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Outline

* Motivation
 Australian fusion science research snapshot

 Anisotropy equilibrium and stability
— Development of anisotropy into EFIT++
— Determine impact of anisotropy on plasma stability
* Probabilistic (Bayesian) inference framework
— Used to infer flux surface geometry with uncertainties
— Provides model validation (equilibrium and mode structure)
— Can be used to identify faulty diagnostics & optimise systems
— Harnessed to infer properties of plasma (e.g. fast particle pressure)
* Multiple Relaxed Region MHD model
— resolves chaotic field regions, islands, flux surfaces in fully 3D plasmas
— Stepped Pressure Equilibrium Code.
— Applied to DIIID RMP coils and ITER ELM coils as illustration.

* Summary



Australian Plasma Fusion Research Facility

Australia’s only fusion-relevant facility
$30 million (ANU contribution ~$20 million)

Facility funding extended to 2013.
Infrastructure upgrade to

» Improve suitability as a testbed for ITER diagnostics

» Improve plasma production/reliability/cleanliness

» Improving opportunities for collaboration

» Improve data analysis + provide computational support
» Improve diagnostics

2011-12 Highlights:

2x200kW RF sources drive new phased antenna
Third configuration control parameter added

New Lab for materials diagnostics facility
Upgraded impurity monitor system, interferometer
« Alfvén Excitation experiments

Mission: N
 Study physics of hot plasma in a helical magnetic containENGE@ N\ g =
« Host development of advanced plasma measurement systems

« Contribute to global research, maintain Australian presence in fusion

........



Materials Diagnostic Test Facility Prototype

Mission:

* Resolve extreme plasma-surface interactions under controlled conditions
(ANU + ANSTO + Univ. Syd. + Univ. Newcastle).

* Develop non-intrusive diagnostics for fusion relevant wall studies.

Initial results:

» B-dot probe indicates helicon wave propagation in argon.

* H plasma densities up to 101° m-3 Argon ~2x higher

« Complex plasma flows observed by Dppler coherence imaging
« Exploratory W, C surface studies in H, He, Ar.a

Current status:
« Commissioned 20 kW pulsed RF power to provide P ~ 1MW m
« Material target holder currently in production.
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‘ 103 | Water cooled
T \ | \ Ne ™ SEEE target
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* Helicon Antenna is an efficient plasma source in Ar Mirror Coils




Australian Fusion Research Profile

« 3D MHD configuration physics:
» Alfvén wave physics in fully 3D geometry
» MRXMHD - partially relaxed MHD for fully 3D plasmas
 Diagnostics: Doppler imaging, MSE & CXRS imaging
* Plasma modelling, theory development
» Data mining: “clustering” fluctuation data across machines
» Bayesian integrated equilibrium modelling
* Plasma surface interaction studies
* Dust in plasmas
» Materials (e.g. MAX phase alloys), characterisation, modelling
« Atomic collision data physics

Very international. Some collaborators include ....
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Outline

 Anisotropy equilibrium and stability
— Development of anisotropy into EFIT++
— Determine impact of anisotropy on plasma stability



Expected impact of anisotropy 4
» Small angle 6, between beam, field = p,>p, -.__

» Beam orthogonal to field, 6,=n/2 = p, >p;| ~--.___
+If p, sig. enhanced by beam,p, S __:
surfaces distorted and displaced peaked  Broad

iInward relative to flux surfaces pressure  pressure

profile profile
[Cooper et al, Nuc. Fus. 20(8), 1980] —— .

*If pL > p;, an increase will occur Iin

centrifugal shift :

[R. lacono, A. Bondeson, F. Troyon, and R.
Gruber, Phys. Fluids B 2 (8). August 1990]
Parallel Flux

» Compute p, and p, from moments of
] i . i pressure surfaces
distribution function, computed by TRANSP  contours(solid) (dashed)

[M J Hole, G von Nessi, M Fitzgerald, K G McClements, J Svensson, PPCF 53 (2011) 074021]

* Infer p, from diamagnetic current J
[see V. Pustovitov, PPCF 52 065001, 2010 and references therein]



Previous implementations of anisotropy

« Low-aspect-ratio , stationary
W.A. COOPER et al NUCLEAR FUSION, Vol.20, No.8 (1980) 985

 EFIT, but no toroidal flow
Zwingman, Eriksson and Stubberfield, Plasma Phys. Control. Fusion 43
(2001) 1441-1456

« FLOW, toroidal, poloidal flow and anisotropy, but not constrained to data
L. Guazzotto, R. Betti, J. Manickam and S. Kaye, Phys. Plas. Vol. 11,
2004

3D anisotropic code ANIMEC
W. A. Cooper, Comput. Phys. Commun. 180 (2009) 1524-1533.

* Why implement anisotropy into EFIT++?
Contains many constraints to experimental data and
iron/induction models.



MHD with rotation & anisotropy

* Inclusion of anisotropy and flow in equilibrium MHD equations
[R. lacono, et al Phys. Fluids B 2 (8). 1990]

V'(PV):O, pV-VVZJxB—V-Is, V-B=0
tyd =V xB, Vx(vxB)=0,
P=p, | +ABB/y,, A= (P = P.)

BZ



MHD with rotation & anisotropy

* Inclusion of anisotropy and flow in equilibrium MHD equations
[R. lacono, et al Phys. Fluids B 2 (8). 1990]

V-(pv)=0, N-VW=IxB-V-P, V-B=0
tyd =V xB, Vx(vxB)=0,
P=np, | +ABB/y,, A:”O(pg; )
* Frozen flux gives velocity:
V= %V R, Equilibrium egn becomes:

VW ap !/ aW ! I " /4
V-H o ﬂ?a—gl—pHM(pr@— IM(W)E—WM (w)v-B+Rov,¢: (v)

| =R5, {IM(W), v (W) e (w), HM(W),S%,Z—VZ}

. . 2.1 ’
Ly (W) =71 =Ry (W)¢E (l//) Set of 6 profile constraints

)W (0 80)- R [ VBT  Prp



Neglect poloidal flow

* Suppose v=-Re(vle, =RQwe, = Fy)=1,W)r

and equilibrium egn becomes:

Taoa( Y ) P W _FWFW)
\% {(1 A)( R? ﬂ— o PH (w)+pal/j R (L—A) 2 ) ()
Set of 5 profile constraints {F(W), Q(l//), H(W)%M}
oy oy

« OW/ 0 y: different for MHD/ double-adiabatic/ guiding centre

* If two temperature Bi-Maxwellian model chosen

K k k
pll(p’BW):ﬁBpTu(‘//) pL(P’BW):HBPTL(W)Z—B

F). Q) Hw) T,W) o)



Implementation: EFIT++ overview

L. C. Appel
R2V . (VRWJ —RJ (R,l//)
Ifree
J¢(R, W)= Rp'(w) [ ‘ &
~ Z Fi§7| P (R, Z)
I wboundary = l.bplasma (R, Z)
+ Ype(R, Z)

p(w), Fy)} Vs

 Linear in plasma coefficients, linear least-squares eigenvalue problem,
using response matrix A and measurements b (with errors)

 Compute plasma current J,

« Solve Grad-Shafranov equation for v

* Locate last closed flux surface and magnetic axis



EFIT++ (TENSOR) equations

FOQHWT W

R2V - (75) =-RJg(R,Z)
Jo = REpTi @) + T2 1 pR2QQ! () + RoH' (W) — Rp 22 — RV - (55 7)

R(1-A) Y
B-T, (y¥)8(y)
W(p,B,}) = —Tu (p l T I) (Bi-Maxwellian)
T (,B) mR2Q Z(w)) (mH(w))
P =Po T () ex (Zan(lP) exp kT ()

W)~ ) TP FFW) ~ ) FR Y,
00/ () ~ 5,00 B H () ~ S HW 00 ~ 5B

« Equations re-arranged into the form of a G-S equation with non-linear
terms (red) expressed as a current.

« Current almost a linear combination of flux functions or flux functions times
density.

« Shift of pressure profiles from magnetic surfaces caused by density.



Constraining the flux functions to
transport codes or experiment

Fw).Qw) Hw)T,w) o)

* TRANSP computes f(E,4): Moments give p,, p;, Uy,
« Dependency of flux functions on (R,Z) mesh

pi(RiZ;)

Ty(R;, Z;) =

(%)P(Ri:zi)
F(R;,Z;) = RiBy(R;, Z))|1 — A(R;, Z;)]
ve(Ri,Z;)
QR Z)) = =
oy _ PRz | (pRiZDpI(RyZ)Y Yo RiZD)
H(R;,2;) = p(Ry,Z;) ll’l( popL(Ri,Z;) ) 2
k k
—)P(RyZDB(R;,Z)  (—)p(RiZ)B(R;,Z;)
Q(Ri:Zi)=( ) _ )

P (Ri,Z;) p1(Ri,Z;)



Code benchmarked

Benchmark Benchmark

2@-

LO)

05 115 2
R (m)

« So far tested (isotropic) against MAST #13050, #18696
* Able to use the same constraints as existing EFIT++
« Converges at same speed as existing EFIT++



Anisotropy on MAST

« MAST #18696 Magnetics
* 1.9MW NB heating

— 200
*l,=0.7MA, B,=2.5 T F 16—
- TRANSP simulation available ~ §™ =
. " - -8
* Magnetics shows CAEs 5 1000 ke Bens Bt B =
| <> i : ' - = S PR ik 10 E"
_DSI'E’IAST discharge 18696 = 5ppf g o ] .;
o = 0.6 /_/_/\_, g i ; |
-0 o g & || 2
ﬂE 240 260 280 300 320
= ED—I\/ \ t[ms], dt=0.4096[ms]
= 0 [M.P. Gryaznevich et al, Nuc. Fus.
<3 so- | jl 48, 084003, 2008.; Lilley et al 35th
7S 5ok R B EPS Conf. Plas.Phys. 9 - 13 June
c _ 008F 2008 ECA Vol.32D, P-1.057]
X = D.EI'4_
o D'DSW//“L
__ 800F
£2 “”3/ \ * What is the impact on g
_—  3F . :
= 12ij : profile due to presence of
% 54 52 03 . anisotropy and flow?




P P, flow from f(E,A) moments

r/a=0.25

x1

F 40.07

0 05 1 15 2 25

3

v, (ms"‘) x 10°

0.1

0.09

0.08

r 10.06
r 10.05

1E Ho.o4

0.03

0.02

0.01

[35th EPS 2008; M.K.Lilley et al]

@ .-

p

1

1100

11000

E =0.5mv?, V, =V Cos A

n:f f f(E A)dAdE
nu| = L,ﬂ u/“ quf(ff A)dAdE

p”:mf f (v) — up)? F(E, 1) dAdE

pJ__—/ / tJ_f(E A)dAdE.

(b)

p,/p,=1.7
P =D/,

. @ =toroidal flux

p
[M J Hole, G von Nessi, M Fitzgerald, K G McClements and J Svensson, PPCF 53 (2011) 074021]



Impact of anisotropy on equilibrium

* |Impact on configuration computed using FLOW
[Guazzotto L, Betti R, Manickam J and Kaye S 2004 PoP11 604-14]
A<0: p,/p,=1.7 A=0: p,/p,=1



Impact of anisotropy on equilibrium

* |Impact on configuration computed using FLOW
[Guazzotto L, Betti R, Manickam J and Kaye S 2004 PoP11 604-14]

A<0: p,/p,=1.7

A=0: p,/p,=1

A= u(p, - p, )/ B?

» Toroidal rotation does not change q appreciably with M, , <0.3

* Increase in g, ~ 100% for case with anisotropy

FLOW scans
12
(b)
104 __A=0,M,=0 .
gl __A=0,M, >0
o A=0, M&= 0
o 6r ___A<O,M >0
4F
2 N
X

D‘:

0.5 1 1.5
R [m]

Low grid resolution of FLOW at core

Z (m)

EFIT++ (TENSOR)

[~

15

Calculation of
MAST #18696
at 290ms.

p_]_/p||~ 1.7

poloidal flux

surfaces of
constant p,.
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Impact of anisotropy on wave modes

I_4

n=1 mode

« How do predicted mode

frequencies change due to
changes in g produced by
anisotropy and flow?

0.3

« Calculation of change In
stability due to anisotropy in
progress.

» Appetiser: What
IS the change in
ideal MHD
stability of n=1
TAE and n=-10
CAE?



Increased shear gives multiple TAES

* Reshape plasma to have larger
reverse shear

0 16+ ton] - €3 [ ogl 2T ]

o, 207
- J
e —

core reverse shear

lo, |, varied to match q,=1.7, q,,,=1.24

002 [ T T T T {b} ]
m=1
= 0 —
N
oozl W
m=?
0 i _ (c)

I\Ir1
[=]
=1
(4]
{
I
I_al./llll
LR 11
o
=

. ; P . . . , 0 i : — 01002 04 06 08 1
% o0z o4 ;06 08 1 2% 02 04 ;06 08 0 0z 04 ,06 08 p
Single global TAE at (m,n) = (1,1) Reverse shear produces second (m,n))

= (1,1) odd TAE resonance in the core



CAE frequency: impact of changein g

CAE eigenfrequency  [smith et al PoP 10(5),1437-1442,2003]

2,2
vy [n7g e
Olnl,s.p= o Tyt o Csps lllustration
0 K 2500 g
k, =(1-x7?)L0p? —2p+3)/4 .
ay = f.(py /IRW1+(B+Ry /o, + f,J1-R, /xR T |
§ 15uu§.§:
Known: Ry= major radius, « = ellipticity, n=-10  «
Inferred: p= poloidal mode no. = |n|q,,, "j 1000
s= radial mode no. = 0 (guess) = 5og DR e
po= radial localisation of mode ~ a/2 (guess) et ./ = Sk |
o .

240 | 260 280 300 320
Static, isotropic equilibrium: q,,,(R=R,+a/2 ) =1.3 = p=13 t[ms], dt=0.4096[ms]

Flowing, anisotropic equilibrium: q,,(R=R,+a/2 ) =1.3 = p=15.



Anisotropy work in progress / planned

Formulation of stability in presence of anisotropy, flow
Implement anisotropy extensions of the global stability
code MISHKA-F

Couple the wave particle interaction code HAGIS to the
TENSOR anisotropy module of EFIT++, and MISHKA-F
Extend the Alfvén and ion sound wave continuum code
CSCAS to include anisotropy.

Use anisotropy inputs in ANIMEC to explore impact of
anisotropy in 3D (no flow).



Outline

* Probabilistic (Bayesian) inference framework
— Used to infer flux surface geometry with uncertainties
— Provides model validation (equilibrium and mode structure)
— Can be used to identify faulty diagnostics & optimise systems
— Harnessed to infer properties of plasma (e.g. fast particle pressure)



Inference of energetic physics

Jakob Svensson, Gregory von Nessi, Lynton Appel,

ANU/CCFE/IPP developed a probabilistic framework based on
Bayes’ theorem for validating models for equil. & mode structure

Motivation:

- handle data from multiple diagnostics with strong model
dependency

* provides a validation framework for different equilibrium models:
e.g. Two fluid with rotation, multi-fluid, MHD with anisotropy

* yield uncertainties in inferred physics parameters (e.g. g profile)
from models, data, and their uncertainties.

e Can be inverted : By reducing force-balance model uncertainty
to zero, use as a technigue to infer physics difficult to

experimentally diagnose directly (e.g. Energetic particle
pressure)



Bayesian equilibrium modelling

P(HID)= P(D|H)P(H)/ P(D)
H=1,(R.2).p'®). f (). oy, R).Q);

D= {Pu (R’ Z)’ F (R’ Z)’ tan y, (R’ Z)’ I?s,e’ e(k’ a’)), Sc (V)}

Pick-up  Flux MSE TS CXRS
coils loops signals spectra spectra

Aims
(1) Improve equilibrium reconstruction
(2) Validate different physics models

Two fluid with rotation
[McClements & Thyagaraja Mon. Not. R. Astron. Soc. 323 733-42 2001]

Ideal MHD fluid with rotation
[Guazzotto L et al, Phys. Plasmas 11 604-14, 2004]

Energetic particle resolved multiple-fluid
[Hole & Dennis, PPCF 51 035014, 2009]

(3) Infer poorly diagnosed physics parameters



“Linear” current tomograhy

 Model the MAST plasma current
as a cluster of rectangular,
toroidal current beams that fill
out the limiter region.

« Aim is to infer the distribution for
each of these plasma beam
currents (le. H = vector of
currents, |).

e Constraints:
— Pick up coils data, P; (+)
— Flux loops data, F; (*)
— MSE data, tan v

Z (m)
NL s o

[ Svensson J and Werner A Plasma
Phys. Control. Fusion 50 085002 , 2008]

-2.5




Forward models for magnetics and MSE

« Forward model describes predicted signal given plasma
parameters (ie. D|H in P(D|H)). For pickup coils P;, flux
loops F;, and polarisation angle v,

Angle between

P(R.Z;1) = Bg(RZ;1)cos(d,)+B,(R,Z;1)sin(g,)  andmidplane

F(RZ1) = w(RZ1)

tany.(R,Z:1) = AB; (R Z; 1)+ ABg (R Z; 1)+ ABrtRrZid=
s %ﬁ%@ﬁ*&%@,z;&

« MSE viewing optics on midplane = A,=A;=A,~0.

- If B, taken as vacuum field, P;, F;, tan y; are linear in I.

Hence:
P=MI+C
prediction/v T \

response current



Mean In posterior gives flux surfaces

* If current beams | have a Gaussian pdf = inference analytic
« MAST #24600 Current Tomography Poloidal flux surfaces

@280ms

* D plasma, 3SMW NB
heating

+1,=0.8MA, B,=3

3.37
2.94
2.51
12.08
11.65
11.22
10.79
0.35
-0.08
-0.51
-0.94

S
Farrrrrnn| 5L \

Last closed flux surface
of MSE& EFIT

I AT TIRRR RN

J, and vy surfaces
plotted for currents
corresponding to the S
maximum of the posterior 05115 2
r(m)

[M.J. Hole, G. von Nessi, J. Svensson, L.C. Appel, Nucl. Fusion 51 (2011) 103005]




Sampling of posterior gives distribution

 Distributions generated by sampling, e.g. g profile

_.---No poloidal currents

1[]. T T T T ]
8 (a) A
6I <71
o ] #
s #24600 7
] .
D.___ 1 1 1 ]
0 0.2 0.4 06 0.8 1
n
0 3
(D)
— — ]
i—ﬂ.ﬁ- \/ -
1 1 1 _ 1 ]

« Bayesian models for TS
and CXRS

Inference of poloidal
currents: allow f(y) to be a
4-order polynomial in y

Errors < 5%, but are model dependant

‘f}_' L]
e 6r T
@ (a)
o 4r 7
X 2r -
S : : : ' : .
2000} T, (b) -
S T .
2L.1000} | \\\\\ -
|_
0 I i i i | 1
0.4 06 0.8 1 1.2 1.4



Bayesian Equilibrium Analysis & Simulation Tool

Gregory von Nessi

* Fold in Force balance model as a weak constraint by
technique of split observations.

* Allows gquantification of agreement of force-balance through
evidence

| e

1 ' Ho .
=J, =-22Rp (W)+27zR F(y) ' (w)

Biot-Savart link to diagnostics

) 2714,

\. J \ J

b
(HD) = P(DH)P(H) P,,(DH, )P, E H, P(H

PO) C,.P(D)

» Grad-Shafranov equation is non-analytic
« Computationally challenges overcome by nested sampling.



Validation of force balance

Gregory von Nessi
MAST #22254 @ 350ms gory v !

ILhs Expectation Irns Expectation Ipit Expectation
2o 4.90 1.65 2o 2.28
1
4.40 144 205
3.89 1.23 183
-3.39 F-1.02 160
-12.88 - H0.80 --1.87
-42.38 F40.59 1.14
187 4038 91
187 0.17 0.69
0.86 -0.05 0.46
0.36 -0.26 023
||
_o 1 1 1 1 -
25 05 1 15 2 015 —0.47 : _ | 5 2 000
R (m) I (MA) I (MA) R (m) I (MA]
(a) (b) (c)

* Discrepancy between LHS & RHS = model not consistent with observations
« Agreement quantified by evidence In(P(D))=1263.5
 Relative evidence between different models important



Energetic pressure inference

40

» add polynomial parameterisations of '
#18696 at —_

Piotarr Pinerm t0 H, and add analysed
Thomson scattering data to D 30

90 ms.

« Assume
I:)therm = (ni Ti + neTe)~ neTe
f(w)o w

* Add a force-balance constraint = 0
0 D2 |04 06 08 1

Py P/ Py
I:)fast = Ptot - I:)therm

inferred Py, ~ (P, + P,)/2 computed
in NUBEAM.

[M. J. Hole, G von Nessi, M Fitzgerald and the MAST team, Plasma Phys. Control. Fusion
54 (2012), accepted]



Evidence-based cross-validation:

Gregory von Nessi

* [dentifies inconsistent diagnostics by maximising evidence.
[ G. T. von Nessi, M. J. Hole, J. Svensson, and L. Appel Phys. Plasmas 19, 012506 (2012)]

1 A baseline posterior, P, is calculated with all diagnostics

2. One diagnostic observation, o,, is removed, a new posterior P; and log-evidence
E, = In(P(D)) computed. Repeat for all diagnostics.

3. The diagnostic with lowest E; is removed,
and a new baseline posterior calculated. The
evidence of this new posterior is recorded and
associated with the removed diagnostic.

4. Steps (1)—(3) repeated to generate a curve
of posterior evidence versus the number of
diagnostics removed.

5. Diagnostics removed such that the posterior
evidence recorded in Step (3) is maximised.

x 10

ECV Posterior Evidence Scan for t=.2m

...a systematic technique to identify faulty diagnostics.

|dentified 10
problem
diagnostics

10

20 30 40
Number of Diagnostics Removed

50



Outline

* Multiple Relaxed Region MHD model
— resolves chaotic field regions, islands, flux surfaces in fully 3D plasmas
— Stepped Pressure Equilibrium Code.
— Applied to DIIID RMP coils and ITER ELM coils as illustration.



Toroidal plasma equilibrium in 3D

» simplest model to approximate global, macroscopic force-balance in
toroidal plasma confinement with arbitrary geometry is
magnetohydrodynamics (MHD).

Vp=JxB, VxB=J, V-B=0

* Non-axisymmetric magnetic fields generally do not have a nested
family of smooth flux surfaces, unless ideal surface currents are
allowed at the rational surfaces.

« If the field is non-integrable (i.e. chaotic, with a fractal phase space),
then any continuous pressure that satisfies B-Vp=0 must have an
infinitely discontinuous gradient, Vp.

* Instead, solutions with stepped-pressure profiles are guaranteed to
exist. A partially-relaxed, topologically-constrained, MHD energy
principle is described.

« A numerical solver, SPEC (written by S. Hudson, PPPL), solves for
these fields: field has islands, chaotic regions, and flux surfaces



Taylor Relaxed States

« Zero pressure gradient regions are force-free magnetic fields:

* In 1974, Taylor argued that turbulent plasmas with small resistivity,
and viscosity relax to a Beltrami field

2
Internal energy: W = B + P s V,
PV 2/“0 7/_1 A P
Total Helicity : H :L(A. B)dz® 7
Taylor solved for minimum W subject to fixed H
l.e. solutions to 6F=0 of functional F =w — yH /2
P VxB=uB
| - B* _0 Model had a lot of success for
' 9 TPI|= toroidal pinches, multipinch, and
o spheromaks



Generalised Taylor Relaxation:
Multiple Relaxed Region MHD (MRXMHD)

R. L. Dewar
« Assume each invariant tori |, act as ideal MHD barriers to
relaxation, so that Taylor constraints are localized to subregions.
New system comprises:
» N plasma regions P; in relaxed states. \ ¢
» Regions separated by ideal MHD barrier |.. 1 )
» Enclosed by a vacuum V, ;
» Encased in a perfectly conducting wall W v W
B° P .
WIZJ' IR B PP P: VxB=uB
fl21 7 -1
P, = constant
H, = (A -B)dz® | B-n =0
P +B*/(2 =0
Seek minimum energy state: LR (2145)1]
N V . VxB=0
F:;(Wl_MHMZ) V-B=0

W : B-n =0



Existence of Three-Dimensional Toroidal MHD
Equilibria with Nonconstant Pressure

OSCAR P. BRUNO PETER LAURENCE
California Institute of Technology  Universita di Roma "La Sapienza”

We establish an existence result for the three-dimensional MHD equations

(VXBYxB=Vp
V-B=0
B:-nlsgr=0

with_p # const in tori T without symmetry. More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. ©) 1996 John Wiley & Sons, Inc.

Communications on Pure and Applied Mathematics, Vol. XLIX, 717-764 (1996)

— this was a strong motivation for pursuing the stepped-pressure equilibrium
model

— how large the “sufficiently small” departure from axisymmetry can be needs to
be explored numerically



Stepped Pressure Equilibrium Code, SPEC

[Plasma Physics and Controlled Fusion, 54:014005, 2012]

Vector potential is discretised using mixed Fourier & finite elements

« Coordinates (s,o, §)
- Interface geometry T = > R C0S(MI-n¢), Z; = > Z,p, sin(mg—n¢)

I,m,n I,m,n

 Exploit gauge freedom A= AB(S, 9, {)VL9+ A (S, 9, §)V§
. Fourier A, =) als)cos(md—ng)
. Finite-element a,(s)= Zag,i (s)o(s)

N

& inserted into constrained-energy functional F=> W —xuH,/2)
1=1
» Derivatives wrt A give Beltramifield VxB= B

S. Hudson

» Field in each annulus computed independently, distributed across multiple cpu’s
* Field in each annulus depends on enclosed toroidal flux, poloidal flux, interfaces §

Force balance solved using multi-dimensional Newton method

- Interface geometry adjusted to satisfy force balance F[z]= {[[p +B%/2] . }: 0

« Angle freedom constrained by spectral condensation,
« Dertivative matrix VF[§] computed in parallel using finite difference



Numerical error scales as expected

~

Scallng of numerlcal error W|th radlal resolutlon

A=A VI+A V{, B=VxA, J=VxB,

AS,A/; ~O(hn) h =radial grid size=1/N

need to quantify error =j - uB

n = order of polynomial (J —,UB) Vs ~ O(hn—l) (J —/JB) V6 ~0(h™) (J —,uB) Ve ~0(h™)

JoB* =0,A
JoBS =8.A,

~O(h™)

\FJ O(hn -1 _12:
\/_ ‘

O(hn 2)
¢ O(hn—Z)

Example of chaotic Beltrami fie

in single given annulus;

R=1.0+r(9,<)cos Y,
Z = r(g,¢)sing, (mn)=@3,1)island

-9,A, ~O(h") |
JoB’=  -8A ~O(h™)

log,,l6B°

’ :'09'0‘559‘ error (logscale)

+ (m,n)=(2,1)

. island =
inner surface =

r=0.1 chaos

outer interface
r=02 +5 [cos(23 - ) +cos(39 - 5)]

sub-radial grid,




Example : DIIID with n=3 applied error field

» AXis-symmetric boundary, pressure profile from EFIT reconstruction, f~15%
Acknowledgement: Ed Lazarus, Sam Lazerson

* Apply 3mm, n=3 boundary deformation,
(m=2,3,4)

« Strong pressure gradient near edge

* |rrational interfaces chosen to coincide
with pressure gradients.

EFIT p(y), b
P’(v)

press UI’E\

* [sland formation is permitted
* No rational “shielding currents” included
in calculation.

formation
of
magnetic
islands
S\ at rational
L\ surfaces




Example of ITER relevant configuration,
with and without rational shielding currents

- If ideal constraint applied at rational surfaces, shielding currents prevent

Islands

1.0

o
I

]

rotational
transformo
[

I
I

WITH rational ideal
ITER boundary, plus 6=10 perturbation. ___Jnterface

OR = 50s(29 — ¢)cos 4,
&Z = 5¢0s(29 — ¢)sin 9

Rational surface
U=2rl

pressure

. 51
1| B RRRE R

WITHOUT rational ideal




Spontaneous formed helical states

G. Dennis

« The quasi-single helicity state is a a stable helical state in RFP:
becomes purer as current is increase

T i ~ o T -
~ -~ e %

> Single Helical
helicity Increasing current Axis

Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)

Quasi-single Magnetic flux surfaces in RFX-mod. Figure 6 of [5].

» Attempt to describe RFX-mod QSH state by a
two-interface minimum energy MRXMHD state

 Calculation of the RFP bifurcated state, with
energy lower than the comparable axis-
symmetric state

» Both magnetic axes can be reproduced in
addition to island structure and significant
amounts of chaos




Summary

* Anisotropy equilibrium and stability
— Development of anisotropy into EFIT++
— Determine impact of anisotropy on plasma stability

« Bayesian validation framework for equilibrium

— Provides g profile and uncertainty.

— Motivation: validate equilibrium models
— Exploited force balance discrepancy to infer P,
— tools to optimally place diagnostics, identify faulty diagnostics

« Multiple Relaxed Region MHD model
— resolves chaotic field regions, islands, flux surfaces in 3D plasmas
— Stepped Pressure Equilibrium Code.
— Applied to DIIID RMP coils and ITER ELM coils as illustration.

« Strong Iinterest in ITER physics. Opportunity to shape work to
be more ITER relevant. Seek research participation through
collaboration and competitive grants






Stepped Pressure Equilibrium Code, SPEC

[Plasma Physics and Controlled Fusion, 54:014005, 2012] S. Hudson
Vector potential is discretised using mixed Fourier & finite elements
* toroidal coordinates (s, ,¢), *interface geometry R, = Z R mncos(md—nd), Z, = Z Z, qSIN(MI—n¢)
* exploit gauge freedom A = A (s, 3,J)VI+ A (s,3,4)VS
* Fourier A, =D nas(s) cos(md - ng)

* Finite-element as(s) = Zi as.i(S)p(s)

N
& inserted into constrained-energy functional F =W —xH,/2)

1=1

* derivatives w.r.t. vector-potential —» Beltrami field VxB = uB

* field in each annulus computed independently, distributed across multiple cpus

* field in each annulus depends on enclosed toroidal flux (boundary condition) and
— poloidal flux, v, and helicity,

—> geometry of interfaces, £ ={R_,Z |}

m,n’

Force balance solved using multi-dimensional Newton method
* interface geometry is adjusted to satisfy force F[g] = {[[p+ B” /2 10} =0

* angle freedom constrained by spectral-condensation, adjust angle freedom to minimize Y. (m* +n°)(RZ, + 2., )

* derivative matrix, VF[E], computed in parallel using finite-differences
* call NAG routine: quadratic-convergence w.r.t. Newton iterations; robust convex-gradient method,;



Equilibria with (i) perturbed boundary & chaotic
fields, and (il) pressure are computed

Poincaré plot (cylindrical) Poincaré plot (cylindrical) o _
B =0% B~ 4% boundary deformation induces islands

R=1.0 +rcos&, Z =rsin 4
r =0.3+ 6 c0s(29 — @) + 6 cos(39 — @)

5=10"

Demonstrated

\ ', ~ Convergence
N\ of high-pressure equilibrium with
— = ~ islands,

R ) with Fourier Resolution,
e . Convergence of (2,1) & (3,1) island widths

Poincaré plot (toroidal)
B~ 4% Ovvihy

rier resolution, B = 4% case
poloidal resolution 0 <m <M
| resolution -N <N <N

10— Pressure profile 0.04 ~ toroi

4| | =
g = 0.8hF < 5—i—- & a £
T <
S 0 0.6
3 o 0.02
S
0.2 0.00 L l
- oo 4 5 6 7 8 9 10 11 12
poloidal angle 0.0 0.2 0.4 0.6 0.8 1 2 3 4 5Spy6 7 8 9
s N



equllibria accurately approximate smooth-
pressure axisymmetric equilibria

'<‘4’per half = SPECEVWIEG | axisymmetric geometry

| +fields have family of nested flux surfaces,
*Equilibria with smooth profiles exist
A\N—/ éwer O ————— -Approm-matu.)n improves wth 7 mterfa}ces
\\ *magnetic axis converges with resolution

cylindrical Z

- magnetic axis vs. radial
1.09585 resolution

| using quintic-radial finite-element basis
1.09580 (for high pressure equilibrium)
(dotted line indicates VMEC result)

increasing pressure

cylindrical Z

1.09575
09570
1.09565
| 1.09560 =T e e B Ea
§§ 0 28 66 104 142 180

N = finite-element resolution

(A
ARRARRASZZ,
AN

Raxis

increasing pressure resolution = number of interfac
‘stepp(‘ed—pro‘file approximatioq to smpoth profile‘

cylindrical R cylindrical R

= 08F
o S
o O os
8| 2
a g 0.4
Z 0.2
toroidal flux y toroidal flux y '



1st variation =“relaxed” equilibria

Energy Functional W: W :Z(Ui ~412H; ~uM,)
Setting 6W=0 yields:

P: VxB=AB
P = constant
. : B-n =0
[[P + B? 1(244,)]1=0 n = unit normal to interfaces I, wall W
v VxB=0 [[X]]:Xi+1_xi
V-B=0
W : B-n =0

Poloidal flux ¥*°! toroidal flux ¥ constant during relaxation:

P: ¥,' = constant

V: ¥, ' =constant, ¥, **' = constant



