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Australian Plasma Fusion Research Facility

• Australia’s only fusion-relevant facility

• $30 million (ANU contribution ~$20 million) 

• Facility funding extended  to 2013. 

Infrastructure upgrade to 

Mission:

• Study physics of hot plasma in a helical magnetic container

• Host development of advanced plasma measurement systems

• Contribute to global research, maintain Australian presence in fusion

 Improve suitability as a testbed for ITER diagnostics

 Improve plasma production/reliability/cleanliness

 Improving opportunities for collaboration

 Improve data analysis + provide computational support

 Improve diagnostics

2011-12 Highlights:

• 2x200kW RF sources drive new phased antenna

• Third configuration control parameter added

• New Lab for materials diagnostics facility

• Upgraded impurity monitor system, interferometer

• Alfvén Excitation experiments



Materials Diagnostic Test Facility Prototype
Mission:

• Resolve extreme plasma-surface interactions under controlled conditions 

(ANU + ANSTO + Univ. Syd. + Univ. Newcastle).

• Develop non-intrusive diagnostics for fusion relevant wall studies.

Initial results:

• B-dot probe indicates helicon wave propagation in argon.

• H plasma densities up to 1019 m-3, Argon ~2x higher 

• Complex plasma flows observed by Dppler coherence imaging

• Exploratory W, C surface studies in H, He, Ar.a

Current status:

• Commissioned 20 kW pulsed RF power to provide P ~ 1MW m-2

• Material target holder currently in production.



Australian Fusion Research Profile
• 3D MHD configuration physics: 

 Alfvén wave physics in fully 3D geometry

 MRXMHD - partially relaxed MHD for fully 3D plasmas  

• Diagnostics: Doppler imaging, MSE & CXRS imaging

• Plasma modelling, theory development

• Data mining: “clustering” fluctuation data across machines

• Bayesian integrated equilibrium modelling

• Plasma surface interaction studies

• Dust in plasmas

• Materials (e.g. MAX phase alloys), characterisation, modelling

• Atomic collision data physics

Very international. Some collaborators include ....  

http://intranet.culham.ukaea.org.uk/
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Expected impact of anisotropy

• If p⊥ > p||, an increase will occur in 

centrifugal shift :
[R. Iacono, A. Bondeson, F. Troyon, and R. 

Gruber, Phys. Fluids B 2 (8). August 1990]

• Compute p⊥ and p|| from moments of 

distribution function, computed by TRANSP

[M J Hole, G von Nessi, M Fitzgerald, K G McClements, J Svensson, PPCF 53 (2011) 074021]

[see V. Pustovitov, PPCF  52 065001, 2010 and references therein] 

• Infer p⊥ from diamagnetic current J⊥

• If p|| sig. enhanced by beam, p||

surfaces distorted and displaced 

inward relative to flux surfaces
Broad 

pressure 

profile

Peaked 

pressure 

profile

Parallel 

pressure 

contours(solid)

Flux 

surfaces 

(dashed)

[Cooper et al, Nuc. Fus. 20(8), 1980] 

• Small angle b between beam, field  p|| > p⊥

• Beam orthogonal to field, b=/2  p⊥ >p||



Previous implementations of anisotropy

• Low-aspect-ratio , stationary

W.A. COOPER et al  NUCLEAR FUSION, Vol.20, No.8 (1980) 985

• EFIT, but no toroidal flow

Zwingman, Eriksson and Stubberfield,  Plasma Phys. Control. Fusion 43 

(2001) 1441–1456

• FLOW, toroidal, poloidal flow and anisotropy, but not constrained to data

L. Guazzotto, R. Betti, J. Manickam and S. Kaye,  Phys. Plas. Vol. 11, 

2004

• 3D anisotropic code ANIMEC

W. A. Cooper, Comput. Phys. Commun. 180 (2009) 1524-1533.

• Why implement anisotropy into EFIT++?

Contains many constraints to experimental data and 

iron/induction models.



MHD with rotation & anisotropy
• Inclusion of anisotropy and flow in equilibrium MHD equations
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Neglect poloidal flow

and equilibrium eqn becomes:

• Suppose 

Set of 5 profile constraints 
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• W/  : different for MHD/ double-adiabatic/ guiding centre

• If two temperature Bi-Maxwellian model chosen
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Implementation: EFIT++ overview
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• Linear in plasma coefficients, linear least-squares eigenvalue problem, 

using response matrix A and measurements b (with errors)

• Compute plasma current J
• Solve Grad-Shafranov equation for 

• Locate last closed flux surface and magnetic axis

L. C. Appel



EFIT++ (TENSOR) equations

• Equations re-arranged into the form of a G-S equation with non-linear 

terms (red) expressed as a current. 

• Current almost a linear combination of flux functions or flux functions times 

density.

• Shift of pressure profiles from magnetic surfaces caused by density.

(Bi-Maxwellian)

M.Fitzgerald, L. C. Appel, M. J. Hole
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Constraining the flux functions to 

transport codes or experiment

• TRANSP computes f(E,):   Moments give p, p||, ull, 

• Dependency of flux functions  on (R,Z) mesh 
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Code benchmarked

• So far tested (isotropic) against MAST #13050, #18696

• Able to use the same constraints as existing EFIT++

• Converges at same speed as existing EFIT++

Benchmark Benchmark



Anisotropy on MAST

[M.P. Gryaznevich et al, Nuc. Fus. 

48, 084003, 2008.; Lilley et al 35th 

EPS Conf. Plas.Phys. 9 - 13 June 

2008 ECA Vol.32D, P-1.057]

• MAST #18696

• 1.9MW NB heating 

• Ip = 0.7MA, n=2.5

• TRANSP simulation available

• Magnetics shows CAEs

• What is the impact on q 

profile due to presence of 

anisotropy and flow?

Magnetics



pll, p, flow from f(E,) moments

[35th EPS 2008; M.K.Lilley et al]

[M J Hole, G von Nessi, M Fitzgerald, K G McClements and J Svensson, PPCF 53 (2011) 074021]

p⊥/p|| ≈ 1.7

r/a=0.25

0/

 = toroidal flux

cos     ,5.0 ||

2 vvmvE 



Impact of anisotropy on equilibrium

• Impact on configuration computed using FLOW 

[Guazzotto L, Betti R, Manickam J and Kaye S 2004 PoP11 604–14]

 <0:  p⊥/p|| ≈ 1.7  =0:  p⊥/p|| = 1



Impact of anisotropy on equilibrium

• Impact on configuration computed using FLOW 

[Guazzotto L, Betti R, Manickam J and Kaye S 2004 PoP11 604–14]

 <0:  p⊥/p|| ≈ 1.7  =0:  p⊥/p|| = 1

• Toroidal rotation does not change q appreciably with MA,φ  0.3

• Increase in q0 ~ 100% for case with anisotropy

  2

||0 / Bpp  

Low grid resolution of FLOW at core 

Calculation of 

MAST #18696 

at 290ms.

p / p|| ~ 1.7

poloidal flux 

surfaces of 

constant p||. 

FLOW  scans EFIT++ (TENSOR) 



• How do predicted mode 

frequencies change due to 

changes in q produced by 

anisotropy and flow? 

Impact of anisotropy on wave modes

n=1 mode

• Calculation of change in 

stability due to anisotropy in 

progress.

• Appetiser: What 

is the change in 

ideal MHD 

stability of n=1 

TAE and n=-10 

CAE?



Increased shear gives multiple TAEs
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Single global TAE at (m,n) = (1,1) Reverse shear produces second (m,n)) 

= (1,1) odd TAE resonance in the core
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[Smith et al PoP 10(5),1437-1442,2003] CAE eigenfrequency

Static, isotropic equilibrium: qmn(R=R0+a/2 ) =1.3  p=13

Flowing, anisotropic equilibrium: qmn(R=R0+a/2 ) =1.3  p=15. 

CAE frequency: impact of change in q

Illustration

aliased
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Anisotropy work in progress / planned

• Formulation of stability in presence of anisotropy, flow

• Implement anisotropy extensions of the global stability 

code MISHKA-F 

• Couple the wave particle interaction code HAGIS to the 

TENSOR anisotropy module of EFIT++, and MISHKA-F

• Extend the Alfvén and ion sound wave continuum code 

CSCAS to include anisotropy. 

• Use anisotropy inputs in ANIMEC to explore impact of 

anisotropy in 3D (no flow).
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Inference of energetic physics

ANU/CCFE/IPP developed a probabilistic framework based on 

Bayes’ theorem for validating models for equil. & mode structure 

Motivation: 

• handle data from multiple diagnostics with strong model 

dependency

• provides a validation framework for different equilibrium models: 

e.g. Two fluid with rotation, multi-fluid, MHD with anisotropy

• yield uncertainties in inferred physics parameters (e.g. q profile) 

from models, data, and their uncertainties. 

• Can be inverted : By reducing force-balance model uncertainty 

to zero, use as a technique to infer physics difficult to 

experimentally diagnose directly (e.g. Energetic particle 

pressure)

Jakob Svensson, Gregory von Nessi, Lynton Appel, 



Bayesian equilibrium modelling

 )(),,(),(),('),,(   RfpZRJH

Aims

(1) Improve equilibrium reconstruction 

(2) Validate different physics models
Two fluid with rotation 

[McClements & Thyagaraja Mon. Not. R. Astron. Soc. 323 733–42 2001]

Ideal MHD fluid with rotation 
[Guazzotto L et al, Phys. Plasmas 11 604–14, 2004]

Energetic particle resolved multiple-fluid 
[Hole & Dennis, PPCF 51 035014, 2009]

(3) Infer poorly diagnosed physics parameters
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“Linear” current tomograhy

• Model the MAST plasma current 

as a cluster of rectangular, 

toroidal current beams that fill 

out the limiter region. 

• Aim is to infer the distribution for 

each of these plasma beam 

currents (ie. H = vector of 

currents, I).

• Constraints: 

– Pick up coils data, Pi (+)

– Flux loops data, Fi (*)

– MSE data, tan i

[ Svensson J and Werner A  Plasma 

Phys. Control. Fusion 50 085002 , 2008]



Forward models for magnetics and MSE

• Forward model describes predicted signal given plasma 

parameters (ie. D|H in P(D|H)). For pickup coils Pi, flux 

loops Fi and polarisation angle i
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• If B taken as vacuum field, Pi, Fi, tan i are linear in I.      

Hence:
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Mean in posterior gives flux surfaces

• MAST #24600 
@280ms

• D plasma, 3MW NB 
heating 

• Ip = 0.8MA, n=3

Last closed flux surface 

of MSE& EFIT

Current Tomography Poloidal flux surfaces

J and  surfaces

plotted for currents

corresponding to the

maximum of the posterior

[M.J. Hole, G. von Nessi, J. Svensson, L.C. Appel, Nucl. Fusion 51 (2011) 103005]

• If current beams I have a Gaussian pdf  inference analytic



Sampling of posterior gives distribution

• Distributions generated by sampling, e.g. q profile

q profile

#24600
Inference of poloidal 

currents: allow f() to be a 

4th-order polynomial in 

No poloidal currents

• Bayesian models for TS 

and CXRS

Errors < 5%, but are model dependant



Bayesian Equilibrium Analysis & Simulation Tool 

• Fold in Force balance model as a weak constraint by 

technique of split observations. 

• Allows quantification of agreement of force-balance through 

evidence
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Biot-Savart link to diagnostics

• Grad-Shafranov equation is non-analytic

• Computationally challenges overcome by nested sampling.

Gregory von Nessi



MAST #22254 @ 350ms

• Discrepancy between LHS & RHS  model not consistent with observations

• Agreement quantified by evidence ln(P(D))=1263.5

• Relative evidence between different models important

Validation of force balance
Gregory von Nessi



Energetic pressure inference 

#18696 at

290 ms.

• add polynomial parameterisations of 

Ptotal, Ptherm to H, and add analysed 

Thomson scattering data to D

• Assume 

Ptherm = (ni Ti + neTe)~ neTe

f (ψ) ψ

• Add a force-balance constraint 

Pfast = Ptot - Ptherm

[M. J. Hole, G von Nessi, M Fitzgerald and the MAST team,  Plasma Phys. Control. Fusion 

54 (2012), accepted]

inferred Pfast ~ (P⊥ + P||)/2 computed

in NUBEAM. 



Evidence-based cross-validation: 

1 A baseline posterior, P0, is calculated with all diagnostics

2. One diagnostic observation, oi, is removed, a new posterior Pi and log-evidence 

Ei = ln(P(D)) computed. Repeat  for all diagnostics.

...a systematic technique to identify faulty diagnostics. 

• Identifies inconsistent diagnostics by maximising evidence. 

3. The diagnostic with lowest Ei is removed, 

and a new baseline posterior calculated. The 

evidence of this new posterior is recorded and 

associated with the removed diagnostic.

4. Steps (1)–(3) repeated to generate a curve 

of posterior evidence versus the number of 

diagnostics removed.

5. Diagnostics removed such that the posterior 

evidence recorded in Step (3) is maximised.

Identified 10 

problem 

diagnostics

[ G. T. von Nessi, M. J. Hole, J. Svensson, and L. Appel Phys. Plasmas 19, 012506 (2012)]

Gregory von Nessi
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Toroidal plasma equilibrium in 3D



B  J,

• simplest model to approximate global, macroscopic force-balance in 

toroidal plasma confinement with arbitrary geometry is 

magnetohydrodynamics (MHD).



p  JB,



B  0

• Non-axisymmetric magnetic fields generally do not have a nested 

family of smooth flux surfaces, unless ideal surface currents are 

allowed at the rational surfaces.

• If the field is non-integrable (i.e. chaotic, with a fractal phase space), 

then any continuous pressure that satisfies B∙p=0 must have an

infinitely discontinuous gradient, p.

• Instead, solutions with stepped-pressure profiles are guaranteed to 

exist. A partially-relaxed, topologically-constrained, MHD energy 

principle is described.

• A numerical solver, SPEC (written by S. Hudson, PPPL), solves for 

these fields: field has islands, chaotic regions, and flux surfaces



• In 1974, Taylor argued that turbulent plasmas with small resistivity, 

and viscosity relax to a Beltrami field 

i.e. solutions to F=0 of functional 2/HWF 
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• Zero pressure gradient regions are force-free magnetic fields:

Taylor Relaxed States

Model had a lot of success for 

toroidal pinches,  multipinch, and 

spheromaks



 
















iR

ll
l d

PB
W 3

0

2

12




3)( dH
V

lll   BA

New system comprises: 

 N plasma regions Pi in relaxed states.

 Regions separated by ideal MHD barrier Ii.

 Enclosed by a vacuum V,

 Encased in a perfectly conducting wall W

Generalised Taylor Relaxation:
Multiple Relaxed Region MHD (MRXMHD)

• Assume each invariant tori Ii act as ideal MHD barriers to 

relaxation, so that Taylor constraints are localized to subregions. 
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→ this was a strong motivation for pursuing the stepped-pressure equilibrium 

model

→ how large the “sufficiently small” departure from axisymmetry can be needs to 

be explored numerically 



Stepped Pressure Equilibrium Code, SPEC
[Plasma Physics and Controlled Fusion, 54:014005, 2012] S. Hudson

Vector potential is discretised using mixed Fourier & finite elements

& inserted into constrained-energy functional

Force balance solved using multi-dimensional Newton method
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• Coordinates (s,, )

• Interface geometry

• Exploit gauge freedom

• Fourier 

• Finite-element

• Derivatives wrt A give  Beltrami field 

• Field in each annulus computed independently, distributed across multiple cpu’s

• Field in each annulus depends on enclosed toroidal flux, poloidal flux, interfaces  

• Interface geometry adjusted to satisfy force balance 

• Angle freedom constrained by spectral condensation, 

• Dertivative matrix F[] computed in parallel using finite difference
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depends on finite-element basis
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Example of chaotic Beltrami field

in single given annulus;

sub-radial grid, 

N=16

Scaling of numerical error with radial resolution.
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Example : DIIID with n=3 applied error field

formation 

of 

magnetic 

islands

at rational 

surfaces

• Axis-symmetric boundary, pressure profile from EFIT reconstruction, 15%

Acknowledgement: Ed Lazarus, Sam Lazerson

• Apply 3mm, n=3 boundary deformation, 

(m=2,3,4)

• Strong pressure gradient near edge

• Irrational interfaces chosen to coincide 

with pressure gradients. 

p
re

s
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u
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• Island formation is permitted

• No rational “shielding currents” included 

in calculation.

EFIT p(), 

p’() 



Example of ITER relevant configuration,

with and without rational shielding currents
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WITH rational ideal 

interface
no island 

formation

WITHOUT rational ideal 

interface
q=2/1 island 

opens

Rational surface 

q=2/1

• If ideal constraint applied at rational surfaces, shielding currents prevent 

islands
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ITER boundary, plus =10-4 perturbation.



Spontaneous formed helical states

• Attempt to describe RFX-mod QSH state by a 

two-interface minimum energy MRXMHD state

• Calculation of the RFP bifurcated state, with 

energy lower than the  comparable axis-

symmetric state

• Both magnetic axes can be reproduced in 

addition to island structure and significant 

amounts of chaos

Fig. 6 of P. Martin et al., Nuclear Fusion 49, 104019 (2009)

G. Dennis

• The quasi-single helicity state is a a stable helical state in RFP: 

becomes purer as current is increase



Summary

• Anisotropy equilibrium and stability 

− Development of anisotropy into EFIT++ 

− Determine impact of anisotropy on plasma stability

• Bayesian validation framework for equilibrium

− Provides q profile and uncertainty. 

− Motivation: validate equilibrium models

− Exploited force balance discrepancy to infer Penerg

− tools to optimally place diagnostics, identify faulty diagnostics

• Multiple Relaxed Region MHD model

− resolves chaotic field regions, islands, flux surfaces in 3D plasmas 

− Stepped Pressure Equilibrium Code. 

− Applied to DIIID RMP coils and ITER ELM coils as illustration. 

• Strong interest in ITER physics. Opportunity to shape work to 
be more ITER relevant. Seek research participation through 
collaboration and competitive grants  
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Stepped Pressure Equilibrium Code, SPEC
[Plasma Physics and Controlled Fusion, 54:014005, 2012] S. Hudson

Vector potential is discretised using mixed Fourier & finite elements

& inserted into constrained-energy functional

Force balance solved using multi-dimensional Newton method
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Equilibria with (i) perturbed boundary & chaotic 

fields, and  (ii) pressure are computed    .        
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equilibria accurately approximate smooth-

pressure axisymmetric equilibria
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increasing pressure resolution ≡ number of interfaces
N  ≡ finite-element resolution

magnetic axis vs. radial 

resolution
using quintic-radial finite-element basis

(for high pressure equilibrium)

(dotted line indicates VMEC result)
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In axisymmetric geometry

•fields have family of nested flux surfaces,

•Equilibria with smooth profiles exist

•Approximation improves with # interfaces

•magnetic axis converges with resolution



1st variation “relaxed” equilibria

Energy Functional W:  
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