibrium equation, the second and the third term vanish and we are left


with


δ2WPi =


∫
Pi


d3τa · δ(∇×B − µB) (54)


Rewriting δB as


δB = b =∇× a (55)


We obtain


δ2WPi =


∫
Pi


d3τa · [∇× (∇× a)− µ(∇× a)] (56)


Note that here we followed Spies et al ’s [16] derivation where δµ is considered as


neglectable. We then use the identity∫
Pi


d3τ
[
a ·∇× (∇× a)− |∇× a|2


]
=


∫
Ii


d2σ(a× n) ·∇× a−
∫
Ii−1


d2σ(a× n) ·∇× a (57)


Employing the boundary condition n× a+ (n · ξ)B = 0 on the right hand side of


the previous equation, we get∫
Pi


d3τ
[
a ·∇× (∇× a)− |∇× a|2


]
=


∫
Ii


d2σ(n · ξ)B ·∇× a−
∫
Ii−1


d2σ(n · ξ)B ·∇× a (58)


Using this in 56 leads to


δ2WPi =


∫
Pi


d3τ
[
|∇× a|2 − µa · (∇× a)


]
+


∫
Ii


d2σ(n · ξ)B ·∇× a−
∫
Ii−1


d2σ(n · ξ)B ·∇× a (59)


Using the same method, we get, for the vacuum region:


δ2WV =


∫
V


d3τ |∇× a|2 −
∫
IN


d2σ(n · ξ)BV ·∇× aV (60)
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We then resort to the property


δ


∫
S


d2σ ·X =


∫
S


d2σ · (δX + ξ∇ ·X) (61)


And obtain the variation of the surface term:


δ2WIi =
1


2


∫
Ii


d2σ · {δ[(B2
Pi+1
−B2


Pi
)ξ] + ξ(∇ · [(B2


Pi+1
−B2


Pi
)ξ])} (62)


Pi+1 is replaced by V for i = N , here and in the following expression. Using the


equilibrium equations, we are left with


δ2WIi =
1


2


∫
Ii


d2σ(n · ξ)[δ(B2
Pi+1
−B2


Pi
) + ξ ·∇(B2


Pi+1
−B2


Pi
)] (63)


We then use the two following properties:


ξ ·∇(B2
Pi+1
−B2


Pi
) = 2(n · ξ)B Jn ·∇BK (64)


and


δ(B2
Pi+1
−B2


Pi
) = 2 JB · (∇× a)K (65)


We replace them into 63 to obtain


δ2WIi =


∫
Ii


d2σ(n · ξ) JB ·∇× aK + (n · ξ) JBn ·∇BK (66)


The first term cancell out with the second and third terms of expressions 59 and 60.


Thus, the second variation of the energy is finally given by [5]


δ2W =
N∑
i=1


δ2WPi + δ2WIi + δ2WV (67)


with


δ2WPi =


∫
Pi


d3τ [|∇× a|2 − µia∗ · (∇× a)] (68)


δ2WIi =


∫
Ii


d3σ|n · ξ|2 JBn ·∇BK (69)


δ2WV =


∫
V


d3τ |∇× a|2 (70)


where ∗ means the complex conjugation. We are allowed to introduce complex test


functions because the functional 67 remains real. Spies [5] states a necessary and


sufficient condition for stability (δ2W > 0 for all perturbations) as no eigenvalue α


of the problem:


∇× (∇× a) = α(∇× a) in Pi (71)


∇× (∇× a) = 0 in V (72)


n× a = 0 on W (73)


µ JB ·∇× aK + α JBn ·∇BK on Ii (74)


n× aP,V + ξBP,V = 0 on IN (75)
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is between zero and µ.


We then follow Kaiser and Uecker [13] and minimize δ2W with respect to a.


The displacement ξ is kept on the interface and the tangential component of a is


fixed thanks to 75. The Euler-Lagrange equations for a are then


∇× (∇× a) = µ(∇× a) in Pi (76)


∇× (∇× a) = 0 in V (77)


n× a = 0 on W (78)


Now let us come back to equation 68 and try to write it as a surface integral. We


first use the condition


∇× (∇× a) = µ(∇× a) (79)


to get


δ2WPi =


∫
Pi


d3τ(|∇× a|2 − a∗ ·∇× (∇× a)) (80)


Then we resort to the property ([16] equation 51)∫
Pi


d3τ [a∗ ·∇× (∇× a)− |∇× a|2]


=


∫
Ii


d2σ(a∗ × n) · (∇× a) (81)


using the boundary condition


a× n = (ξ · n)B (82)


we get the following expression∫
Pi


d3τ [a∗ ·∇× (∇× a)− |∇× a|2]


=


∫
Ii


d2σ(ξ∗ · n)B · (∇× a) (83)


we can notice that if we replace 83 in 80 we get


δ2WPi = −
∫
Ii


d2σ(ξ∗ · nB) · (∇× a) = −
∫
Ii


d2σξ∗B · b (84)


Which, using


δ2WIi =


∫
Ii


d2σ
q
|n · ξ|2B(n ·∇)B


y
(85)


Gives the following solution at the interface Ii:


δ2W =


∫
Ii


d2σ
q
ξ∗B · b+ |n · ξ|2B(n ·∇)B


y
(86)
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The perturbing magnetic field b = ∇ × a is then determined by a system of five


equations:


∇× b = µb in Pi (87)


∇× b = 0 in V (88)


∇ · b = 0 everywhere (89)


n · b = 0 on W (90)


n · bP,V = BP,V ·∇ξ + ξn ·∇× (n×BP,V ) on Ii (91)


and the flux conditions are given by [13]


Ψ
(t)
Pi


=


∮
Cs


dl · (ξn×BPi
) (92)


Ψ
(t)
V =


∮
Cs


dl · (ξn×BV ) (93)


Ψ
(p)
V =


∮
Cl


dl · (ξn×BV ) (94)


where Cs and Cl are loops in Ii. s denotes the short way around the torus, l the


long way. These two loops are oriented such that n, a vector along Cs and a vector


along Cl form a right handed system. Coming back to equation 85 we can affirm


that the equilibrium is in a relaxed state if∑
i


∫
Ii


d2σ
q
ξ∗B · b+ |ξ|2B(n ·∇)B


y
≥ 0 (95)


for all normal displacement ξ of the interface and corresponding to a magnetic field


b as described in equations 87 to 91.
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3. Stability of pressure jump surface to short-wavelength modes


Let us now use the δ2W expression derived previously in 67 and write the Lagrangian


of our system, considering only the leading order


L =
∑
i


∫
Pi


d3τ
1


2
ρ
∥∥∥ξ̇∥∥∥2


− δ2W (96)


L =
∑
i


∫
Pi


d3τ
1


2
ρω2 ‖ξ‖2 −


∑
i


∫
Pi


d3τ ‖b‖2 (97)


Let us define the displacement ξ as


ξ± = ξ0f±(x, y)eiS±(x,y,z)/ε+iωt (98)


where f , S±, k± ∈ C,2 where ε is an expansion parameter and where the eikonal


function S± is given such that


k± = ∇S± (99)


The labels ± are used to specify which side of the interface is considered. The label


− corresponds to the inner side (side closest to the magnetic axis) while the sign +


corresponds to the outer side (see figure 5). The quantity ξ̂ = ξ0f±(x, y) is assumed


Figure 5: A depiction of a toroidal segment of the surface I [2]


2S is complex because we are interested in surface modes - they are oscillatory disturbances of the
interface which produce field perturbations that decay exponentially away from the surface.
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to vary slowly at the equilibrium length scale. In contrast, the variation of S± is


rapid and thus ‖k‖ /ε >> 1, where we define ‖k‖ the complex norm as


‖k‖ =
√
k∗ · k (100)


The perturbed field potential can be written as3


a± = ξ± ×B± (101)


in “Newcomb gauge” [6]. Furthermore, we have b±


b± =∇× (ξ± ×B±) (102)


Since the variation of S± is rapid, we can write the curl operator using k:


b± =
iξ0k±
ε
× (f± ×B±)eiS±/ε +O(ε0) (103)


And using the property


a× (b× c) = (a · c)b− (a · b)c (104)


we get


b± =
iξ0


ε
(k± ·B±I −B±k±) · f±eiS±/ε +O(ε0) (105)


Multiplying by the complex conjugate, we get the norm


‖b±‖2 =
ξ2


0


ε2
[(k∗± ·B±)f ∗± − (k∗± · f ∗±)B±]


· [(k± ·B±)f± − (k± · f±)B±] +O(ε) (106)


We then use the Beltrami equation for perturbed magnetic potential


∇× (∇× a±) = µ±∇× a± (107)


Again, using the fact that S± is varying fast, we replace the curl operator and obtain


k± × (k± × a±) = O(
1


ε
) (108)


using 105, we get, to leading order


k± × [(k± ·B±)I −B±k±] · f± = 0 (109)


where I is the unity matrix. Writing the previous expression more explicitly, we get


[(k± ·B±)k± × I − (k± ×B±)k±] · f± = 0 (110)


Now let us consider the following expression for k±


k± = ±iδ±ez + ktgt (111)


3Only the normal component ξ · n has a geometrical signifiance - on I, ξ+ · n = ξ− · n = ξ


determines the displacement of the interface. The tangential components ξ±tgt are required to give
b satisfying the Beltrami equation.
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with δ± > 0 and ktgt = kθeθ + kζeζ , k
θ, kζ ∈ R and ez a vector perpendicular to the


surface. We recall that


k± ·B± = ktgt ·B± ∈ R (112)


where we assume that ktgt and B± are not collinear. Written explicitly, the function


f± is given by


f± = f±z ez + f±tgt (113)


f± = f±z ez + f±BB± + f±k ktgt (114)


Using 110,112 and 114, we get the following expression:


[(ktgt ·B±)k± × I − (k± ×B±)k±] · (f±z ez + f±k ktgt) = 0 (115)


We then multiply 115 by B±, and we get


(ktgt ·B±)[B± × (ktgt ± iδez)] · (f±z ez + f±k ktgt) = 0 (116)


Which leads to two different solutions:


ktgt ·B± = 0 (117)


or


(ez ·B± × ktgt) · (f±z + iδ±f
±
k ) = 0 (118)


using the condition that B± and ktgt are not collinear, we are left with


(f±z + iδ±f
±
k ) = 0 (119)


We then start again from 115 but multiply it by ez this time. We obtain


(ktgt ·B±)ez · ktgt × (f±z ez + f±k ktgt)


−ez · ktgt ×B±(ktgt ± iδ±ez) · (f±z ez + f±k ktgt) = 0 (120)


It appears quite clearly that the first term vanishes. Using the condition that B±
and ktgt are not collinear, we are left with only


±iδ±f±z + f±k ‖ktgt‖2 = 0 (121)


We then write 119 and 121 as a matrix(
1 ∓iδ±
±iδ± ‖ktgt‖2


)(
f±z
f±k


)
=


(
0


0


)
(122)


and compute the determinant


det


(
1 ∓iδ±
±iδ± ‖ktgt‖2


)
= 0 (123)


Thus


‖ktgt‖2 − δ2
± = 0 (124)
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And finally


δ± = ‖ktgt‖ (125)


This means that the disturbance dies away exponentially (i.e. is evanescent) as we


move away from the surface on both sides. Replacing this result into 121, we get


f±k = ∓ if±z
‖ktgt‖


(126)


We are free to choose f±B = 0. Then, using 126, we get


f± =


(
ez ∓ i


ktgt


‖ktgt‖


)
f±z = ∓i k±


‖ktgt‖
f±z (127)


Thus we cannot choose ξ+ and ξ− to be the same on both sides, only the components


in the ez direction are similar. We can then write


ξ± = ∓i k±
‖ktgt‖


ξz (128)


where


k± = ktgt ± i ‖ktgt‖ ez (129)


Taking the square of k±, we get


k2
± = 0 (130)


Inserting 128 in 102, we obtain


b± = ±k± × (k± ×B±)


ε ‖ktgt‖
ξz (131)


We then use the property of the double cross product 104 and the fact that k2
± = 0


to find


b± = ∓k±
ktgt


ε ‖ktgt‖
·B±ξz (132)


The norm of b± is given by


b∗± · b± =
k± · k∗±
ε2


∥∥∥∥ ktgt


‖ktgt‖
·B±


∥∥∥∥2


‖ξz‖2 (133)


But


k± · k∗± = ‖ktgt‖2 + ‖ktgt‖2 = 2 ‖ktgt‖2 (134)


Thus we obtain


b∗± · b± = 2
‖ktgt ·B±‖2


ε2
‖ξz‖2 (135)


We then introduce this result into the L expression (equation 97) and get


ρω2 = 4
∑
±


‖ktgt ·B±‖2


ε2
(136)







3 Stability of pressure jump surface to short-wavelength modes 23


Figure 6: Zero magnetic shear schematic representation


which is strictly positive unless we have


ktgt ·B+ = ktgt ·B− = 0 (137)


The property 137 is verified only if B+ is parallel or antiparallel to B− (see figure


6). It shows that pressure-jump surfaces are stable to short-wavelength modes unless


there is at least one point at which the local magnetic shear is zero. Such points must


exist if there is no jump in rotational transform across the surface, i.e. if the global


surface magnetic shear is zero at the pressure-jump interface. Previous studies [6]


showed that zero rotational transform jump is good for internal stability of a finite-


width interface. In the specific case of a cylindrical geometry, if the magnetic shear


is zero at one point on the surface, then the local shear is also zero everywhere on the


surface. This case is thus very similar to that studied by Bernstein et al [4], showing


that a cylinder with a decreasing pressure outwards is unstable to high-n flute modes,


because the curvature is unfavorable everywhere. If the global magnetic shear at


the interface is zero then, in the 2-D, axisymmetric case there will be axisymmetric


circles where the local magnetic shear vanishes. In a general 3-D geometry there will


also be lines on which the local shear vanishes. In both the 2-D and 3-D cases, it is


necessary to extend Bernstein et al [4] analysis. That is, we need to expand around


the line, or point, of zero shear and construct an envelope function that satisfies the


dynamical equations. But before going further, let us consider the δ2W to order ε0


when the local magnetic shear is zero.
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4. Stability at zero magnetic shear: theoretical approach


Let us focus our study on a plasma/plasma interface and start with the δ2W equation


δ2W =


∫
i


d2σ
q
ξ∗B · b+ |ξ|2B(n ·∇)B


y
(138)


where b± is given by


b± =∇× (f± ×B±)ξ0e
iS±/ε (139)


= ξ0e
iS±/ε


ik±
ε
× (f± ×B±) + ξ0e


iS±/ε∇× (f± ×B±) (140)


We are interested in the cases of zero magnetic shear, where B ·b vanishes to highest


order, i.e. when


B · b± = ξ0e
iS±/εB ·∇× (f± ×B±) (141)


δ2W is then given by


δ2W =


∫
i


d2σ
q
ξ2


0(f ∗ · n)B ·∇× (f ×B) + ξ2
0 |f |2B(n ·∇)B


y
(142)


We then follow Bernstein [4] and rewrite the second term of the integral using


B±n ·∇B± = n ·R±
‖B±‖2


R2
±


(143)


with R± the vector from a point on a line of force to the center of curvature field


line. Note that, for a point close to zero magnetic shear, R+ ≈ R−. The second


variation of the energy is then given by


δ2W =


∫
i


d2σ
q
ξ2


0(n · f ∗)B ·∇× (f ×B)
y


+ ‖ξz‖2n ·R‖B+‖2 − ‖B−‖2


R2
(144)


If R is directed toward the plasma, the second term of equation 148 has a


stabilizing contribution if ‖B+‖2 < ‖B−‖2 and an unstabilizing contribution if


‖B+‖2 > ‖B−‖2. On the other hand, if R points away from the plasma, the system


is stabilized by the second term if ‖B+‖2 > ‖B−‖2 and is made more unstable if


‖B+‖2 < ‖B−‖2


In tokamak or stellarator, the toroidal field is stronger than the poloidal field.


The curvature is thus directed approximately towards the Z-axis. The outward


normal n is directed away from the magnetic axis. Thus n·R has different signs : on


the outboard side farthest from the Z-axis the curvature is unfavorable (n ·R < 0).


By contrast, on the inboard side the curvature is favorable (n · R > 0). This is


why ballooning modes, i.e. pressure-driven modes which limit the maximum ratio
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between the plasma pressure and the magnetic pressure [3], are stronger on the


outboard side.


It is common, in plasma physics, to define a field-line curvature vector


κ = e‖ ·∇e‖ (145)


where


e‖ =
B


‖B‖
(146)


It can be proved that κ is perpendicular to B or, in other terms, that


κ ·B = 0 (147)


This is done in Annexe 10.1. δ2W can be written in terms of κ


δ2W =


∫
i


d2σ
q
ξ2


0 |f ∗|B ·∇× (f ×B)
y


+ ‖ξz‖2n · κ(‖B+‖2 − ‖B−‖2) (148)


Where we identify κ as


κ =
R


R2
(149)
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5. Study of the energy variation using Green’s functions


Another approach to the stability problem is to make use of the Green’s function


method. We give below a short résumé of some interesting ideas and present some


new expressions derived. However, deeper investigations and computations still have


to be undertaken.


We start by considering the homogeneous Neumann force-free field problem,


which is given by


∇×B = µB (150)


in the volume P and by


n ·B = 0 (151)


on the surface ∂P . µ is constant. This problem is equivalent to solving the Dirichlet


problem [23] (given here in a cylindrical coordinate system)


∂


∂r


(
1


r


∂


∂r
(rBφ)


)
+
∂2Bφ


∂z
+ µ2Bφ = 0 (152)


on the surface S and with the boundary conditions


1


r


∂


∂r
(rBφ)er +


∂Bφ


∂z
ez = 0 (153)


on the boundary ∂S. The 2 other components of the magnetic field are given by


Br = − 1


µ


∂Bφ


∂z
(154)


and


Bz =
1


µr


∂


∂r
(rBφ) (155)


The boundary condition 153 is equivalent to


rBφ = const (156)


on ∂S. Thus, for each µ, there exist axially symmetric solutions to the problem 151-


152. We can now derive a boundary integral equation for these axially symmetric


solutions. We want this equation to be uniquely solvable for all µ different from a


Dirichlet eigenvalue for the problem 152. We thus make use of the following theorem


[24]: Let


Φ(r, r′) =
1


4π


eiµ|r−r′|


|r − r′|
(157)


be the fundamental solution to the Helmoltz equation in 3 dimensions


∆Φ = µ2Φ (158)
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and let our magnetic field B ∈ C1(P ) ∩ C(P ) with ∇ ·B ∈ C(P ). There holds


B = −∇U +∇×A+ µA (159)


in P where


U(r) =


∫
P


Φ(r, r′)∇ ·B(r′)dr′


−
∫
S


Φ(r, r′)[n(r′) ·B(r′)]dS(r′) (160)


and


A(r) =


∫
P


Φ(r, r′)[∇×B(r′)− µB]dr′


−
∫
S


Φ(r, r′)[n(r′)×B(r′)]dS(r′) (161)


In our case, ∇ ·B = 0 in P , n(r′) ·B(r′) = 0 on ∂P and ∇×B(r′)− µB = 0 and


we are only left with


B(r) =∇×A+ µA (162)


= − (∇×+µ)


∫
S


Φ(r, r′)[n(r′)×B(r′)]dS(r′) (163)


We then use the same approach to find an expression for b. We know that∇·b = 0 in


P ,


n(r′) · b(r′) = B · ∇ξ + ξn · ∇ × (n × B) on ∂P and ∇ × b(r′) − µb = 0.


We are thus only left with


b(r) = − (∇×+µ)


∫
S


Φ(r, r′)[n(r′)× b(r′)]dS(r′)


− ∇
∫
S


Φ(r, r′)[n(r′) · b(r′)]dS(r′) (164)


b(r) = − (∇×+µ)


∫
S


Φ(r, r′)[n(r′)× b(r′)]dS(r′)


− ∇
∫
S


Φ(r, r′) {B(r′) ·∇ξ(r′)


+ ξ(r′)n(r′) ·∇× [n(r′)×B(r′)]} dS(r′) (165)


We want to express b as a function ofB and ξ. Let us consider the Fourier transform


of b


b(r) =


∫
bke


ik·rdk3 (166)


and of ξ


ξ(r) =


∫
ξke


ik·rdk3 (167)
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Figure 7: Feynman propagator representation [38]


Furthermore, we notice that the fundamental solution to the Helmoltz equation


Φ(r, r′) =
1


4π


eiµ|r−r′|


|r − r′|
(168)


satisfies


(∇2 + µ2)Φ(r, r′) = −δ(r − r′) (169)


In particular, the function


Φ1(r, r′) =
−iµ
4π2


∫
d3k


eik·(r−r′)


k2 − µ2
(170)


is a solution of 169. If we look at the solution of the Helmoltz equation 170, we


notice that this solution has two poles at |~k| = ±µ. An idea would thus be to use


the Feynman propagator, i.e. a contour of integration going under the left pole and


over the right pole. For instance, in going from the Fourier-space form of Φ to the


real-space form, we can do the kz integral first. We complete the contour in the


lower/upper half plane according as z − z′ > 0 or z − z′ < 0. Since we want φ to be


non-zero for both signs of z − z′, there must be a pole in both the upper and lower


half kz plane, as for the Feynman propagator. However, this does not completely


resolve the problem, because what we really want to do is to use the surface form of


the Green’s function solution, in which Φ(x − x′, y − y′, 0) needs to be interpreted


in a principal part sense, by cutting out a little circle about x = x′, y = y′ and


shrinking it to zero.


Note also that inserting 166, 167 and 170 in our expression for b 165, we get an


expression relating bk to B and ξk (see appendix 10.2 for details)∫
bke


ik·rdk +
1


4π2
(∇×+µ)


∫
d3k


1


k2 − µ2
(n× bk)eik·r


=∇ iµ


4π2


∫
d3k


1


k2 − µ2
[iB · kξk


+ξkn ·∇× (n×B)]eik·r (171)
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6. Study of the stability around zero magnetic shear points using a


Hamilton-Jacobi theory


As shown previously the plasma at equilibrium is, in general, stable to a deformation.


The dominant term of the δ2W equation
∫
Ii
d2σ JξB · bK is always positive, and


only goes to zero when B+‖B−. We are thus interested in applying deformations


at points close to zero magnetic shear, where the curvature term competes with


the
∫
Ii
d2σ JξB · bK term. We will thus focus on the study of these special points.


To this end, we resort to a code written by M. McGann (paper to be published)


which computes the magnetic field on the outer side of an interface, when the field


inside the interface and the pressure jump are known. The approach used in the


code will be presented in the following sections. But before going further, we need


to introduce some theoretical concepts, and, in particular, describe what are the


curvilinear coordinates.


6.1. Curvilinear coordinates


To study the equilibrium at the plasma interface, it is useful to resort to curvilinear


coordinates. Curvilinear coordinates are a coordinate system for Euclidean space


in which the coordinate lines can be curved. Figure 8 shows the difference between


curvilinear and Cartesian coordinates in a two dimensional space. In our case, we


Figure 8: curvilinear and Cartesian coordinates in a two dimensional


space [38]


assume a coordinate system θ, ζ, s where the radial coordinate s labels smoothly


nested tori, except in the case of the coordinate singularity s = 0, which is a


topologically circular space curve. The tori s = const = si corresponds to the


plasma interface Ii. Thus, es is perpendicular to the surface. We then define the 2
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Figure 9: Coordinate surfaces, coordinate lines, and coordinate axes of


general curvilinear coordinates [38]


other basis vector eθ and eζ where θ and ζ are arbitrary poloidal and toroidal angles,


respectively. The directions in which the coordinates θ and ζ increase are chosen


such that (eθ, eζ , es) is a right-handed coordinate system. If r is the position vector


of any point in the plasma, we have θ = θ(r), ζ = ζ(r) and s = s(r). Inverting


these relations, we obtain a function R


r = R(θ, ζ, s) (172)


The basis vector for the contravariant representation are then given by (eθ, eζ , es) =


(∂θR, ∂ζR, ∂sR) while the basis vectors for the covariant representation are


(eθ, eζ , es) = (∇θ,∇ζ,∇s). The basis vectors can be written more explicitly as


follow:


ei = ∂iR =
ej × ek


eθ · eζ × es
(173)


and for the covariant representation:


ei =∇ui =
ej × ek


eθ · eζ × es
(174)


Note first that (eθ, eζ , es) and (eθ, eζ , es) are mutually reciprocal basis: ei · ej = δji .


An arbitrary vector can then either be represented in the covariant representation


B = Bie
i (175)
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or in the contravariant representation:


B = Biei (176)


The metric elements are given by


gij = ei · ej (177)


And


gij = ei · ej (178)


The metric tensor is used to convert between covariant and contravariant


representation by raising or lowering indices:


Bi = gijBj (179)


Bi = gijB
j (180)


The Jacobian of the metric tensor takes the form
√
g = [det(gij)]


1/2 = eθ · eζ × es = (eθ · eζ × es)−1 (181)


The Jacobian is always positive since we are working with a right-handed set of basis


vectors. Now that we have defined the Jacobian, we can give an expression for the


volume element appearing in the integration of the energy variation:


dV =
√
gdθdζds (182)


The surface area element at the interface I is given by


dS = ±√ges(θ, ζ, s)dθdζ (183)


The sign depends on whether we are considering an inner or an outer boundary of


the region in question. This means that for a region Pi, the sign is negative for Ii−1


and positive for Ii. In curvilinear coordinate, the gradient is given by


∇ = ei∂i (184)


while the divergence takes the form
√
g∇ ·A = ∂i(


√
gAi) (185)


Finally the curl operator is given by
√
g∇×A = εi,j,k(∂iAj)ek (186)


where εi,j,k is the Levi-Civita symbol.
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6.2. Hamiltonian development


Let us come back now to the methodology developed by McGann [2] and write the


pressure jump equation, at the interface, in terms of the covariant components:


2∆P =
∑


i,j∈{θ,ζ}


gij[B+
i B


+
j −B−i B−j ] (187)


In this geometry, the surface magnetic field is written


Bθ = gθθBθ + gθζBζ (188)


Bζ = gθζBθ + gζζBζ (189)


Using that


B · n = 0 (190)


and


(∇×B) · n = 0 (191)


we obtain the following result [6]


∂θB
±
ζ − ∂ζB


±
θ = 0 (192)


We can thus represent the magnetic field using scalar functions


B±θ = ∂θf
± (193)


B±ζ = ∂ζf
± (194)


where f± =
∫
B± · dl are referred to as surface potentials. When known, they fully


define the magnetic field on both sides of the interface. We prescribe the field on one


side, B− say, so f− is treated as known, and f+ is to be found from the equilibrium


condition 187. Using the preceding result, equation 187 can be rewritten as


2∆P =
∑


i,j∈{θ,ζ}


gij[∂θf
+∂ζf


+ − ∂θf−∂ζf−] (195)


which is a partial differential equation for f+. We want to use an Hamiltonian


approach to be able to compute the magnetic field at the outer side of an interface,


once we have defined the magnetic field at the inner side. We thus write the pressure


jump condition as


H(θ, ζ, ∂θf
+, ∂ζf


+) = ∆P (196)


where


H(θ, ζ, pθ, pζ) = gijpipj + V (θ, ζ) (197)
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Here, the potential V is given, in terms of the known potential f−


V (θ, ζ) = gij∂if
−∂jf


− (198)


and the generalized momenta of the Hamiltonian is


pi = ∂if
+ = B+


i (199)


The partial differential equation 196 can be solved by integrating along its


characteristics, which obey Hamilton’s equation of motion. Once a solution with


the desired irrational number is found, it can be identified with the magnetic field


B+


The magnetic field lines can be regarded as trajectories of a 11
2


degree of freedom


Hamiltonian [2] dynamical system where the toroidal angle ζ is taken to be the analog


of time. The half degree of freedom implies that the Hamiltonian depends explicitly


on ζ.


The solutions to the Hamiltonian system can be obtained by solving the four


characteristic equations [2]


θ̇ =
∂H


∂pθ
= gθθpθ + gθζpζ (200)


ζ̇ =
∂H


∂pζ
= gθζpθ + gζζpζ (201)


ṗθ = −∂H
∂θ


= ∂θg
θθpθ + ∂θg


θζpζ − ∂θV (202)


ṗζ = −∂H
∂ζ


= ∂ζg
θζpθ + ∂ζg


ζζpζ − ∂ζV (203)


In general, the solution to this Hamiltonian is not unique. To make it unique, we


can specify the rotational transform of the field line. The rotational transform, in


our case is defined as the limit


ι = lim
∆ζ→∞


∆θ


∆ζ
(204)


In action angle coordinate, we can write


ι =
ωΘ


ωz
(205)


where


Θ = ωΘt (206)


and


Z = ωzt (207)
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Figure 10: Schematic for the relation of the PJH Hamiltonian and the


field line Hamiltonian and their respective phase spaces


These equations are the equations of motion of the system. ωΘ and ωz, the poloidal,


respectively toroidal angular frequency, are constant. This coordinate system is


called straight field line coordinates, because, as its name suggests it, the magnetic


field appears as a straight line in this coordinate system. The magnetic potential is


then given by


f = CΘΘ + CzZ + f̂(θ, ζ) (208)


where CΘ and Cz are constants and f̂(θ, ζ) is a periodic function in θ and ζ:


f̂ =
∑


fmn sin(mθ − nζ) (209)


Let us now come back to the Hamiltonian equations 200 to 203 and rewrite them to


simplify the computation of Hamiltonian orbits. We first divide 200 by 201, which


imply, as stated before, that we consider the toroidal angle-like coordinate as the


“time” variable.


We thus obtain an equation which describes the path of the Hamiltonian


trajectory through configuration space


dθ


dζ
=
gθθpθ + gθζpζ
gθζpθ + gζζpζ


=
Bθ+


Bζ+
(210)
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This is the equation of a magnetic field line on the outer side of the interface4.


Dividing 202 and 203 by 201, we obtain two equations that relate the canonical


momentum with the covariant components of the magnetic field along a Hamiltonian


trajectory.


dpθ
dζ


=
∂θg


θθpθ + ∂θg
θζpζ − ∂θV


gθζpθ + gζζpζ
(211)


dpζ
dζ


=
∂ζg


θζpθ + ∂ζg
ζζpζ − ∂ζV


gθζpθ + gζζpζ
(212)


4When an invariant torus in the PJH phase space is found, it can be identified with one side of the
interface I, which is a magnetic surface on both sides. Orbits elsewhere in the PJH phase space
cannot be identified with physical field lines (see figure 10).
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7. Numerical implementation


7.1. PJH code


To solve the Hamiltonian equations, the PJH code resorts to a routine of the NAG


library which integrates a system of first-order ordinary differential equations over a


specified interval. It uses a fixed order Runge-Kutta method to solve the differential


equation problem.


Typical results obtained using McGann’s PJH code are presented on figure 11


and 12. Figure 11 shows the variation of the outside field at an interface as we


increase the deformation of the interface, in a case when there is no pressure jump.


It shows the projection of the field line on the ζ = 0 Poincaré section. The top left


picture represents a toroidal perfectly axisymmetric surface. We notice, on this first


picture, 2 different kinds of field lines: the ones whose Poincaré section intersection


is a continuous line, and the ones that are represented by a discontinuous line on the


Poincaré section. The discontinuous lines can be due either to the fact that we need


to integrate over a larger number of ζ loops to cover the whole θ range, or simply


to the fact that the magnetic field has a rational rotational transform and thus only


passes through a specific number of points. We can also identify the points of zero


magnetic shear on this figure, where B−θ = B+
θ = 1.


When the interface is a deformed torus, the PJH orbits take a less regular shape.


If the deformation is big enough, we find orbits for which the intersection with the


ζ = 0 Poincaré section gives a closed loop. If we consider bigger deformations, we see


that the orbits start having a chaotic behaviour. Note that even if the deformation of


the interface is very strong, the intersection of the PJH orbits on the ζ = 0 Poincaré


section is still a continuous, or discontinuous line for the points very close to zero


magnetic shear. Figure 12 shows the same evolution of the outside magnetic field


at an interface as we increase the deformation, but with a pressure jump this time.


The pressure at the outer surface is equal to the one at the inner surface diminished


by 30%. We see that the trajectories become chaotic much faster than when there is


no pressure jump. Furthermore, we notice that even with a very small deformation,


we already observe PJH orbits for which the intersection with the ζ = 0 Poincaré


section gives a closed loop.


Note that the PJH code written by M. McGann has been benchmarked using


the SPEC code from S. Hudson. To make us sure the part we added to this code


is physically correct, we did several tests during the programming work that will be


detailed below.
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Figure 11: intersection with the ζ = 0 Poincaré section in the case where


there is no pressure jump, and for deformations increasing from top left


to bottom right
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Figure 12: Projection on the ζ = 0 Poincaré section in the case where


the pressure at the outer surface is equal to the one at the inner surface


diminished by 30%, and for deformations increasing from top left to


bottom right
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Figure 13: intersection with the ζ = 0 Poincaré section of Bζ , in the case


where the interface is a perfectly axisymmetric torus and when there is


no pressure jump.


7.2. ζ component of the magnetic field


We first recall that, in our research, we are especially interested in studying the


stability around the points of zero magnetic shear. We thus needed to be able to


compute the ratio Bζ/Bθ at the inner and at the outer interface to find the variation


of the rotational transform. That is why we first had to make sure that the ζ


component of the magnetic field was reconstructed correctly. Figure 13 shows, as


an example, the Bζ value as a function of θ for ζ = 0 in the case where the interface


is a perfectly axisymmetric torus and when there is no pressure jump. We see that


Bζ behaves in an opposite way to Bθ (Figure 11, top left picture), which is logical


since the norm of B is conserved when there is no pressure jump.


7.3. Localization of the zero magnetic shear points


Now that we have controlled the accuracy of the ζ component of the magnetic field,


we can study the rotational transform variation at the interface. In general, the


points of zero magnetic shear will be localized on continuous curves on the surface.


This can be seen quite easily from the fact that the points of zero magnetic shear
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Figure 14: Points close to zero magnetic shear in a toroidal device with


no deformation. The points of zero magnetic shear can be found on two


circles positioned symmetrically on both side of the horizontal plane


are the s = 0 contours of the scalar function:


s(θ, ζ) ≡ n ·B− ×B+ (213)


In a toroidally symmetric machine like a tokamak these contours will be circles going


around the torus the long way. In a poloidally symmetric machine, i.e. a bumpy


torus with a large-aspect ratio (ratio of the average major radius to the average


minor radius) they would be circles going around the short way. Stellarators for


example are normally large aspect ratio devices with the aspect ratio usually being


in the range of 7-10 [26]. In a general 3D case, they could also form closed loops


not going around the torus either way, but they would almost never degenerate to


a single point. Figure 14 shows the points close to zero magnetic shear in a toroidal


device. We see clearly that the points of zero magnetic shear can be found on two


circles positioned symmetrically on both side of the horizontal plane. Figure 15


shows the points close to zero magnetic shear for a bumpy torus with quite a strong


deformation. We see that in this case, the points of zero magnetic shear tend to


form a closed loop in the ζ = 0 Poincaré section.
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Figure 15: Points close to zero magnetic shear for a bumpy torus with


R01 = −Z01 = 7 ·10−3, R21 = Z21 = 7 ·10−3. The points of zero magnetic


shear form a close loop in the (θ, ζ) plane.


7.4. 3-dimensional metric


An important element we had to add to McGann’s code was to expand the 2-


dimensional metric to a 3-dimensional one including a vector normal to the surface.


In the code, the general shape of the interface is describe in the following way:


x = R0 cos(ζ) +R1 cos(ζ) cos(θ) +
∑
m,n


Rmn cos(mθ − nζ) cos(ζ) (214)


y = R0 sin(ζ) +R1 sin(ζ) cos(θ) +
∑
m,n


Rmn cos(mθ − nζ) sin(ζ) (215)


z = R1 sin(θ) +
∑
m,n


Zmn sin(mθ − nζ) (216)


with R0 the toroidal radius of the torus, R1 the poloidal radius of the torus, and


where the deformations of the interface are given by the Rmn and Zmn elements. We


thus had to specify the Rmn and Zmn elements and their derivatives with respect


to the normal component. We decided to postulate that the deformation increases


linearly as we go away from the center of the plasma region, i.e. we took


Rmn = Cmns (217)
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Figure 16: Metric element gζζ as a function of θ, in the case where the


interface is a perfectly axisymmetric torus without any deformation


Zmn = Dmns (218)


with Cmn and Dmn being constants. Thus it follows that


∂Rmn


∂s
= Cmn (219)


∂Zmn
∂s


= Dmn (220)


And the second derivative is given by


∂2Rmn


∂s2
=
∂2Zmn
∂s2


= 0 (221)


The gij metric elements are then obtained after computing the basis vectors


(eθ, eζ , es).


In the case where the interface is a perfectly axisymmetric torus without any


deformation, we get gθθ = const, gθθ = const, gss = const and gss = const. The


terms gζζ and gζζ depend on the θ angle, as can be seen on figure 16 and 17. As


one would expect, gζζ is bigger away from the center of the torus, and smaller


close the the center of the torus. gζζ has the opposite behaviour. Since our basis


vectors are perpendicular to each other, we verify that the other components vanish


gθζ = gθs = gζs = gθζ = gθs = gζs = 0.
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Figure 17: Metric element gζζ as a function of θ, in the case where the


interface is a perfectly axisymmetric torus without any deformation


Now let us study the case of a surface which is not a perfectly axisymmetric


torus. Here we apply the following deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 =


5 · 10−3 to a torus of toroidal radius 1.0 and of poloidal radius 0.2. We verify that


gθθ, g
θθ, gss and gss are not constant anymore, but vary as a function of θ and ζ.


The variation of gθθ is given as an example on figure 18. gζζ and gζζ also vary as


a function of θ and ζ (see figure 19 for gζζ). The variation is much stronger in the


θ than in the ζ direction as the amplitude of the eζ vector mainly depends on the


distance to the central axis of the torus. We note further that the terms gθs and gζs
are not equal to zero anymore, which is due to the way we defined the derivative of


Rmn and Zmn with respect to s. gθζ also does not vanish anymore. We can thus


conclude by saying the the values obtained for the metric elements are in agreement


with our physical intuition.


7.5. Magnetic field derivatives


Now that we have checked the metric used, we can focus on the computation of the


magnetic field derivatives. But before going further, let us mention a few important


points about the integration method used in the program. To compute the outside


magnetic field, we resort to a routine from the NAG library using a Runge-Kutta


method to solve the Hamiltonian problem presented in section 6.2. This routine
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Figure 18: Metric element gθθ as a function of θ and for 4 different ζ, for


a deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of


toroidal radius 1.0 and of poloidal radius 0.2.


enables us to compute the magnetic field at the outer surface. Note first that if the


integration process allows us to specify for which ζ value we want to compute the


magnetic field, the θ coordinate is given by the integration along a field line and


thus cannot be specified by the user. This implies that the points are not uniformly


distributed. Indeed, the number of points close to the vertical axis of the torus


tends to be bigger than the number of points on the side of the surface which is the


furthest from the central axis. This is an important point that we have to take into


account while choosing a method to compute the B derivatives.


The derivatives of B with respect to θ and ζ are indeed important for both the


computation of the first and the second term in the δ2W expression 148. We resort


to a very simple method to compute the derivatives: for the derivatives relative to


θ, we simply look at the 2 closest discrete points having the same ζ value, one being


bigger, the other one smaller, and being represented by green squares on figure 23.


The θ derivative at the red point on figure 23 is then given by:


dB


dθ
=
B2 −B1


θ2 − θ1


(222)


The ζ derivative is obtained from the 4 cyan squares on figure 24. By doing a linear


interpolation, we compute the B value at the two virtual points having the same θ
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Figure 19: Metric element gζζ as a function of θ and for 4 different ζ, for


a deformation R01 = −Z01 = 5 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of


toroidal radius 1.0 and of poloidal radius 0.2.


Figure 20: Schematic representation of the way the θ derivatives are


computed
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Figure 21: Schematic representation of the way the ζ derivatives are


computed


value as the point of interest. These 2 points are modeled by green squares on figure


22. Then from this 2 green points, we get the ζ derivative at the red point by doing


dB


dζ
=
B6 −B5


ζ6 − ζ5


(223)


Figure 23 represents the θ component of the magnetic field as a function of θ,


for 3 different ζ. Figure 24 shows the derivatives of Bθ with respect to θ. These 2


figures are obtained for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 5 · 10−3


to a torus of toroidal radius 1.0 and of poloidal radius 0.2.


As we compare the 2 graphs, we see on the second figure that the derivatives


are in good agreement with what is expected when looking at the first figure.


Furthermore and as we will show it later in this paper, the small error due to the


interpolation process does not influence strongly the final result, especially since, in


most of the cases, the term involving the derivative of B with respect to θ and ζ


are not dominant ones in the δ2W expression. Similar results are obtained with the


ζ derivatives.


There are other methods that could have been used to compute the derivatives.


One way is to use an m,n Fourier ansatz for the scalar magnetic potential, and


to determine the amn coefficient to fit the frequency spectrum observed by a point


moving on the highest-order periodic orbit. Because the orbit is high-order, it is
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Figure 22: Schematic representation of the way the ζ derivatives are


computed


Figure 23: Bθ for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 =


5 · 10−3 to a torus of toroidal radius 1.0 and of poloidal radius 0.2
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Figure 24: Derivative of Bθ with respect to θ for a deformation R01 =


−Z01 = 3 · 10−3, R21 = Z21 = 5 · 10−3 to a torus of toroidal radius 1.0


and of poloidal radius 0.2


effectively irrational and will cover the surface almost ergodically, so there should be


enough information to determine all the amn, provided one truncates at a reasonably


low number (this assumes the Fourier spectrum decays rapidly at high m and n,


which will break down near criticality). A similar approach is used in [27]. Another


approach would be to put the Fourier ansatz into Percival’s variational principle [28]


and determine the coefficients.


Since the simplest method gave results with good agreement with the expected


ones, we just concentrate on this method. We emphasize that the accuracy of


the derivatives’ computation strongly depends on the number of discrete points


covering the surface. The bigger the number of discrete points, the more accurate


the integration.


7.6. Study of the curvature term


Let us now study the curvature term. We first verified that the normal vector n


was correctly defined. As an example, we show on figure 25 the z component of n.


Note that all figures presented in this section were obtained for an interface with


a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal


radius 1.0 and of poloidal radius 0.2, and with the outer pressure being equal to the
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Figure 25: z component of n for a deformation R01 = −Z01 = 3 · 10−3,


R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of poloidal


radius 0.2


inner pressure −30%. Figure 25 shows that, as expected, the z component of n is


mainly dependent on the θ coordinate: positive when θ is positive, negative when θ


is negative. The small variations of nz from a totally sinusoidal behaviour are due


to the small deformation of the interface. The accuracy of the x and y component


of n were verified in the same way.


We then study the field-line curvature vector κ, which, in curvilinear


coordinates, can be written


κ =
B


‖B‖
·∇ B


‖B‖


=
1


B2


(
gθθBθ


∂gθθBθeθ
∂θ


+ gθθBθ
∂gζζBζeζ


∂θ


gζζBζ
∂gθθBθeθ


∂ζ
+ gζζBζ


∂gζζBζeζ
∂ζ


)
(224)


As we postulated that the toroidal magnetic field component is much stronger than


the toroidal field component, we expect the field-line curvature vector to be directed


in the direction of the z-axis of the torus. Figure 26 shows the x component of κ


at the inner surface. We see that the x component of κ depends mainly on the ζ


angle. κx is generally positive when the coordinate x is negative and vice versa (this
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Figure 26: x component of the field-line curvature vector κ at the inner


interface for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3


to a torus of toroidal radius 1.0 and of poloidal radius 0.2


is true as long as the interface has a shape close to axisymmetry, with only little


deformations). The y component of κ also mainly depends on ζ. In contrast, we


verify that the z component of κ is mainly dependent on the θ angle, as can be seen


on figure 27. κz is generally positive when z is negative and vice versa.


If we multiply the normal vector to the interface with the field-line curvature


vector, n·k, we obtain the results plotted on figures 28, 29 and 30 We first note that


the nxκx and nyκy terms are much bigger then the nzκz term. They tend to reach


their minimum values when θ is close to zero, and their maximum value when θ ≈ π.


We see that nzκz is almost always negative since n points outside the torus while κ


points in the direction of the vertical axis (z axis). The sum of the 3 components is


given on figure 31. This figure proves that the sign of the curvature term depends


almost only on θ. κ·n is negative away from the z axis (θ close to zero), and positive


close to the vertical axis. We obtain the same kind of results while considering κ at


the outer side of the interface. Note also that |B2
+| − |B2


−| = ∆P , thus the sign of


the curvature term depends on the form of the pressure profile.
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Figure 27: z component of the field-line curvature vector κ at the inner


interface for a deformation R01 = −Z01 = 3 · 10−3, R21 = Z21 = 3 · 10−3


to a torus of toroidal radius 1.0 and of poloidal radius 0.2


Figure 28: nxκx at the inner interface for a deformation R01 = −Z01 =


3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of


poloidal radius 0.2
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Figure 29: nyκy at the inner interface for a deformation R01 = −Z01 =


3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of


poloidal radius 0.2


Figure 30: nzκz at the inner interface for a deformation R01 = −Z01 =


3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of


poloidal radius 0.2
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Figure 31: n · κ at the inner interface for a deformation R01 = −Z01 =


3 · 10−3, R21 = Z21 = 3 · 10−3 to a torus of toroidal radius 1.0 and of


poloidal radius 0.2


7.7. Displacement of the interface, perturbation from equilibrium


To compute the energy variation, we had to specify the displacement ξ (see equation


22) on the interface. We choose a displacement ξ± = ξ0f
±(x, y)eiS(θ,ζ,s)/ε+iωt such


that f±(x, y) satisfies equation 127. Thus, we are looking for an expression of the


form  f±θ
f±ζ
f±s


 =


 ∓ikθ
∓ikζ√


kθkθgθθ + 2kθkζgθζ + kζkζgζζ


h±(θ, ζ) (225)


Further, we want to consider a displacement which is local, i.e. which goes to zero


very fast as we go away from (θ0, ζ0). We thus choose the h function such that


h±(θ, ζ) = e−Cθ|θ−θ0|g
θθ−Cζ |ζ−ζ0|gζζ (226)


where Cθ <<
max(‖kθ‖,‖kζ‖)


ε
and Cζ <<


max(‖kθ‖,‖kζ‖)


ε
. Which leads to the following


expression for the displacement: ξ±θ
ξ±ζ
ξ±n


 = ξ0


 ∓ikθ
∓ikζ√


kθkθgθθ + 2kθkζgθζ + kζkζgζζ
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Figure 32: ‖ξz‖ as a function of θ. We see that the displacement is very


local.


· exp(ikθ|θ − θ0|gθθ + ikζ |ζ − ζ0|gζζ ∓ iks|s− s0|gss)
· exp(−Cθ|θ − θ0|gθθ − Cζ |ζ − ζ0|gζζ) (227)


Figure 32 shows the normal component of the displacement as a function of θ, for 4


different ζ values. We see that the displacement decreases very fast as we go away


from θ0 = 0. This decrease is due to the term exp(−Cθ|θ − θ0|gθθ − Cζ |ζ − ζ0|gζζ).
A zoom on a very small θ range shows the oscillation induced by the exp(ikθ|θ −
θ0|gθθ + ikζ |ζ − ζ0|gζζ ∓ iks|s− s0|gss) term.


7.8. Study of the dominant terms in the magnetic field variation b


Let us now study the first term of the δ2W expression 148∫
i


d2σ
q
ξ2


0(n · f ∗)B · b
y


(228)


(229)


and in particular, let us focus on the b components. We will here only consider the


outside magnetic field perturbation θ component. The same analysis can be made


for the ζ component and for the inner field perturbation. bθ is given by the sum of


12 terms:


b±θ =
∑
i=1,12


t±i
gθθ
g


(230)
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where


t±1 = −dξ
±
s


ds
B±θ gζζ (231)


t±2 = −ξ±s
dB±θ
ds


gζζ (232)


t±3 = −ξ±s B±θ ds
dgζζ
ds


(233)


t±4 =
dξ±θ
dζ


B±ζ gss (234)


t±5 = −
dξ±ζ
dζ


B±θ gss (235)


t±6 = ξ±θ
dB±ζ
dζ


gζζ (236)


t±7 = −ξ±ζ
dB±θ
dζ


gζζ (237)


t±8 = ξ±θ B
±
ζ


dgss
dζ


(238)


t±9 = −ξ±ζ B
±
θ


dgss
dζ


(239)


t±10 = − 1


2g
ξ±θ B


±
ζ gss


dg


dζ
(240)


t±11 =
1


2g
ξ±ζ B


±
θ gss


dg


dζ
(241)


t±12 =
1


2g
ξ±s B


±
θ gζζ


dg


ds
(242)


We first consider an interface which is a perfectly axisymmetric torus. Note that


in this specific case, the terms t6, t7, t8, t9, t10 and t11 vanish since the interface is


symmetric in ζ. Here t2 is also equal to zero, for reasons explained further on in


this paper. Figure 33 shows the amplitude of the 5 different other terms. We see, as


expected, that the terms implying a derivative of ξ are the 3 dominant ones. Note


that every time we are plotting results in a semi-logarithmic scale, we have taken


the absolute value of the terms. Now, if we study the impact of the 3 dominating


terms around the zero magnetic shear point, we see that the sum of t1, t4 and t5
goes to zero when we come close to zero magnetic shear (figure 34). In that case,


the bθ expression is dominated by the t12 and t3 terms. Note that these 2 terms are


the one implying derivatives of the metric in the normal direction. We recall here an


important assumption we have made before. To obtain the covariant basis vector,


we needed to define the derivative of Rmn and Zmn with respect to s. We decided to


take ∂Rmn/∂s = Cmn and ∂Zmn/∂s = Dmn, where the Cmn and Dmn are constants,
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Figure 33: Amplitude of the different terms in the b expression, in the


case of a toroidal perfectly axisymmetric surface


Figure 34: Amplitude of the different terms in the b expression, in the


case of a toroidal perfectly axisymmetric surface, for a displacement ξ


applied to a point close to zero magnetic shear







7.9 Dominant terms in the δ2W expression for points close to zero


magnetic shear 57


because we expected the interface deformation to grow linearly while increasing the


radius. If, in contrast, we simply make the assumption that the metric is constant


as s increases, i.e. that ∂Rmn/∂s = ∂Zmn/∂s = 0, the terms t3 and t12 cancel out,


and we are left only with the terms implying derivatives in ξ, whose sum goes to


zero when we approach the point of zero magnetic shear.


Another hypothesis we had to make was to define the variation of the magnetic


potential f± as a function of s. We recall here that


f± = C±ΘΘ + C±z Z +
∑


f±mn sin(mθ − nζ) (243)


where CΘ and Cz are constants. As the pressure is constant within a definite plasma


volume, we made the hypothesis that ∂f±mn/∂s = 0 inside a plasma region. Thus


∂B±/∂s = 0. That is why the term t2 = 0.


If we apply a deformation, we get results close to the one obtained for an


axisymmetric toroidal surface. Note that if we consider a deformed interface, the


terms t6, t7, t8, t9, t10 and t11 are no longer equal to zero. But, if we consider a


deformation as defined in 227, we realize that the contribution of these 6 terms is


purely imaginary at the point of zero magnetic shear where the displacement ξ is


applied. We are then left just with a situation where we need to compare the impact


of the 3 terms involving the ξ derivatives, the terms t3 and t12 and the curvature


term.


7.9. Dominant terms in the δ2W expression for points close to zero magnetic shear


Figure 35 shows the contributions of all the terms for a perfectly axisymmetric torus,


in the case where the outside pressure is equal to the inner one diminished by 30%,


and when the displacement is extremely local. We see that the 3 terms involving


the ξ derivatives dominate generally, but that when we come close to zero magnetic


shear, the sign of the δ2W expression is given by the curvature term. The impact of


the t3 and t12 terms is smaller than the curvature term. Figure 36 shows a zoom for


a region close to zero magnetic shear. Let us now study how close to the point of


zero magnetic shear, the curvature term starts being dominant. Figure 37 shows for


which δθ = θ− θminshear the curvature term start dominating, for different K values,


where K is defined through the kθ and kζ expressions (taking ε = 1):


kθ = (Bζg
ζζ +Bθg


θζ)K (244)


kζ = (Bθg
θθ +Bθg


θζ)K (245)


On figure 37, we see that, the bigger the K value, the closer we need to go to the


zero shear point to have the curvature term dominating. The relation between δθ


and K is a straight line in a log/log scale. We can thus say that the system is


more stable for bigger K. Figure 38 shows the same relation between δθ and K,
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Figure 35: Magnetic and curvature terms in the second energy variation


expression, in the case of a toroidal perfectly axisymmetric surface


Figure 36: Magnetic and curvature terms in the second energy variation


epxression, in the case of a toroidal perfectly axisymmetric surface, for


points close to zero magnetic shear
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Figure 37: θ value at which the curvature term starts dominating over


the magnetic term, for different K values, in the case where the interface


is a perfectly axisymmetric torus


in the case where the surface is a deformed torus with R01 = −Z01 = 0.7 · 10−2,


R21 = Z21 = 0.7 · 10−2. The toroidal radius is given by R0 = 1.0 and the poloidal


radius R1 = 0.2. We see again that the relation between δθ and K is a straight line if


we use a log/log scale. δθ decreases from a factor 10 when K increases from a factor


102. Further, we note that for a given K, we need to go much closer to the point of


zero magnetic shear than in the case when the interface is a perfectly axisymmetric


torus, to have to curvature term dominating. Thus, the stability of the interface,


close to zero magnetic shear, depends both on the shape of the interface and on the


amplitude of the displacement derivatives.
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Figure 38: θ value at which the curvature term starts dominating over the


magnetic term, for different K values when the interface is a deformed


torus with R01 = −Z01 = 0.7 · 10−2, R21 = Z21 = 0.7 · 10−2 and with


R0 = 1.0 and R1 = 0.2.


7.10. Stability and pressure jump


We finally study the impact of the pressure jump on the stability. We consider an


interface with R01 = −Z01 = 0.5 · 10−2, R21 = Z21 = 0.5 · 10−2 and with R0 = 1.0


and R1 = 0.2. Figure 39 shows for which θ values the system starts being unstable


for different pressure variations at the interface. We see that the bigger the pressure


jump (on the figure, -100% signify that the outside field is zero while 0% means


that the outer field is equal to the inner one), the more unstable the plasma is.


This is true because we consider points located away from the vertical axis of the


torus. If we were studying points closer to the central axis where the curvature term


is stabilizing, the conclusion would be the opposite. Note that the discrete points


relating ∆p to the θ values at wich the system starts being unstable are pretty


well fitted by a second degree equation. This might be due to the fact that ∆p is


proportional to JB2K.
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Figure 39: θ value at which the curvature term starts dominating over the


magnetic term, for different pressure variations ∆p, when the interface is


a deformed torus with R01 = −Z01 = 0.5 · 10−2, R21 = Z21 = 0.5 · 10−2


and with R0 = 1.0 and R1 = 0.2.
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8. Conclusion


The study presented in this paper is part of a more general project on constructing 3-


D MHD equilibria, in a way fully compatible with the existence of chaotic magnetic


fields. One crucial point in this model is establishing the existence and stability


of good magnetic surfaces with irrational rotational transform that can sustain a


pressure jump. Though the existence of surfaces that satisfy force balance is quite


well established [2], the question of stability to displacements of the interface still


had to be investigated. In this study, we adapted a theory developed by Bernstein et


al [4] for high-n MHD stability at an interface between a vacuum magnetic field and


a field-free plasma to the problem of general fields. We computed the second energy


variation for a plasma interface at equilibrium and showed that the equilibrium was


stable to displacements localized about most points on the surface. We then focused


on the stability at an interface for points close to zero magnetic shear, where the


magnetic term and the curvature term start competing. Only at this kind of points


can the equilibrium become unstable. We found a simple sufficient condition for


high-n interface stability to surface displacement: the interface is stable if all points


of zero magnetic shear have favorable curvature.


We implemented the theoretical results on a test case by modifying McGann’s


PJH code. We showed the influence of the different terms in the energy variation


equation and studied when the curvature term starts dominating over the term due


to the magnetic field variation. We showed that the system was more stable when


the displacement derivatives were big and gave a relation between these derivatives


and the point at which the second variation of the energy starts being negative.


We thus got a better understanding of the stability to displacements of a plasma


interface.


This multiple relaxation region MHD model raises a number of questions and


there are a few subjects related to this work that should be further investigated.


One example on which research has been done recently is the study of the maximum


pressure jump an interface can support before being destroyed by instabilities and


chaos. Another field of investigation, suggested by Hole [30], is to explore the use


of the double Beltrami model [18]. This model has been shown to be useful for


describing the phenomenology of the pressure pedestal in H-mode tokamak discharge


[19]. It is also needed to push this research further to find an analytic stability


criterion in cases where zero shear points have unfavorable curvature.
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10. Annexes


10.1. field-line curvature vector


Let us prove that the field-line curvature vector is perpendicular to the magnetic


field. We use the gradient identity


B ·∇B =∇B
2


2
(246)


And rewrite it using 146


Be‖ ·∇Be‖ =∇B
2


2
(247)


B2κ+ e‖ · (∇
B2


2
)e‖ =∇B


2


2
(248)


B2κ = (I − e‖e‖) ·∇
B2


2
(249)


And finally


κ =
1


B2
·∇⊥


B2


2
(250)


which proves that κ ·B = 0.


10.2. Green functions, detailed calculus


Let start from the expression of b


b(r) = − (∇×+µ)


∫
S


Φ(r, r′)(n(r′)× b(r′))dS(r′)


− ∇
∫
S


Φ(r, r′){B(r′) ·∇ξ(r′)


+ ξ(r′)n(r′) ·∇× [n(r′)×B(r′)]}dS(r′) (251)


and consider the Fourier transform of b


b(r) =


∫
bke


ik·rdk3 (252)


and of ξ


ξ(r) =


∫
ξke


ik·rdk3 (253)


We also use the particular solution to the Helmoltz equation


Φ1(r, r′) =
−iµ
4π2


∫
d3k


eik·(r−r′)


k2 − µ2
(254)
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Inserting 252, 253 into 251 and using the Fourier form of the Green function 254,


we get ∫
bke


ik·rdk3 = − (∇×+µ)


∫
dk3


∫
S


1


4π2


∫
d3k′


eik
′(r−r′)


k′2 − µ2


(n(r′)(r′)× bkeikr′
)dS ′


+ ∇
∫
S


iµ


4π2


∫
d3k′


eik
′(r−r′)


k′2 − µ2


∫
dk3{B(r′) ·∇ξkeik·r


′


+ ξke
ik·r′n(r′) ·∇× [n(r′)×B(r′)]}dS ′ (255)


We then rearrange the terms to isolate the surface integral∫
bke


ik·rdk3 = − 1


4π2
(∇×−µ)


∫
dk3


∫
d3k′


1


k′2 − µ2


· (n(r′)× bk)eik
′r


∫
S


ei(k·r
′−k′r′)dS ′


+∇ iµ


4π2


∫
d3k′


∫
dk3 1


k′2 − µ2
[iB · kξk


+ ξkn ·∇× (n×B)]eik
′r


∫
S


ei(k·r
′−k′r′)dS ′ (256)


We notice that the surface integral is nothing but the definition of the delta function


to within a factor.∫
S


ei(k·r
′−k′r′)dS ′ = δ(k − k′) (257)


Thus, replacing 257 in 256, we finally get∫
bke


ik·rdk +
1


4π2
(∇×+µ)


∫
d3k


1


k2 − µ2
(n× bk)eik·r


=∇ iµ


4π2


∫
d3k


1


k2 − µ2
[iB · kξk


+ξkn ·∇× (n×B)]eik·r (258)


We thus find an expression relating bk to B and ξk which can be further developped


by expanding B about a line of zero shear






