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Abstract

This thesis investigates the force balance condition that appears on internal flux sur-

faces within the Multiple Region RelaXed MagnetoHydroDynamic (MRXMHD) for-

mulation of a toroidal fusion plasma equilibrium. This condition acts as a boundary

condition between two constant pressure annular regions, separated by a toroidal cur-

rent sheet. A pressure discontinuity must be allowed on these boundaries in order to

have a non-trivial pressure profile, however the force balance condition strongly con-

strains the allowable continuations of the magnetic field (field configurations) across

the surface.

The MRXMHD formulation and the computer code SPEC (which uses MRXMHD

to solve for the entire equilibrium field) use these pressure-loaded flux surfaces as

analytic and computational boundaries for the plasma respectively. Therefore under-

standing the conditions under which magnetic fields can be connected across these

flux surfaces is important, as the determination of a global solution will depend on

continuation being possible across all internal boundaries. This thesis investigates

the conditions for continuation using methods from Hamiltonian mechanics. It is an

exploratory investigation that identifies some necessary factors determining existence,

but falls short of providing sufficient conditions under which continuation is possible.

The force balance condition is formulated as a Hamilton-Jacobi equation on the

surface whose solutions (provided they lay on an invariant torus) correspond to the

magnetic field on one side of the interface when provided with the pressure (analagous

to Hamiltonian energy) and the rotational transform (analagous to the winding num-

ber of the Hamiltonian trajectory). The Hamilton-Jacobi equation is then written

as an inverse problem, which provides a generalised interpretation in which two so-

lutions are selected, one for each side of the interface. The pressure jump and ro-

tational transform discontinutity across the surface is then identically the difference

in Hamiltonian energies and winding numbers respectivey of the two selected solu-

tions. Another derivation of the pressure jump condition based on the vanishing of

the divergence of the total stress tensor in the neighbourhood of a toroidal surface of

discontinuity is also provided.

The pressure jump Hamiltonian problem is in general very complicated and so

quite opaque to the effect of the perturbative variables. To determine some general

features, a simplification of the Hamiltonian is derived that is a first order approxi-

mation in three perturbative variables. This proves to be a helpful toy problem for

the investigation of Hamiltonian systems with more than one source of chaos, and is

vii
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similar in nature to the double pendulum Hamiltonian. This simplified version also

does succeed in shedding light on the nature of the pressure jump Hamiltonian.

An appeal to the Birkhoff theorem resolves the current disagreement on whether

Hamiltonian trajectories map homeomorphically to actual magnetic field lines. A

corollary of this reconciliation implies that the winding number of the Hamiltonian

solution is conserved under the mapping as the rotational transform of the resulting

field line. As a result the KAM theorem can be applied to describe the persistence of

field configurations, but not the conditions for continuation. The latter must be done

computationally by solving for orbits and determining if they result in an ergodic

covering of an invariant surface a-posteriori using Greene’s residue.

A program was written in FORTRAN, named PJH, that solves for trajectories of

the pressure jump Hamiltonian and determines the regularity of the solution orbits

using Greene’s residue. To determine the effect of deformations to the surface and

the effects of increasing the pressure discontinuty, robustness plots are invented and

produced. These plots are contour plots of the residue as a function of a parametri-

sation of the deformation and the energy. These plots show that in general increases

in deformations and increases in pressure discontinuities do destroy a selected orbit.

There is also evidence of pressure (energy) bands in which solutions are allowed.

Robustness plots are provided for three cases: the simplified Hamiltonian, simu-

lations of SPEC interfaces and flux surfaces extracted from the plasma volume from

a SPEC equilibrium. The latter two inform the prescription and management of flux

interfaces in SPEC. Continuation across rotational transform discontunities is also in-

vestigated. In some cases energy healing is observed in which increasing energy can

disallow a continuation, then allow it again at a higher energy. The implications of

the results to MRXMHD and SPEC are then articulated.
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4.9 Poincaré sections for a flux surface extracted from a SPEC volume . . 87
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Chapter 1

Introduction

1.1 Background research

1.1.1 Determining the equilibrium field of a fusion plasma

The most developed type of fusion reactor is a magnetic confinement device that

exploits the electrical properties of a plasma to channel the plasma into a toroidal

shape using a set of magnetic coils to generate the required magnetic field. While

experiments have shown that confinement is (at least for a short time) possible, the

interaction between the field generated by the coils and the field generated by the

plasma inside results in a field the general structure of which has not been completely

determined to this day. The resultant field is known as the equilibrium field B and

the determination of this field is an open problem in fusion physics.[Gra67]

The first attempt of relevance to this thesis to determine the magnetic structure

was introduced by Kruskal and Kulsrud in 1958, who developed a variational principle

where one minimises the potential energy of the plasma in the plasma volume.[KK58]

In 1958 Grad and Rubin considered the plasma as a perfectly conducting fluid in the

presence of a magnetic field and determined that the quantity P + B2/2 must be

continous even if B or P , the pressure, is discontinuous, though this can only occur

across toroidal surfaces within the toroidal volume named flux surfaces.[GR58]

The next major step came from Taylor in 1974 in the form of Taylor relax-

ation where one minimises the magnetic energy under constraints of constant helicity

throughout the plasma volume.[Tay74] Taylor developed this relaxation principle to

explain the self-organised behaviour in reversed field pinch fusion reactors. Helicity

can be thought of as a measure of how ‘twisted’ the field lines are in the toroidal

volume, so under relaxation with conserved Helicity, two or more field lines that are

twisted must remain twisted, suggesting a very complex structure for the magnetic

field at equilibrium. Under Taylor relaxation, the equilibrium field can be shown to

be of a Beltrami form

∇×B = µB , (1.1)

1



2 Introduction

where µ is constant throughout the volume.

From the application of Taylor relaxation to toroidal plasmas emerged the sharp

boundary model[BFL+86],[KU04], which considered the plasma as a constant pressure,

force-free field within an outermost flux surface referred to as an interface surrounded

by a vacuum region. In this formulation the quantity P +B2/2 must be the same on

each side of the outer interface because across this interface the pressure of the plasma

drops from P to zero discontinuously. This outermost sharp boundary discontinuity is

an idealisation of the edge of the plasma and the investigations of Berk et al [BFL+86]

and Kaiser and Salat[KS94] provided insights into the stability of this important

area of the plasma. More information regarding these investigations can be seen in

Section 1.1.2.

An extension to the sharp boundary model was introduced in 1996 by Bruno and

Lawrence. In it the outermost interface of the plasma is, like the examples above,

assumed to be a sharp boundary. However, as tokamaks and stellarators are much

less turbulent than reverse field pinches, it was arugued that Taylor relaxation can

occur locally, meaning one can divide the plasma volume into regions of relaxation,

separated by flux surfaces which act as ideal MHD (MagnetoHydroDynamic) barriers,

refered to as internal interfaces. When Taylor relaxation is applied between each

interface, a generalised version of the sharp boundary condition appears for every flux

surface used as an interface within the volume. Bruno and Lawrence proved that such

a construction of a plasma as a union of toroidal annular ‘shells’ of Taylor relaxed

plasmas was possible, and found that the quantity P + B2/2 must be the same on

each side of the interface.[BL96]

Taking this construction to the next step was the formulation of MRXMHD (Multi-

ple Region RelaXed MHD). MRXMHD formalises the idea of concentric taylor relaxed

regions into a single principle.[HDHM12] The formulation results in the same internal

structure: force-free, Beltrami field regions of constant pressure containing chaotic

regions separated by flux surfaces that each hold a pressure discontinuity. On either

side of the flux surface, the quantity P +B2/2 is equal, this quantity will be referred

to as the force balance quantity. Adding internal interfaces with pressure discontinu-

ities (or pressure jumps) across them removes the requirement that P be continuous

within the plasma volume, allowing the Taylor relaxation to occur in a constant pres-

sure region. This ensures the formulation is consistent with the formation of chaotic

magnetic structures in the volumes.

Within MRXMHD, the internal flux surfaces are essential for understanding the

nature of the equilibrium field as they separate chaotic regions and act as boundary

conditions for calculations of the equilibrium field in each volume. Thus one finds

need for an investigation into the nature of these internal flux surfaces.
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1.1.2 Investigations into the nature of flux surfaces with pres-

sure discontinuities

Within the sharp boundary model, various works investigated the outer boundary

and the pressure discontinuity condition that must hold on it. As it was important to

understand the nature of the outermost interface that formed the boundary conditions

for the Taylor relaxation in the plasma volume, so too is it important to understand the

multitude of pressure-jump-bearing internal interfaces that act as boundary conditions

for the calculation of the Beltrami field between them.

In 1986, Berk et al formulated the force balance condition as a Hamilton-Jacobi

equation, and went on to investigate the suitability of using Hamiltonian existence

criteria (for example, the KAM theory) to infer the existence of equilibria with sharp

boundaries.[BFL+86] By assuming the pressure jump interface S to be located on a

magnetic surface that is somehow known to be an invariant torus of a non-integrable

vacuum magnetic field, and taking the pressure jump to be the perturbation param-

eter, they were then able to invoke the KAM theorem without having to assume the

system to be close to axisymmetric. However, this was under the restrictive assump-

tion that the field outside S was, to within a constant factor, the unperturbed vacuum

field.

Later, Kaiser and Salat proved the existence of flux surfaces using only geometrical

arguments (i.e. without using a Hamiltonian form), but the approach again used

restrictive assumptions on the magnetic field, namely that it vanishes on the outside

of the interface S.[KS94]

As their approach did not use a Hamiltonian formulation, Kaiser and Salat con-

sidered the problem of whether the flux surface exists to be a question of whether one

can find a simple analytic covering of geodesics on the surface (in contrast to Berk

et al who asked whether it is possible to find a solution to the Hamilton–Jacobi equa-

tion). With a Hamiltonian formulation Berk et al appealed to the KAM theory to

insist that flux surfaces will persist under changes in the system,[BFL+86] but Kaiser

and Salat reject this appeal as incomplete, with concerns that the Hamiltonian solu-

tions do not map back homeomorphically to geodesics on the surface.[KS94] To make

up for the loss of Hamiltonian existence criteria to investigate the sharp boundary,

Kaiser and Salat provide instead what they call a ‘big bump’ criterion. This crite-

rion uses only geometrical arguments, but can only provide a negative statement of

existence from local arguments.

With the introduction of boundaries internal to the plasma, the previous research

on the outer boundary must be generalised from a plasma/vacuum interface to a

plasma/plasma interface. This thesis extends the Hamiltonian formulation introduced

by Berk to describe the outer interface of the sharp boundary model to derive a
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new Hamiltonian to describe the inner interfaces of the MRXMHD formulation. The

resulting pressure jump Hamiltonian is based on the force balance condition as derived

within MRXMHD.

The thesis reconciles Kaiser and Salat’s concern over the applicability of the Hamil-

tonian formulation as a method of inferring existence results of field lines by appealing

to the Birkhoff theorem. The pressure jump Hamiltonian proves to be too complicated

for analytical treatment and so a first order simplification is derived for analytical and

numerical treatment. The unsimplified version is also solved numerically to determine

both if the simplification is representative of the problem, and to shed some insight

into the nature of both the internal interfaces and the flux surfaces that appear in

between the interfaces. This is done with specific emphasis on how these findings help

the construction of a code to calculate the equilibrium field based on MRXMHD.

1.1.3 Computer codes for the calculation of plasma equilibria

With the theoretical variational principles in Section 1.1.1, computer programs named

equilibrium codes started to be developed to calculate the magnetic field structure

within the plasma volume. The most used 3D equilibrium code at the time of pub-

lication is VMEC (Variational Moments Equilibrium Code), which solves the energy

minimisation formulation of Kruskal and Kulsrud using a moments representation

of the magnetic field where the coordinates are expanded in a Fourier series.[HW83]

In the minimisation Hirshman et al treat the coordinate system as the independent

variables; to this end they assume the coordinates in their coordinate system are flux

coordinates. This assumption necessarily generates an equilibrium field in which flux

surfaces are assumed to exist at every point in the plasma and results in a continuous

pressure profile.

However, according to Taylor relaxation, the field in a plasma volume is Bel-

trami and does not require that flux surfaces exist everywhere. Chaotic structures

akin to chaotic islands have been observed within the plasma and practical attempts

to reduce edge localised modes intentionally break the outer flux surfaces to main-

tain stability.[ET12] There has also been work to explain thermal transport within

the plasma using chaotic structures called cantori.[Hud08][Hud09] Such internal field

structures are inconsistent with continually nested flux surfaces, and so VMEC lacks

the ablity to discern the chaotic nature of the equilibrium field.

To remedy this a new generation of code written by Dr Stuart Hudson has been

developed, now referred to as the Stepped Pressure Equilibrium Code (SPEC). The

code requires only a finite set of flux surfaces to exist within the volume, allowing

chaotic structures to be discerned in the plasma volume. A coordinate system is

interpolated between the flux surfaces, and a modified Taylor relaxation is executed
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which allows the chaotic nature of the field to be resolved.[HDHM12]

SPEC requires a set of flux surfaces to be defined as interfaces during the computa-

tion of the equilibrium field. Which flux surfaces should be used and what effect this

selection has on the equilibrium calculation are as yet unanswered questions. These

algorithmic questions are the computational analogues of the questions into the na-

ture of these flux surfaces that emerged in the last section. So, in investigation of

the nature of the internal flux surfaces, this thesis also reports on the implications for

SPEC.

1.2 Thesis outline and publications

1.2.1 Outline

Chapter two explains the MRXMHD formulation and derives the structure of the equi-

librium according to its principles. From this we identify the force balance condition

that allows a pressure discontunity across interfaces. This pressure jump condition is

then formulated as a Hamilton–Jacobi equation, a generalisation of the work done by

Berk et al. Kaiser and Salat’s concern about the application of the Hamilton–Jacobi

treatment mentioned in Section 1.1.2 is then solved, providing a consistent explana-

tion to prove that inferences from the Hamiltonian system are acceptable. Finally the

discontinuity condition is positioned as an inverse problem from which a more general

understanding of the problem results.

Chapter three outlines how solutions to the pressure jump Hamiltonian equations

are calculated and selected as valid continuations. The Hamiltonian equations are

solved using a program written by the author named PJH, this code is described and

the capabilities and limitations of the code are discussed. The code is also capable of

using Greene’s residue to numerically investigate whether the continuation is possible.

This calculation is also described, along with the number theory required to calculate

the residue. Still in Chapter three, the three cases of interest are defined. The first

is a simplified first-order approximation to the pressure jump Hamiltonian that is

more easily solved and more simply probed for the effect of perturbative parameters

(including the magnitude of the pressure jump). The second case is a simulation

of SPEC interfaces to inform SPEC. The third case is of a flux surface that has been

extracted from a plasma volume. This final case is provided as a less artificial inves-

tigation of the pressure discontinuity condition.

Chapter four investigates the phase space of the Hamiltonian for the three cases

defined in the previous chapter. The phase space of the simplified system illuminates

the complex phase spaces of the latter two cases. This investigation explains the

destructive effect of deformations, the prescribed field and the pressure jump on the
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Hamiltonian trajectories.

Chapter five attempts to understand the nature of pressure-loaded flux surfaces

by differentiating between resilience, (how likely a flux surface is to withstand further

perturbations), and the concept of robustness, (how likely the flux surface is to with-

stand all possible perturbations). Robustness is conveyed through the invention of a

robustness diagram, which shows what magnitude of pressure jump the flux surface

can withstand as a function of some parametrisation of the deformation of the surface

geometry. This allows the conditions of continuation to be qualitatively compared

across the three cases.

Following this in Chapter six the thesis returns to the original motivation of the

thesis and identifies the results of the numerical investigations in Chapters four and

five that are relevant to MRXMHD and the code SPEC. Suggestions are then made

to improve both the MRXMHD formulation and SPEC itself. Modifications to the

PJH code are then discussed, and future work is suggested.

1.2.2 Work and publications

The work toward this thesis produced a VMEC introductory manual “VMEC Introduc-

tion” which is available online on the H–1 Wiki. General work toward the MRXMHD

formulation lead to papers looking at MRXMHD from an entropy point of view.[DHM+08]

This thesis lead directly to the publication of the pressure jump Hamiltonian for-

mulation and the proof of its applicability in 2010.[MHDv10] The formulation of

MRXMHD has gradually evolved over the lifetime of this thesis, which led to more

publications.[HDHM12]

Important results from Chapter four and five are currently being developed into

a paper.



Chapter 2

MRXMHD and the formulation of

the pressure jump Hamiltonian

This chapter will first describe how fusion works and how one can research using

first principles. Then the simplification is described that moves us to an approach to

fusion where the device is envisaged as a collection of toroidal surfaces, composed of

twisted magnetic field lines; and between these surfaces chaotic structures can exist

(MRXMHD). Then concentrating on a single flux surface, a force-balance condition

is derived and investigated. Upon investigation it is realised that the force-balance

condition can be formulated as a Hamiltonian dynamical problem. The Hamiltonian

treatment is then investigated.

2.1 Magnetohydrodynamics in fusion theory

2.1.1 Magnetic confinement fusion

The purpose of fusion power research is to utilise the energy that is released when light

nuclei fuse to create a larger nucleus for the purposes of electrical power generation.

There are many possible reactions, but the most feasible is the reaction between

hydrogen isotopes, deuterium (D = H2 ) and tritium (T = H3 ).

A deuterium–tritium reaction involves fusing together the hydrogen isotope deu-

terium (whose nucleus contains a proton and a neutron) with the hydrogen isotope

tritium (whose nucleus contains one proton and two neutrons) which results in the

following reaction:

D + T −→ He+ n . (2.1)

The deuterium–tritium reaction creates the fused product helium, and a stray

neutron. The helium is typically an unwanted “ash” byproduct in the reaction and

is removed after thermalisation to extract its energy, the neutron however quickly

escapes and collides with the ‘blanket’ i.e. walls that surround the device designed

7
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especially to absorb neutrons. These collisions, combined with other heat escaping the

plasma, heat the blanket. The blanket is in thermal contact with the water which it

converts to steam, which turns turbines to generate electrical energy. The mechanism

by which electrical energy is extracted is in principle no different to any other fuel

based power source. It is a heat engine.

It is difficult to get nuclei to fuse because of the strong electrostatic forces that

cause them to repel each other. There are many methods to try to fuse atoms.

One method, referred to as ‘inertial confinement fusion’ fires lasers from all angles

toward a pellet of fuel in order to compress the pellet and force the atoms inside to

fuse. Alternatively, one can facilitate D and T nuclei to collide and rely on their

momentum to fuse the nuclei. Currently, the most advanced method is to heat the

atoms to a very high temperature, embuing them with so much energy that they are

more likely to collide and fuse.

At such high temperatures molecules break down into atoms, and the atoms them-

selves break into their component parts: electrons and ions (atomic nuclei). This

leaves a mixture of electrons and ions floating in space, and so at this temperature

gas has turned into a plasma. A plasma is considered a new state of matter because

once the electrons have been stripped, the mixture has new properties. The most

important properties of a plasma are that it can conduct electricity, can be affected

by magnetic fields and exhibits collective behaviour because each particle can produce

a field that affects every other particle in the plasma. It is a very complicated system

indeed.

These properties make the system very difficult to model and predict, but also

provide a unique opportunity to confine the mixture. As the particles can be manip-

ulated by magnetic fields, one can use magnetic fields to locally contain the plasma

while the particles inside fuse.

2.1.2 Principles of magnetic confinement

The most challenging aspect of creating break-even fusion is the confinement of the

plasma. At such high temperatures (ITER, the large machine currently being built

in France, is projected to reach temperatures in excess of 1.5× 107K) the surround-

ings are in comparison extremely cold, and if the plasma comes in contact with the

surroundings it quickly cools, the fusion reactions become less frequent and the fusion

can cease. This means we require a method in which the plasma makes no physical

contact with its surroundings.

As the fusion reactants are now in a plasma state, they can be manipulated by

magnetic fields as each charged particle in the plasma (ion or electron) is affected by

the Lorentz force. By using an appropriate configuration of magnetic coils one can
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channel the plasma into a cylindrical shape. To confine the plasma at the ends, the

line of loop magnets is bent to create a toroidal shape, thus the field now resembles

a torus and the plasma follows this field generating a toroidal plasma.

There are various ways to heat the plasma. The most common is by sending

radio-frequency electromagnetic waves tuned to the natural resonance frequency of

the particles. This energises the particles and helps keep the temperature high. The

eventual goal is to establish a steady state in which the fusion power produced is

greater than the power required to keep the plasma in a steady state.

2.1.3 Magnetohydrodynamics and confinement

Assuming ideal MHD, the Lorentz force per unit volume is

F = j ×B , (2.2)

where F is the force, B is the magnetic field, and j is the current density j =∇×B.

For confinement to be effective, one needs the force to act against the natural tendency

to of the plasma to flow along the pressure gradients ∇P . Thus the basic equation

determining confinement is that

∇P = j ×B . (2.3)

It is necessary to define the two main directions that will commonly be used. The

toroidal direction is the direction pointing around the torus “the long way round”,

whereas the poloidal direction is the direction pointing “the short way round”. Often

it may be necessary to refer to the radial direction, which generally points out of the

toroid.

With these directions we can define different cross sections. A toroidal cross section

is the shape caused by the intersection of a plane defined by a constant value of toroidal

angle. A poloidal cross section is similarly defined, but is typically less helpful, and

thus less used in the literature.

Figure 2.1 illustrates these directions and cross sections.

2.1.4 Tokamaks and stellarators

All toroidal geometries can be divided into two types. A torus that has the same

toroidal cross section throughout the entire toroidal angle is referred to as axisym-

metric, all other shapes deviate from axisymmetry and are therefore nonaxisymmetric.

A tokamak is the name given to an ideally axisymmetric toroidal fusion device

while stellarators are nonaxisymmetric.
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(a) A stylised illustration of a tokamak. Note the shape is
axisymmetric.

(b) A stylised illustration of a stellarator. The shape is not
axisymmetric. While this complicates construction of the de-
vice, the more complicated confining magnetic field allows the
plasma to be confined without inducing currents in the plasma.

Figure 2.1: A stylised representation of the difference between a tokamak and a stellarator.

Tokamaks are currently the most technically advanced type of fusion device. De-

spite the current focus on tokamaks, stellarator research is still an active area of

research and each method benefits from the research done on the other. The division

of labour has however changed the nature of research into each type. Research into

tokamaks is increasingly experimental, with a larger emphasis on engineering and

materials.

While being more complex, larger and often more expensive to build, stellarators

have the benefit that only the external magnetic field is in principle required to contain

it. In contrast, tokamaks require the introduction of large toroidal currents into the

plasma to generate internal poloidal magnetic fields that maintain the axisymmetric

shape.

The axisymmetric shape makes tokamaks simpler to model, but in general, toka-

maks are never truly axisymmetric anyway. By virtue of the magnetic field being

generated by a finite number of coils, there will always be nonaxisymmetry as the

magnetic field strength will “dip” in between coils, causing a ripple throughout the

plasma that destroys true axisymmetry and make the field dependent on the third

(ζ) dimension. Further, advanced tokamaks intentionally introduce such 3D fields,

for example the use of resonant magnetic perturbation coils used to suppress edge

localised modes.[Eva13] Stellerator theory is natively three-dimensional, and so has
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renewed importance in understanding 3D effects.

2.1.5 The equilibrium field

The magnetic field is set up by a collection of current carrying coils. A direct calcu-

lation using the Biot-Savart rule can determine the magnetic field generated by these

coils, which give the vacuum field. However, when one adds plasma to the field, the

ions and electrons of the plasma will interact with the magnetic field generating their

own fields in the process. This complex interaction results in an equilibrium field. The

equilibrium field is a good representation of the plasma system because the particles

tend to follow the magnetic field lines.

This thesis assumes ideal MHD, i.e. that the Larmor radius is sufficiently smaller

than our length scales of interest and that resistivity is small enough so that diffusion

is slower than our timescales of interest. Within this domain of applicability, the

plasma is in static equilibrium, and B is the equilibrium field. This field is found by

solving Equation (2.3), when the Lorentz force density balances the pressure gradient

within the plasma, repeated here:

∇p = j ×B . (2.4)

The best way to solve Equation (2.4) and calculate the general equilibrium 3D field

is still an open problem in fusion, but the problem has a solution in ideal tokamaks

and this idealised solution exhibits structure relevant to the general problem. In the

case of a perfect tokamak, the plasma toroid is filled (foliated) with a nested set of

helical magnetic field lines. Each field line lies on an infinitely thin toroidal surface,

the union of this infinity of surfaces fills the toroidal volume.

For such a field line, there are two configurations, either the field line will meet

up with itself and repeat or it will never meet up with itself and will wrap around the

torus forever. The field lines that wrap around the torus forever will cover the surface

completely. As magnetic field lines cannot cross, these field lines act as a barrier to

field lines internal to the surface, and therefore will conserve the flux within. For

this reason, this structure is known as a flux surface and is extremely important for

confinement. The middlemost structure within the union of flux surfaces is a closed

loop referred to as the magnetic axis.

Embedding the field lines in a toroidal geometry means the field lines can have

effectively an infinite length in a finite volume. For example, a helically winding field

line may wrap around an infinite number of times without meeting up with itself but

remaining on a surface. Thinking of a field line B as the locus of the position of a
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particle r1

dr

dt
= B , (2.5)

the very long field lines correspond to very long timescales of particle trajectories.

Physical problems on long timescales can produce unique behaviours often ignored

when treating small time scales, like sensitivity to initial conditions, or chaos. Indeed

there is strong theoretical and experimental evidence for the appearance of chaos in

the volume of a toroidal fusion plasma.[HN10][EMB+06]

For the full 3D problem, rather than trying to solve the force balance condition

Equation (2.4) and identifying the flux surfaces in the plasma, the method of Multiple

RelaXed MHD (MRXMHD) prescribes a finite set of flux surfaces that one can expect

to exist as an initial guess at the strucure of the field. The plasma volume has then

been divided up into 1) flux surfaces and 2) the volume between the flux surfaces

where the magnetic field is calculated based on Taylor relaxation. As the guessed

initial geometry of the prescribed surfaces is not expected to be that of the true

equilibrium flux surfaces, an additional step in the construction of the equilibrium

is required and that is to adjust the surfaces to get a globally consistent solution

consistent with the appearance of chaotic field lines in the plasma volume.[HHD07]

2.2 MRXMHD

2.2.1 Prescribing flux surfaces

For the purposes of MRXMHD, toroidal flux surfaces need only be nested and must

not touch each other. Mathematically, a flux surface is usually best described using

a Fourier series. One prescribes N toroidal surfaces each labelled as Sl = Rl(θ, ζ)R̂+

Zl(θ, ζ)Ẑ with the form

Rl(θ, ζ) =
N∑

n=−N

M∑
m=0

Rl;mn cos (mθ − nζ) , (2.6)

Zl(θ, ζ) =
N∑

n=−N

M∑
m=0

Zl;mn sin (mθ − nζ) . (2.7)

where θ and ζ are a poloidal and toroidal angle respectively This representation

we refer to as RZ form, and simplifies to 2D Cartesian coordinates [R(θ; ζ = const)

1This can be an especially helpful way to think about the field lines, not just becuase there are
mathematical benefits to thinking this way, but also because to a first approximation, the ions and
electrons do follow the field lines, and r(t) can be thought of the equation of motion of a particle.
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and Z(θ; ζ = const)] when the torus is viewed from a toroidal cross section, as in

Figure 2.1. The Fourier coefficients are introduced so that all the information of

the surface is contained within the Fourier components Rmn and Zmn, and so that

computationally the surface will be smooth for a finite number of components. This

description is very common in fusion research, see Appendix A.3 for more detailed

description of this representation of a flux surface.

When the flux surfaces are prescribed in this way, they are assumed to exist for

the purposes of MRXMHD. When this is done they are refered to as interfaces.

But what of the magnets that generate the field? We ignore these in this thesis

because one can always reverse engineer a set of coils, however complicated, to create

the 3D structure implied by the flux surfaces prescribed.

2.2.2 Building the plasma from flux surfaces interfaces

With a set of flux surfaces prescribed, the question remains of what the field is like

within the volumes between the surfaces. This can be done using the method first

described by Hudson, Hole and Dewar in 2006 which has since become known as

MRXMHD (Multiple-Region RelaXed MagnetoHydroDynamics).[HHD06]

Consider a set of concentric tori Sl that one wishes to prescribe as flux surfaces

within the plasma volume, bounded by the outermost flux surface SN . Under conven-

tional Taylor relaxation one must minimise the plasma energy under the constraint of

conserved helicity and mass. To do this one can introduce the Lagrangian multipliers

µl and νl and extremise the functional:[HHD07]

F =
∑
l

(Ul − µlHl/2− νlMl/2) (2.8)

in each of the volumes Vl between the surfaces Sl and Sl+1. Here Ul is the plasma

energy, Hl is the helicity and Ml is the mass2 within each volume. Explicitly they are

Ul =

∫
Vl

(
Pl

α− 1
+
B2
l

2µ0

)
dV (2.9)

Hl =

∫
Vl

Al ·Bl dV (2.10)

Ml =

∫
Vl

P
1/α
l dV , (2.11)

where Pl is the pressure in each volume, A is the vector potential (∇×A = B), µ0

is the permeability of free space (omitted from now on), and α is the ratio of specific

heats.

2Strictly M involves both mass and entropy.[DHM+08]
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Where MRXMHD differs from conventional Taylor relaxation is that now there

are multiple volumes in which to extremise the functional, and there are potentialll

an infinity of additional variables to describe the geometry of the flux surfaces. The

functional is extremised by allowing variations in the pressure δPl, the magnetic field

δAl and the geometry of the interfaces η. When this is done, one finds that

δFl =

∫
Vl

(∇×Bl − µlBl) · δA dV (2.12a)

+

∫
Vl

(
1

α− 1
− νl

P
1/α
l

αPl

)
δPl dV (2.12b)

+

∫
Sl

(
Pl

α− 1
− νlP 1/α

l − B2

2

)
(n · η)dS = 0 , ∀δP, δA, and δη (2.12c)

Thus according to Equation (2.12a), at relaxation the magnetic field is Beltrami

in each volume, i.e. the field satisfies

∇×B = µlB , (2.13)

in each volume. Equation (2.12b) states that the pressure in each volume is constant.

The surface term [Equation (2.12c)] implies that the quantity (P +B2/2) must be the

same on one side of the surface as the other, thus allowing a pressure discontinuity by

allowing an associated discontinuity in the magnetic field. As the pressure has been

assumed constant in each volume, this discontinuity condition allows a non-trivial

pressure profile P (s) (where s is the radial coordinate) only by having a stepped

pressure profile.

A code is being developed by Dr Stuart Hudson named SPEC (Stepped-Pressure

Equilibrium Code) that can calculate the 3D structure of the magnetic field from a

collection of prescribed flux surfaces and appropriate boundary conditions.

2.2.3 The pressure jump condition

The pressure discontinuities arising from the MRXMHD formulation is the focus of

this thesis, as the nature of these infinitely thin, pressure–discontinuity sustaining

surfaces is not apparent. They are more general than the previous “sharp boundaries”

mentioned in Section 1.1.2 as these surfaces allow a Beltrami field on both sides

of the surface, and do not require the pressure to be zero on one side. Thus the

sharp boundary model can be seen as a special case of a flux surface that forms the

interface to a vacuum field, i.e. the last closed surface on the outside of the plasma.

Understanding the nature of these flux surfaces is important to the workings of an

equilibrium code like SPEC.
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Figure 2.2: A toroidal cut showing the cross section of the plasma and the various defini-

tions. The cross section is a circle for simplicity, but the theory will work for a surface S of

any shape.

A more precise statement of the pressure jump condition is: when there is a

discontinuity in the pressure across a surface S, the following must apply on S,

P± = const (2.14a)

B± · n = 0 (2.14b)

(∇×B±) · n = 0 (2.14c)[[
1

2
B2 + P

]]
= 0 . (2.14d)

In Equations (2.14), n is the normal to the surface, and the notation [[x]] refers to the

difference between x on one side of the surface and x on the other side. x± or x± refer

to a quantity s on one side of the interface, a minus sign refers to the inner side (that

faces the magnetic axis) whereas a plus sign refers to the outer side. Equations (2.14a -

2.14c) must hold on both sides of the surface [note a different constant pressure on

either side in the case of Equation (2.14a) is allowed]. We refer to Equations (2.14)

collectively as the pressure jump conditions.

While this derivation was reached through the MRXMHD formulation of a fusion

plasma, it is possible to derive the same pressure jump disconinuity condition from first

principles by considering the general plasma stress tensor when taking into account

only kinetic and electromagnetic stress. This is done in Appendix A.5.

The field on the inner side (side closest to the magnetic axis) of S is given by B−,

and the field on the outer side is given byB+, as shown in Figure 2.2. Equation (2.14d)

then becomes

1

2
B+2 − 1

2
B−

2
= P− − P+ . (2.15)

When Equation (2.15) is written in terms of the covariant components of the
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magnetic fields, one finds that

∆P =
∑

i,j∈{θ,ζ}

1

2
gijB+

i B
+
j −

1

2
gijB−i B

−
j , (2.16)

where ∆P = P− − P+ and gij = gij(θ, ζ) are the contravariant metric coefficients

defined on the 2-dimensional Riemannian manifold S, related to the covariant coeffi-

cients by inverting the 2× 2 matrix [gij],[BL96]

gθθ = gζζ/
√
g , gθζ = −gθζ/

√
g , gζζ = gθθ/

√
g , (2.17)

where
√
g = gθθgζζ − g2

θζ is the determinant. We shall also need the 2-dimensional

contravariant components of the surface magnetic field, defined by

Bθ = gθθBθ + gθζBζ (2.18a)

Bζ = gθζBθ + gζζBζ . (2.18b)

For more information on the covariant and contravariant representations of vectors,

and for more information about the metric see Appendix A.1

The major advantage of MRXMHD and SPEC is the ability to resolve volumes

of chaos and islands in the Beltrami fields. Such structures are known to be very

important in the stability and confinement of fusion plasmas, but no other existing

equilibrium code is fully consistent with field line chaos, either ignoring it or treating

it in an ad-hoc way. For instance in the famous VMEC code, where requiring the

pressure to be a continuous function results in the plasma being composed of a com-

plete nested set of flux surfaces, a situation that one would expect only in an ideal

tokamak.

Recent results show that only a small number of interfaces are required to get

agreement with experimental data.[HDHM12] However there is in principle no upper

limit on the number of surfaces one can prescribe, so one can approach a continuous

pressure profile by portioning smaller and smaller pressure jumps among more and

more flux surfaces.[HHD06]

2.3 Hamiltonian formulation of the pressure jump

condition

2.3.1 Setting up the problem

As stated in Section 2.2.3, one can construct the pressure jump condition on a surface

S with two sides: + for the outer side and − for the inner side.
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Stating the pressure jump condition under these definitions led to Equation (2.15),

which is repeated here:

1

2
B+2 − 1

2
B−

2
= P− − P+ . (2.19)

We will now show that Equation (2.19) is analogous to a Hamiltonian system,

which can be realised when one writes the magnetic field in covariant or contravari-

ant notation. To be precise, the equation becomes a Hamilton-Jacobi equation. The

reason for doing this is that under a Hamiltonian formulation, one may apply the

tools developed for Hamiltonian mechanics to investigate the existence of given solu-

tions. Physically, this amounts to determining existence properties of the interfaces

prescribed in MRXMHD.

2.3.2 Hamiltonian treatment

The keys to the Hamiltonian treatment are Equations (2.14b) and (2.14c), together

they imply that on S,

∂θB
±
ζ − ∂ζB

±
θ = 0 . (2.20)

Equation (2.20) is implicitly satisfied if the field components can be written as

B±θ = ∂θf
± , B±ζ = ∂ζf

± , (2.21)

where the two scalar functions f±(θ, ζ) are referred to as surface potentials. The

surface potentials f− and f+ define fully the fields on the inner and outer sides of S
(B− and B+ respectively).

By using f rather than B, Equations (2.14b) and (2.14c) are implicitly satisfied

and the pressure jump conditions reduce to the single condition

∆P =
∑

i,j∈{θ,ζ}

1

2
gij∂θf

+∂ζf
+ − 1

2
gij∂θf

−∂ζf
− . (2.22)

Given a surface (which defines R and Z which in turn defines gij) and a field on

one side of the surface (which defines, say f−) the goal is to find the potential on the

other side of the surface (f+) (See Figure 2.3). If f+ can be found that has continuous

second partial derivatives [f+ ∈ C2(P+)], the magnetic field will satisfy force balance

and lie on the surface, satisfying Equations (2.14).

The problem is symmetric, one can either, given f− find f+ (work inside-out),

or given f+ find f− (work outside-in). Thus the unknown surface field potential is

referred to simply as f . Then the pressure jump condition becomes a problem of
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Figure 2.3: A depiction of a toroidal segment of the surface S to demonstrate the quantities

required for the Hamiltonian.

calculating f from the equation

H(θ, ζ, ∂θf, ∂ζf) = ∆P . (2.23)

where

H(θ, ζ, pθ, pζ) =
1

2
gijpipj + V (θ, ζ) , (2.24)

where there is an implicit sum of i, j ∈ {θ, ζ}, and

V (θ, ζ) = −1

2
gij∂if

−∂jf
− , (2.25)

and where f− has been arbitrarily chosen as the given potential: the prescribed field

on what we refer to as the prescribed side.

Equation (2.23) is a partial differential equation for f . More specifically, Equa-

tion (2.23) is a time independent Hamilton-Jacobi equation with ∂if = pi. The

Hamiltonian in Equation (2.24) we refer to as the pressure jump Hamiltonian.

As a Hamiltonian system, ∆P is identified with the energy and f is a type two

generating function (Hamilton’s characteristic function) considered to generate the

canonical pairs (θ, pθ) and (ζ, pζ) through

pθ = ∂θf = Bθ , pζ = ∂ζf = Bζ . (2.26)

If f exists, then the Hamiltonian orbit lies on an invariant torus in phase space.

Such an orbit we refer to as regular, all other orbits are irregular. Conversely, if an

invariant torus exists then the Hamilton-Jacobi equation can be integrated to find f

(See Section 3.2.4 for details).
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2.3.3 Solution and rotational transform

The solution of the pressure jump Hamilton-Jacobi equation is in general not unique.

It may be that many Hamiltonian trajectories are regular, and so may correspond to

possible field line solutions to the pressure jump condition. To differentiate between

orbits one can calculate the rotational transform, defined as

lim
∆ζ→∞

∆θ

∆ζ
= ι- . (2.27)

Given the non-intersection of phase-space characteristics for a well-defined Hamil-

tonian system [Arn89] and the fact that the phase-space characteristics are confined

to a topological torus, it is understood that the rotational transform embodies a topo-

logical invariant of the phase-space characteristic itself. In Section 2.3.6, the existence

of a map between phase-space characteristics and the magnetic field lines in config-

uration space that preserves characteristic topology will be shown. Since this map

preserves characteristic topology, it also preserves the rotational transform. Thus

the rotational transform ι- of the field line in configuration space is the same as the

corresponding quantity in phase space (known as the winding number w):

ι- = w . (2.28)

So it is often necessary to label solutions according to their rotational transform.

The physical solution (ι- Bθ(θ, ζ), Bζ(θ, ζ)) to the pressure jump condition (referred to

as a field line configuration) can be identified with a solution to the pressure jump

Hamilton-Jacobi equation, namely (pθ(θ, ζ), pζ(θ, ζ))w(= ι-) , refered to as a Hamiltonian

trajectory and the two solutions are related via

pθ
ι- = Bθ

ι- , pζ
ι- = Bζ

ι- . (2.29)

That is not to say that the field line configuration is the same as the Hamiltonian

trajectory, as they exist in different spaces. The field line configuration exists on a

torus in R3, while the Hamiltonian trajectory exists in a four dimensional phase space.

The solution to this autonomous Hamiltonian system can be found by solving the
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corresponding characteristic equations,[Gar64]

θ̇ =
∂H

∂pθ
, (2.30a)

ṗθ = −∂H
∂θ

, (2.30b)

ζ̇ =
∂H

∂pζ
, (2.30c)

ṗζ = −∂H
∂ζ

. (2.30d)

This Hamiltonian system has two degrees of freedom, but there is a conserved

property of the Hamiltonian, namely the pressure jump (the energy). Associated

with this is the ignorability of the timelike coordinate, which can be used to reduce

the two degrees of freedom system to a 11
2

degree of freedom system.

2.3.4 Reduction to a 1 1/2 DOF system

To simplify computation of Hamiltonian orbits, we condense these equations by divid-

ing Equations (2.30) by Equation (2.30c) to trivialize the third of Hamilton’s equa-

tions and make the toroidal coordinate the “time” variable. The division requires

that ζ̇ 6= 0, the implications of this being addressed in Section 2.3.5.

The reduced equations provide equations of motion with a more physically relevant

form. The first describes the path of the Hamiltonian trajectory through configuration

space:

dθ

dζ
=
gθθpθ + gθζpζ
gθζpθ + gζζpζ

=
Bθ

Bζ
. (2.31)

where Equations (2.18) have been utilized. Equation (2.31) is the equation of a field

line. A solution to this characteristic equation of the pressure jump Hamiltonian may

correspond to a field lines on the magnetic field on S, the details when the equivalence

is possible is covered in Section 3.2.5.

The second equation of motion is

dpi
dζ

=
1

2

∂ig
ijpipj + 2∂iV

gθζpθ + gζζpζ
, (pi = Bi) , (2.32)

for i ∈ {θ, ζ}. Equation (2.32) shows that the canonical momentum gives the covariant

components of the magnetic field along a Hamiltonian trajectory for solutions with

the required rotational transform.

The final equation of motion, Equation (2.30d), can be solved implicitly by the

first two using the fact that the energy of this Hamiltonian system is conserved i.e.



§2.3 Hamiltonian formulation of force balance 21

the pressure jump is constant along the flux surface by Equation (2.14a). This means

pζ can be written as a function pζ = pζ(θ, pθ, ζ; ∆P ). When this is substituted into

Equations (2.30a) and (2.30b), the entire system can be solved within two differ-

ential equations. However, inversion of the Hamiltonian brings about an arbitrary

sign, which for simplicity, we choose to be positive, discussing the choice further in

Section 2.3.5.

The system is now condensed into the differential system

dθ

dζ
= u(θ, ζ, pθ; ∆P ) (2.33a)

dpθ
dζ

= v(θ, ζ, pθ; ∆P ) (2.33b)

One method of identifying the existence of f is to calculate the Hamiltonian trajec-

tories. If a solution to this 11
2

degree of freedom system can be found that lies on

an invariant torus in (θ, pθ, ζ) space with the correct winding number, the trajectory,

when projected onto the 3D geometric torus, gives the field lines that lie on that

surface.

Treating the problem as Hamiltonian, one is able to utilise tools that have been

developed for determination of integrability in Hamiltonian systems to investigate

whether a solution (f) can be found that satisfies force balance. However, before one

can utilise tools from the Hamiltonian approach, there are two concerns that need

to be addressed. Firstly there is an ambiguous choice of sign in the Hamiltonian

formulation, and secondly it had not been certain until now that solutions from the

Hamlitonian formulation map bijectively and uniquely back to a physically relevant

field line.

2.3.5 Ambiguity of sign

The pressure jump Hamiltonian is a constraint on the square of the magnetic field, so

it is expected that there are two magnetic fields that would satisfy force balance on

any given side. This arbitrariness is made explicit when one inverts the Hamiltonian

to find pζ = pζ(θ, pθ, ζ; ∆P ) in an effort to reduce the phase space. When completing

the square one has the expression

gθζpθ + gζζpζ = ±C , (2.34)
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where C =
[
gζζ
(
2∆P − 2V (θ, ζ)− gθθp2

θ

)
+ (gθζpθ)

2
]1/2

. The left hand side of Equa-

tion (2.34) is the result of Equation (2.30c), i.e.

dζ

dt
= Bζ = ±C , (2.35)

showing that the two solutions correspond to magnetic fields with opposite toroidal

direction.

The information on the toroidal direction of the given field is similarly lost within

the pressure jump Hamiltonian so the choice of sign must be made to reflect the initial

conditions. It is expected that physical configurations would require a field to be in

the same toroidal direction on either side of an infinitely thin flux surface, otherwise

there would be a very strong current sheet, susceptible to a tearing instability.[PDJ90]

The choice of sign has also been shown to be equivalent to choosing the sign of

the rate of change of toroidal flux [BL96].

When reducing the phase space of the Hamiltonian system, Hamilton’s equations

were divided by ζ̇, thus the condition in which ζ̇ = 0 was necessarily lost. A field

line that does not extend toroidally corresponds to a field configuration of infinite

rotational transform – a situation we ignore as it will not ergodically cover the surface,

and thus will never act as a flux surface.

2.3.6 Reconciling phase space and configuration space

Kaiser and Salat [KS94] solved the less general pressure jump discontinuity problem

purely in configuration space, that is, a solution to force balance on the surface was

sought that corresponded directly to geodesics covering a 3D torus. Such an approach

is limited to situations where the field within the plasma volume is zero. However,

Kaiser and Salat felt obliged to use this geodesic method because of concerns regarding

the physical significance of Hamiltonian trajectories in phase space.

Kaiser and Salat’s gravamen against the Hamiltonian formulation can be stated as

the following: Suppose a solution to the pressure jump Hamiltonian system is found.

This will correspond to a Hamiltonian orbit that lies in a four dimensional phase

space. The actual field line however exists on the two dimensional torus embedded

in Euclidean 3-space, i.e. configuration space. We must project a four dimensional

phase space trajectory to the two dimensional configuration space – is it not possible

that the projected trajectory intersects itself after the projection?

Assuming the magnetic field is nowhere zero, such intersections would make it

impossible to interpret the projection as a physical field line.

However, it will now be proved that such crossings cannot occur, via a direct ap-

plication of the Birkhoff theorem to Equations (2.33). It will thus be demonstrated
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that the existence of an invariant torus in phase space sufficient to imply that a cor-

responding field line (identified by having ι- equal to the w of the extant Hamiltonian

trajectory that lies on an invariant surface) is guaranteed to exist and is consistent

with Equations (2.14).

The system is a 11
2

degree of freedom Hamiltonian whose trajectories define a 2D

area preserving map by integrating Equations (2.33). The mappings of interest, those

generated by a trajectory that lies on an invariant surface, are also twist maps as the

metric is positive definite [det(∂pi∂pjH) > 0]. [Gol01][Mac93]

Consider the phase space variables (q, p) in a 2 dimensional area preserving twist

map, the Birkhoff Theorem states that, for a rotational invariant circle, [Mei92]

p = Y (q) , (2.36)

where Y is a Lipschitz function on R2, i.e. Y satisfies

sup
x,y∈R2

|Y (x)− Y (y)|
|x− y|

< C , (2.37)

for some bounded constant C. In this case we can write the phase space mapping

generated by the Hamiltonian as

(q′, p′) = T (q, Y (q)) . (2.38)

Let us consider the operator π that is the projection of the phase space trajectory

onto configuration space,

π(q, p) = q, (2.39)

then

q′ = π(T [q, Y (q)]) = α(q) . (2.40)

Thus, as T is a homeomorphism and Y Lipschitz, α is also a homeomorphism [Mei92].

The injective nature of a homeomorphism implies there will be no crossings under the

mapping π.

Strictly, this is only true for a two dimensional system because the Birkhoff theo-

rem applies only for a 2D phase space. Some limited higher dimensional results have

been found.[MMS89]

This means a homeomorphic mapping like Equation (2.36) can be generated to

define completely the evolution of the system, and the above proof applies. Thus,

when mapping the Hamiltonian trajectories to the 2D torus in configuration space no
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crossings are possible.

2.4 Pressure jump Hamiltonian and the inverse

formulation

2.4.1 The Hamiltonian and important Hamiltonian equiva-

lents

The Hamiltonian formulation of the force balance condition is then the time indepen-

dent Hamilton-Jacobi equation (repeated here):

H(θ, ζ, ∂θf, ∂ζf) = ∆P , (2.41)

with Hamiltonian

H(θ, ζ, pθ, pζ) =
1

2
gijpipj + V (θ, ζ) . (2.42)

There are a collection of abstract quantities in Hamiltonian dynamics that are

important in obtaining results from the above formulation. They are listed here along

with their physical equivalents, in order to provide some physical context. Table 2.1

summarises these Hamiltonian quantities and their physical equivalents for quick ref-

erence.

Energy

The general form for a Hamilton-Jacobi equation is

H(qi, pi) = E , (2.43)

upon direct comparison with Equation (2.23), one can see that the Hamiltonian energy

is equal to the pressure jump. Importantly, as the pressure jump is defined to be

constant over the surface, so the energy is over the Hamiltonian trajectory.

Canonical coordinates

Canonical coordinates conserve the form of Hamiltonian’s equations. Thus one is

free to change between canonical coordinates without affecting Hamilton’s equations.

In the pressure jump Hamiltonian, the formalisation was based on the coordinates

qi ∈ {θ, ζ}. The realisation of the Hamilton-Jacobi equation form in Equation (2.23)

allows us to identify directly the momenta pi = ∂if = Bi as the momenta canonical

to qi.
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Action angle coordinates

In integrable systems acanonical tranformation can be made to action-angle coordi-

nates in which the Hamiltonian trajectory is trivial, i.e. for the action angle coordinate

pair (I,Θ), I (the momentum) is constant so that Θ = ωΘt + Θ0. The configuration

variable Θ is now trivial in that it is a straight line in the coordinates (I,Θ).

It might help to see it this way, a common method of solving a Hamiltonian

problem is to transform to coordinates in which the motion is simpler. For instance one

can use polar coordinates to easily solve a pendulum, whereas Cartesian coordinates

would be best for a rolling ball on a plane. In a general physical system, motion

would be much more complicated than in any of these two situations, but it should still

always be possible to find a transformation to a set of coordinates in which the motion

is simpler. Further, it is possible to find a set of coordinates in which the motion is not

only simpler, but completely trivial, i.e. a straight line. The coordinates in which the

motion is a straight line are action angle coordinates. Indeed, if a transformation to

action angle coordinates is not possible, then the motion is irregular (see Section 3.2.4

for more details)

In the first situation one had complicated motion [finely detailed trajectory pθ(θ, ζ)]

in a simple coordinate system [say, angular coordinates θ(ζ)]; after finding action angle

coordinates one now has a very simple motion (a straight line I = const, Θ = ωζ+Θ0)

in a complicated coordinate system to construct, (Θ, ζ). In finding the action angle

coordinates one has translated the complicated motion from the trajectory to the

transformation to action angle coordinates. The translation is made through what is

called the conjugacy, X

θ = XΘ . (2.44)

Physically, action angle coordinates are equivalent to straight field line coordinates.

To see this one must recall that the canonical momentum of a trajectory is equal to

the covariant component of the magnetic field [Equation (2.26)], i.e.

pθ = Bθ , pζ = Bζ . (2.45)

In the 11
2

degree of freedom system (where ζ is considered the ‘time’) pθ = Bθ. Straight

field line coordinates are defined as those in which the magnetic field is straight, i.e.

Bθ(θ, ζ) = I(a constant)⇒ pθ(θ, ζ) = I . (2.46)

To calculate them one can utilise the transformation used for action angle coordi-
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Physical Quantities and their Hamiltonian Equivalents
∆P Pressure jump E Energy
f Surface potential S Action / Hamilton’s characteristic

function
(θ, ζ) Curvilinear coordinates q Generalized coordinates
(Bθ, Bζ) Covariant components of mag-

netic field
p Generalized momenta

(Θ,Φ) Straight field line coordinates Q action angle coordinates
ι- Rotational transform w Winding number (angular fre-

quency)

Table 2.1: A table summarizing the physical interpretations of Hamiltonian quantities in

the problem.

nates

Θ = X−1θ . (2.47)

Hamiltonian trajectories

The Hamiltonian trajectories, also known as orbits are the solutions to the Hamilto-

nian system given by [q(t),p(t)] = [θ(t), ζ(t), pθ(t), pζ(t)]. As shown in Section 2.3.6

these each homeomorphically correspond to the magnetic field lines. What is most

important about the field lines is the way in which the field line wraps around the

flux surface i.e. the field line configuration, identified by the rotational transform ι-.

Figure 2.4 shows the relationship between trajectories and field lines, and the

relationship between SFLC and action angle coordinates.

Winding number

In action angle coordinates the motion of each of the coordinates is of the form Θ = ωζ .

In this ω represents the angular frequency of the coordinate.

The winding number is unique for each regular orbit and so is an identifier for

the trajectories, analagous to the rotational transform of a field line configuration.

Indeed, as was shown in Section 2.3.3, the winding number is a topological invariant

equal to the rotational transform.

Invariant tori

The invariant tori of a Hamiltonian system are the closed tori drawn out by the

Hamiltonian trajectories when pθ(θ, ζ) and pζ(θ, ζ) can be written as continuous,
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single valued, periodic functions. These are analagous to the flux surfaces drawn out

by the magnetic field lines, however they are not coincident as the two tori exist in

different spaces (in phase space the invariant torus is described by pθ(θ, ζ), pζ(θ, ζ),

whereas the flux suface itself is described by defining S).

Potential energy function

The potential energy function in the pressure jump Hamiltonian is a complicated term

involving the metric and the prescribed field f−:

V (θ, ζ) = −1

2
gij∂if

−∂jf
− . (2.48)

Generating function

All canonical transformations can be written in terms of one of four generating func-

tions (F1, F2, F3, F4). In general, a Hamilton-Jacobi equation with H independent of

time can be written as

H(qi, ∂iF2) = E , (2.49)

in this case F2 is a generating function given the special name Hamilton’s character-

istic function . Upon comparison with Equation (2.23), one can see that the surface

potential f is equal to Hamilton’s characteristic function . The existence of f then

determines the existence of an invariant torus (See Section 3.2.4 for more details).

The system was reduced to a 11
2

degree of freedom system by utilising the con-

stancy of the energy. Although pζ is no longer a canonical coordinate, one can still

calculate f in this situation, as pζ is implicitly solved in the integration of the equa-

tions of motion.

2.4.2 The inverse formulation and the two-sided principle

A more general derivation for the pressure jump Hamiltonian can be achieved by

considering the pressure jump condition between two fields B0 at pressure P0 and B

at pressure P . This time there is no specification on which field is on the “inside”

or “outside” because it is not strictly necessary to do so and in not doing so one can

avoid thinking of the problem as a continuation problem from inside to outside. In

fact B0 and P0 do not even need to be actual physical fields, just reference fields to

define the Hamiltonian.

The pressure discontinuity condition is:

1

2
B2

0 + P0 =
1

2
B2 + P . (2.50)
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The scalar functions B2(θ, ζ) and B2
0(θ, ζ) can be separated into their (constant)

surface average (< . >) and their fluctuation (̃.), which averages to zero:

B2 =< B2 > +B̃2 , (2.51a)

B2
0 =< B2

0 > +B̃2
0 . (2.51b)

Taking the surface average of the pressure jump condition results in the relation

1

2
< B2

0 > +P0 =
1

2
< B2 > +P , (2.52)

which states the surface average of the square of the field to calculate 1
2
<B2> is equal

to the surface average of the square of the provided field, shifted by the change in

pressure. With reference to Equations (2.51), Equation (2.52) implies that

B̃2
0 = B̃2 ≡ −2Ṽ (θ, ζ) . (2.53)

Thus the squares of the two fields have the same variation.

Going back to the pressure jump condition,

1

2
B2

0 + P0 =
1

2
B2 + P , (2.54)

1

2
< B2

0 > −Ṽ (θ, ζ) + P0 =
1

2
B2(θ, ζ) + P , (2.55)

1

2
< B2

0 > +P0 − P =
1

2
B2(θ, ζ) + Ṽ (θ, ζ) . (2.56)

The surface average and the fluctuation completely define B2, but calculating B

requires more information. Using the constraint that B is tangential to the surface,

one can calculate it from a surface potential f using Equation (2.21) and substituing

B into Equation (2.58). The result is

1

2
< B2

0 > +P0 − P =
1

2
gij∂if∂jf + Ṽ (θ, ζ) , (2.57)

Define

H ′ =
1

2
gij∂if∂jf + Ṽ (θ, ζ) . (2.58)

Then one has a time independent Hamilton-Jacobi equation

H ′ = H ′(q, ∂qf) = E ′ =
1

2
< B2

0 > +P0 − P =
1

2
< B2 > . (2.59)

Equation (2.57) must be solved for the scalar function f(θ, ζ), which can be con-
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structed by following only those characteristics of H that ergodically cover an invari-

ant torus. There are many trajectories that may cover an invariant torus, therefore

there is one more datum that must be prescribed to fully define the pressure jump

Hamiltonian problem, and that is the winding number of the trajectory, which corre-

sponds to the rotational transform of the resulting field.

The previous derivation was made with the goal of continuing the field across an

interface, that derivation sought to answer the question: For a given surface (g), given

a field on one side f and a pressure jump (P+ − P−), what is the field on the other

side of desired rotational transform? The derivation in this section seeks to answer

the question: Given the fluctuation of the field (B̃2 = Ṽ ) and the average value of

the field (< B2 >), what are the possible fields and rotational transforms that could

appear on either side?

The two Hamiltonians are related via

H = ∆P = H ′ − 1

2
< B2

0 > . (2.60)

By this definition, if one uses the inverse formulation, one absorbs the constant part of

the reference field into the energy. When one is instead prescribing a field by defining

f on one side and continuing the field across the surface, the surface average may not

easily be separated and so is included in the potential

V (θ, ζ) = Ṽ (θ, ζ)− 1

2
< B2

0 > . (2.61)

The two sided principle

The inverse formulation is more general and removes the need to talk of “prescribed

sides”. And so one is free to consider two solutions, then later place them on either

side of the interface. For example, for a given Ṽ (θ, ζ) find one solution B1 such that

< B2
1 >= E1 − P1 and the rotational transform is ι-1, and find a second solution B2

such that < B2
2 >= E2 − P2 and the rotational transform is ι-2. If both f1 and f2 are

valid solutions and may be considered to be on either side of the surface. One can

then ask what the pressure jump is in hindsight by calculating

< B2
1 > − < B2

2 >= E1 − P1 − (E2 − P2) , (2.62)

so that

E1 − E2 = P1 − P2 , (2.63)
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and

∆E = ∆P . (2.64)

The interpretation of the energy

The pressure jump Hamiltonian defines the energy as

E = ∆P . (2.65)

In the inverse formulation above, Equation (2.52) states that

E = ∆P =
1

2
< B2 > −1

2
< B2

0 > . (2.66)

In the presure jump Hamiltonian, 1/2 < B2
0 > is implicit in V (θ, ζ) whereas in the

inverse formulation, this constant term is aborbed into the energy E ′ = ∆P + 1/2 <

B2
0 >.

When solving the Hamiltonian system, defining E defines the magnitude of the

pressure jump which is equal to the difference in surface averages of the square of

the unknown field and the reference field. The surface average of the square of the

unknown field cannot be less than zero, so there is a minimum energy

Emin = −1

2
< B2

0 > , (2.67)

at which

< B2 >= 0⇒ B = 0 . (2.68)

i.e. at this energy the only solution is the trivial field.

While Emin is the lowest energy for which a solution can be found, the lowest

energy for which a solution f can be defined across the entire surface will generally

be at an energy larger than Emin. This point can be found using the tools developed

in the next chapter. In the inverse formulation the minimum energy is found at

E ′min = 0.

2.4.3 Similar Hamiltonian system: the double pendulum

The pressure jump Hamiltonian is quite abstract and can be difficult to visualise.

It may help to keep in mind a similar Hamiltonian system, the double pendulum.

Consider a mass m1 at the end of a soid, weightless rod of length l1 whose other

end is attached to a fixed point. The second pendulum consists of a similarly solid,
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Figure 2.5: The double pendulum is a simpler Hamiltonian system to the pressure jump

Hamiltonian with two angular variables (ϑ, ϕ).

weightless rod of length l2 with a mass of m2 at its end. The motion of each mass is

parametrised by the angle of each pendulum to its vertical resting position, the first

mass has angle ϕ and the second, ϑ. This situation in pictured in Figure 2.5.

Considering the kinetic energy of the two masses and the potential energy due to

the gravitational force on each mass, the Hamiltonian HDP for the double pendulum

can be written as, [RS84]

HDP =
l21(m1 +m2)p2

ϑ − 2m2l1l2 cos (ϕ− ϑ) pϕpϑ + l22m2p
2
ϕ

2l21l
2
2m2[m1 +m2 sin(ϕ− ϑ)]

−m2gl2 cosϑ− (m1 +m2)gl1 cosϕ . (2.69)

The double pendulum Hamiltonian is similar to the pressure jump Hamiltonian

because they both have two angular variables and a position dependent metric. Later

in this thesis, the double pendulum will be brought up to highlight similarities and

to aid in the visualisation of pressure jump Hamiltonian trajectories.

2.4.4 Distinguishing between the pressure jump Hamiltonian

and the magnetic field line Hamiltonian

It important to make clear that when Hamiltonian chaos is discussed in the fusion

context, it is usually in reference to the chaotic structures that appear in the volumes

of the fusion plasma (e.g. magnetic islands). This is usually referred to as field line

chaos, and these chaotic structures are important for confinement for the device as a

whole.

When investigating the field line chaos within a plasma volume, one refers to non-

integrable solutions to the field line Hamiltonian system. The pressure jump Hamilto-
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nian in contrast is only defined on a single flux surface, and the trajectories correspond

to different field line configurations. For more information see Appendix A.4.
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Chapter 3

Pressure jump Hamiltonian

solution and existence of solutions

To appreciate the advantage that a Hamiltonian treatment can provide, the existence

theory behind Hamiltonian mechanics must be covered. This chapter first explains

how the Hamiltonian system is solved for the trajectories. It then explores the phase

space of these trajectories with some examples to understand the effects of changing

the variables in the system. The chapter then covers Greene’s residue and how this

can be used to determine the regularity of individual trajectories, and hence to develop

a test for the existence of field line configurations of the pressure jump Hamiltonian.

3.1 Defining the problem specification

To fully define the Hamiltonian problem to be solved:

H(θ, ζ, pθ, pζ) = ∆P , (3.1)

H(θ, ζ, pθ, pζ) =
1

2
gijpipj −

1

2
gij∂if

−∂jf
− . (3.2)

one must provide the following

Pressure jump A scalar that is equivalent to the Hamiltonian energy

Initial conditions of trajectory Two values, θ0 and pθ0, together these uniquely

determine the rotational transform of the solution.

Surface geometry The metric terms are defined by the geometry of the surface S.

Prescribed field The potential is defined by the scalar function f−(θ, ζ)

Together these are referred to as the problem specification.

The first two on the list are trivial, however the final two are scalar functions

with no restriction other than they are two fold periodic to match the topology of the

problem.

35
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3.1.1 Defining the surface geometry

As detailed in Appendix A.3, a toroidal surface may be completely defined by the

functions R(θ, ζ) and Z(θ, ζ). To match the topology of the torus, the general form

of these functions is

R =
N∑

n=−N

M∑
m=0

Rmn cos (mθ − nζ) , (3.3)

Z =
N∑

n=−N

M∑
m=0

Zmn sin (mθ − nζ) . (3.4)

This Fourier decomposition provides a method of prescibing geometries by pre-

scribing coefficients Rmn and Zmn. An axisymmetric torus (major radius R0, minor

radius r0) is defined using the terms.

S =


m n Rmn Zmn

0 0 R0 0

1 0 r0 r0

 . (3.5)

The geometry can be perturbed away from axisymmetry by introducing more Rmn

and Zmn terms, each of which introduce a “ripple” in the surface with a frequency

of m in the poloidal direction and n in the toroidal direction. Any torus may be

prescribed with enough Fourier components, and this construction also ensures the

torus remains smooth as long as the Fourier series converges pointwise.

3.1.2 Defining the prescribed field

Like the geometry, the prescribed scalar potential function f− must be defined and

there are no restrictions as to what it can be, other than having the same periodicity

as the torus. The most general form for f− consistent with stellarator geometry is

(Section 2.4.1)[Hud04]

f− = I−θ +G−ζ + f̂−mn sin (mθ − nζ) . (3.6)

Where I− and G− are constants.

In the case that all the f̂−mn are zero, f− represents a prescribed field in straight

field line coordinates. Adding f̂−mn terms results in a “wiggle” in the field lines with a

frequency on m in the poloidal direction and n in the toroidal direction.

Again like the geometry, a choice of I−, G− and the f̂−mns will uniquely prescribe
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a field, but as shown in Appendix A.2.5 a coordinate change can always be made so

that the prescribed field is in straight field line coordinates.

3.2 Computational solution of pressure jump Hamil-

tonian system

The 11
2

degree of freedom problem derived in Section 2.3 was solved for the trajectory

[θ(ζ), pθ(ζ)]. A code named PJH was written in FORTRAN to solve for the trajectories.

As such it is able to generate Poincaré diagrams, plot the invariant tori and also

plot the resulting field configurations. The code’s other abilities will be introduced

throughout the thesis.

To restate the pressure jump Hamiltonian problem more explicitly, PJH solves the

equations of motion:

θ̇ =
gθθpθ + gθζpζ
gθζpθ + gζζpζ

, and (3.7)

ṗθ =
1

2

∂θg
θθp2

θ + 2∂θg
θζpθpζ + ∂θg

ζζp2
ζ + 2∂θV

gθζpθ + gζζpζ
, (3.8)

where a dot denotes a derivative with respect to the “time” ζ (ẋ = dx
dζ

), and where

pζ =
−2gθζpθ +

√
gζζ (2∆P − 2V (θ, ζ)− gθθp2

θ) + (gθζpθ)
2

gζζ
. (3.9)

The term V (θ, ζ) contains the information of the prescribed field and is explicitly

V (θ, ζ) = −1

2
gθθ(∂θf

−)2 − gθζ∂θf−∂ζf− −
1

2
gζζ(∂ζf

−)2 . (3.10)

The contravariant metric coefficients gij are calculated from the covariant metric coef-

ficients gij (See Appendix A.1 for more information about covariant and contravariant

representations)

gθθ = gθθ/G, gθζ = −gθζ/G, gζζ = gζζ/G , (3.11)

G = gθ,θgζ,ζ − g2
θ,ζ . (3.12)

These covariant metric components are themselves calculated from the surface geom-

etry via the unit vectors ei

gθθ = eθ · eθ, gθζ = eθ · eζ , gζζ = eζ · eζ . (3.13)
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The unit vectors are most easily understood in term of the Cartesian coordinates (See

Appendix A.2 for more information on the transformation between coordinates)

eθ =
∂(x, y, z)

∂θ
, eζ =

∂(x, y, z)

∂ζ
, (3.14)

and the form of the functions x(θ, ζ), y(θ, ζ), and z(θ, ζ) are provided in terms of the

functions R(θ, ζ) and Z(θ, ζ)

x = R(θ, ζ) cos(ζ) (3.15)

y = R(θ, ζ) sin(ζ) (3.16)

z = Z(θ, ζ) sin(θ) . (3.17)

Finally, R(θ, ζ) and Z(θ, ζ) are defined via the surface components Rmn, Zmn (See

Appendix A.3 for details of this decomposition)

R =
N∑

n=−N

M∑
m=0

Rmn cos (mθ − nζ) , (3.18)

Z =
N∑

n=−N

M∑
m=0

Zmn sin (mθ − nζ) . (3.19)

The system is solved using a shooting method after setting θ(0) = 0. As the

metric is positive definite, we are assured that integrating the equations of motion

from different values of pθ(0) will follow a trajectory of different winding number, and

that the winding number increases with increasing pθ.[Gol01]

To solve the Hamiltonian system the NAG routine D02CJF was utilised. D02CJF used

a variable-order, variable-step Adams method to solve the partial differential equa-

tions Equation (2.31) and Equation (2.32). The main reason for using this subroutine

was its ease-of-use and high precision over long integration ranges. It also has the

ability to output phase information while the trajectory was followed, allowing easy

output of Poincaré diagrams and other phase information. For more information on

the implications of this choice, see Section 3.2.1 and for information of other alterna-

tive methods of solution, see Section 6.3.1.

To calculate the Hamiltonian trajectories, the PJH program requires the following

information supplied as a PJH input file:

Geometry of flux surface The flux surface S must be supplied in RZ form (Rmn

and Zmn – see Appendix A.3 for more details),

Prescribed field The prescribed field f− must be specified in fmn form (See next

section).



§3.2 Computational solution of pressure jump Hamiltonian system 39

All other aspects of the problem specification are defined by options when the code

is called. For a description of the PJH input file, and more information about the

options of the program see Appendix A.7.

We benchmarked the code and validated it by comparing the results to two other

programs. A code to calculate the pressure jump Hamiltonian was written indepen-

dently by Stuart Hudson. The code was not finished and was incorrect, but the code

was completed enough so that the independently written PJH program could be com-

pared resulting in two correct agreeing versions. As both programs were written with

different code, the agreement of their results implied that coding errors were very

unlikely.

We also compared PJH to results collected from SPEC. At the time of writing

SPEC was capable of calculating the field in two regions with a pressure discontinuity

between them. SPEC solves the physical situation with a formulation that is related

to, but different from PJH. The continued field configuration provided by PJH agreed

with the field discontinuity that appeared in SPEC. That the results of SPEC agreed

with the results of PJH was additional strong evidence that the formulation and the

subsequent solution by the code was sound within the MRXMHD framework.

3.2.1 Accuracy

Integration tolerance when following field lines

The accuracy of PJH when following field lines is determined by the tolerance of

the integration, νl. We will introduce more accuracy parameters later in the thesis

when more of the code’s capabilities are described. The accuracy of the field line

tracing though is paramount and so was always set at the minimum tolerance that

D02CJF would allow. This was typically νl = 1015. Such a low tolerance is possible

because, while the trajectories are chaotic, they remain very smooth along their entire

length.

The truncation of Fourier series

Both the shape of the surface gij, and the form of the surface potential f− are con-

sidered as Fourier series. The number of Fourier terms to include in their description

needs to be kept in check. There is a tradeoff between maximising the accuracy of the

functions by increasing the number of Fourier terms and the speed of the calculation.

The sine and cosine basis of the Fourier series ensures the surfaces and the prescribed

field are smooth even when the Fourier compenents are truncated at mmax and nmax.

However, truncations are sacrifices in accuracy.

This issue is most important when calculating input files from SPEC. More details
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of this can be found in Section 3.4.3 when SPEC is used as input.

Problems at high rotational transform

Some problems became evident when following Hamiltonian trajectories. As trajec-

tories were followed for a certain ‘time’ (toroidal distance), the length of the high

winding number orbits tended to be longer, because they undergo poloidal rotations

more frequently per toroidal transit than orbits with a low winding number. Cal-

culation of such orbits was also more time consuming because the 1 1/2 degree of

freedom formulation uses ζ as the time coordinate, and the intergration needed to

take smaller steps. Thus the error increased for higher pθ orbits.

This issue of high-winding-number accuracy was dealt with by limiting investiga-

tions to low winding numbers, mainly because in later sections it becomes necessary

to follow very long field lines. The sacrifice of keeping to a regime of low w was not

too limiting as field lines in fusion reactors have rotational transforms in this regime.

Other methods of solving the Hamiltonian problem, including variational methods or

symplectic integration were attempted, but deemed at least equally unsuitable for the

reasons outlined in Section 6.3.1.

3.2.2 The phase space of the pressure jump Hamiltonian

The Hamiltonian trajectory [θ(ζ), pθ(ζ)] draws out a path in phase space. A helpful

way to investigate the behaviour of Hamiltonian trajectories is to observe the tra-

jectories’ intersections with a plane of constant coordinate. This is refered to as a

Poincaré diagram.

For the pressure jump Hamiltonian system, a plane of constant ζ is used for

Poincaré diagrams because the field lines of interest in fusion tend to have low rota-

tional transform (so there are many toroidal transits per poloidal transit).

As the radius of an invariant torus is given by the Hamiltonian momentum, trajec-

tories of different winding number will appear at different positions on the vertical axis

on the Poincaré diagram. In configuration (real) space, all corresponding field lines

will lie on the same 3D torus (the prescribed one) but each corresponding field line

configuration will have a different rotational transform corresponding to the winding

number of the trajectory.
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3.2.3 The structure of phase space

Figure 3.1 contains Poincaré sections of the phase space of the pressure jump Hamil-

tonian under a deformation

D =


m n Rmn Zmn

0 1 δ −δ
2 1 δ δ

 . (3.20)

This deformation is selected because it can produce sufficient chaos for the purposes

of exploring phase space structures. At the end of this chapter in Section 3.4, three

standard cases for investigation will be defined.

In particular, Figure 3.1(a) shows the unperturbed Hamiltonian (δ = 0) and Fig-

ure 3.1(b) shows the Hamiltonian perturbed in order to illustrate chaotic structures

that appear in the pressure jump Hamiltonian. Below is a description of each structure

and what it means for the physical system this represents.

The irrational orbits appear as curves crossing the Poincaré section, but in actual

fact they are a union of an infinity of intersections of the trajectory with the Poincaré

plane so that one can write pθ(θ) as a continuous function on said curve. This occurs

when the winding number of this trajectory is an irrational number w = wirr. In

this case the trajectory continues to wrap around the orbit making wirr poloidal

traversals every single toroidal transit. The trajectory continues to wrap around but

never intersect itself; it is said to ergodically cover the invariant torus. Physically,

this corresponds to a field line that similarly ergodically covers the prescribed surface

with a rotational transform of wirr, which ensures S is a flux surface.

Any irrational invariant surfaces that have survived any nonzero pertubation are

refered to as KAM surfaces. They are named after the KAM theorem which described

their persistance under perturbations to the Hamiltonian.[Bro04]

A rational orbit appears as a finite number of dots that lie on a curve in Fig-

ure 3.1. This trajectory has a rational winding number w = p/q where p, q ∈ N. Thus

for q toroidal transits the trajectory will undergo p poloidal transits and intersect

the Poincaré diagram p times before then intersecting on top of the points already

plotted. This means the trajectory is an invariant curve, but not an invariant torus

as physically the field line will not cover the flux surface ergodically. However, it

is theoretically possible to consider some kind of rational flux surface formed as the

union of an infinity of rational field lines placed “side by side” on the surface. These

are discussed further in Section 3.2.5.

Irrational trajectories in the neighbourhood of a rational will tend to, as the system
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(a) A Poincaré section of the pressure jump Hamiltonian with no perturbation (sys-
tem is completely integrable).

(b) A Poincaré section of the pressure jump Hamiltonian with some perturbation
(system is no longer completely integrable).

Figure 3.1: (colour online) Two typical Poincaré diagrams enabling some visualisation of

the phase space of the Hamiltonian system. Different colours correspond to different orbits.

The dot-dash curve is a representation of the prescribed field ∂θf
−.
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is perturbed, deviate from their invariant torus and no longer draw out an invariant

torus (and so a winding number cannot be defined). In this case their intersection

with a Poincaré plane is a set of closed curves called islands. As this trajectory has

deviated from its once invariant torus, it upsets the nearby rational and irrational

orbits and turns them into islands too. In this case there is physically no solution for

a field line to satisfy force balance with a well defined rotational transform.

The Poincaré points in between island groups can be stochastic, and the trajec-

tories in this area are chaotic. The size of the islands and the size of the chaotic

regions generally increases with increasing perturbation leaving only a finite measure

of irrational orbits that are valid solutions.[Mac92] For more information on how to

determine whether a trajectory is valid as a solution to the pressure jump Hamilto-

nian system, see the next section.

As an island or chaotic region increases in size, it may approach an irrational

orbit that has so far survived the purturbations. At a high enough perturbation,

the orbit will become critical and turn into a cantorus.[Hud04] The irrational tra-

jectory ceases to completely draw out an invariant torus, but instead leaves gaps

through which nearby trajectories may “leak”. When the irrational orbit turns into

a cantorus, the function pθ(θ) becomes discontinuous with holes corresponding to the

cantor set.[Niv56]

The phase space of the Hamiltonian (as it is seen using a Poincaré section) contains

all the above structures on all scales. As one can always find rationals between any

two irrationals, so one can always find an island in between two irrational orbits.

An island may increase to a stage where it overlaps another island, creating a region

of strong chaos. The entire infinity of rational orbits still exist, but they may be

surrounded by islands or by chaos and they may be stable or unstable.

3.2.4 Implications of chaotic trajectories

As the Hamiltonian is non-integrable, it is important to understand how chaotic

trajectories should be interpreted in the original pressure discontinuity problem. A

chaotic trajectory corresponds to one in which the generating function of the Hamil-

tonian cannot be found. As shown below, this corresponds to the case where f cannot

be calculated on the continued side.

Typically, in a general Hamiltonian system, the goal is to find a Hamiltonian

trajectory (q,p) for a given Hamiltonian H(q,p). To solve this one may simply

attempt to solve Hamilton’s equations, but it is often better to transform to another

coordinate system first. A different coordinate system can evince symmetries and

smplifications that may not be immediately apparent.

As Hamilton’s equations can be derived from the Lagrangian variational priciple
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(δ
∫
Ldt = 0), it is important that this principle still holds in the new coordinate

system. This only allows a certain set of transformations to new coordinate systems

to be possible for a given Hamiltonian. Such coordinates are canonical coordinates.

We know by definition that,[LL92]

∂

[∫ t2

t1

piq̇i −H(q,p) dt

]
= 0 , (3.21)

but for the transformation (q,p)→ (q̄, p̄), to be canonical we insist that

∂

[∫ t2

t1

p̄i ˙̄qi −K(q̄, p̄) dt

]
= 0 . (3.22)

As both variational principles vary the entire quadrature, the integrands may differ

by a complete differential dF
dt

piq̇i −H(q,p) = p̄i ˙̄qi −K(q̄, p̄) +
dF

dt
. (3.23)

F may be a function of any combination of the old or new coordinates.[LL92] For

instance, if F = F2(q, p̄, t), then one can expand the differential in Equation (3.23)

and collect like terms to find

pi =
∂F2

∂qi
, (3.24a)

q̄i =
∂F2

∂p̄i
, (3.24b)

K(q̄, p̄) = H(q,p) +
∂F2

∂t
. (3.24c)

From Equations (3.24) one can see how a function F2 contains all the information

necessary to transform from one canonical coordinate system to another. For this

reason F2 is refered to as a generating function, as one can generate a new set of

canonical coordinates using F2.

However, the ability to do this transformation relies on F2(q, p̄, t) existing. If the

trajectory is chaotic, pi(q) is not continuous and therefore cannot be differentiated for

Equation (3.24a). Indeed, if pi(q) is not continuous, one no longer has an invariant

surface. Also, once F2 cannot be defined, action angle coordinates cannot be defined.

Conversely, if F2 does exist the trajectory will draw out an invariant torus and that

solution is integrable.

It was found in Section 2.4.1 that the generating function F2 is, in the pressure

jump Hamiltonian system, the surface potential f , and in Section 2.4.1 that action

angle coordinates are analagous to straight field line coordinates. The destruction of

a field line configuration occurs when the transformation to straight field line coordi-
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nates is impossible.

SFLC coordinates are often defined throughout the volume when the field B is

integrable and invariant tori exist at every point in the plasma volume. In general the

pressure jump Hamiltonian is non-integrable, and such coordinates are only defined

on the invariant tori [See Appendix A.2.5].

3.2.5 Selecting a trajectory as a solution to the pressure jump

condition

Just because a Hamiltonian trajectory has been followed in phase space and lies on

an invariant torus, does not mean it corresponds to a valid solution to the pressure

jump condition in real space. As mentioned in the previous section, the necessary

condition for a solution to the pressure jump criterion is the existence of the scalar

function f(θ, ζ) over the entire flux surface that is single valued and periodic.

The physical equivalent of this requirement is that the following three conditions

be satisfied:

1. Only one field configuration may exist (as defined in Section 2.3.3),

2. The field configuration must be irrational, and

3. The field line must lie on the flux surface.

Point 1 stems from the fact that there is only one solution for f . When one

trajectory is of interest, it is fair to refer to this as a field line configuration. However,

while we can talk of a ‘set’ of trajectories, or a ‘class’ of orbits (e.g. the set of KAM

surfaces), one could not say that they are all solutions to the pressure jump condition.

All trajectories are solutions to the pressure jump Hamiltonian’s equations of motion,

but only one orbit is the solution to the pressure jump condition. To clarify this

subtle difference, solutions to the Hamiltonian systems that have not satisfied the

above three rules will be refered to as potential or candidate field line configurations.

The requirement that the solution f be defined across the entire prescribed surface

suggests the rotational transform of the field line configuration must be irrational as

only an irrational trajectory covers the entire surface. However it is, in principle,

possible to find a solution f that corresponds to a rational field line. One could

perhaps envisage an infinity of rational field lines side by side which in union cover

the surface. Only irrational flux surfaces are considered in this thesis, though the

nature and role of rational flux surfaces within the MRXMHD framework is still an

open question. For instance, SPEC allows one to set an interface to have a rational

rotational transform, and it is still possible to calculate a field line equilibrium. For
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an equilibrium with a prescribed rational interface, the islands and chaos that would

be caused by the presence of said rational are suppressed.

However, while they are unsuitable as physical solutions, rational trajectories are

the only types that can be investigated in a reliable way because of their finite length.

Sometimes characteristics of irrational solutions can be inferred by the behaviour of

nearby rational ones, for example Greene’s residue, which is introduced in the next

section.

While the above points disregard trajectories because of their nature in phase

space, there are physical arguments that may further restrict the choice of trajecto-

ries as physical solutions. The dot-dash curve in Figure 3.1 represents the trajectory

of the prescribed field p−θ = ∂θf
−. The dot-dash curve matches the contours of the

trajectories and in particular, there exists an orbit that is the same as the prescribed

field. This trajectory corresponds to a solution that has the same rotational trans-

form as the prescribed field, i.e. a field that is continuous through the flux surface.

Selecting any other trajectory as the solution results in a discontinuity in the rota-

tional transform of the field. One is free to allow solutions with a jump in rotational

transform within MRXMHD but there has been evidence that a flux surface with a

rotational transform jump across it can be unstable in some situations.[MHD09]

3.3 Irrationality, Greene’s residue and the transi-

tion to chaos

This thesis is mainly concerned with Hamiltonian trajectories of the pressure jump

Hamiltonian and the associated field configurations that can be said to satisfy force

balance. This section outlines a method for determining whether the trajectory of the

Hamiltonian system with a given winding number is regular or not (i.e. whether it lies

on an invariant torus). The winding number of a given Hamiltonian trajectory has

been shown to be a strong predictor of the regularity of the orbit.[Gre79] For consision,

a trajectory with a rational winding number will be referred to as a rational trajectory

(or rational orbit), a trajectory with an irrational winding number will be referred to

as an irrational trajectory (or irrational orbit).

3.3.1 Greene’s residue

Greene’s residue is a quantity that can be determined for a rational Hamiltonian

trajectory and amounts to a measure of the linear stability of the rational orbit. Its

uses expand past determining the stability of rationals, however, for example here it

is used to determine whether a given irrational trajectory is regular or not.
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Greene’s Rrsidue is best explained when the Hamiltonian is expressed as a map-

ping. To write the trajectory as a mapping one considers the equations of motion to

map one phase location to some other under Hamilton’s equations. For instance the

change in position of one Poincaré point (θ, pθ) at, say ζ = 0, to any other Poincaré

point (θ′, p′θ) at ζ = ζ can be written as(
θ′

p′

)
= M ′

(
θ

p

)
. (3.25)

The goal is to calculate the tangent map, which can be found by considering the

nearby phase location (
θ′ + δθ′

p′ + δp′

)
= Mζ

(
θ + δθ

p+ δp

)
. (3.26)

Linearising the divergence of the two resultant points gives the tangent map Tζ(
δθ′

δp′

)
=

(
∂θθ
′ ∂pθ

′

∂θp
′ ∂pp

′

)(
δθ

δp

)
= Tζ

(
δθ

δp

)
. (3.27)

The tangent map must be calculated along the entire length of the trajectory so

rationals with w = p/q = τN are selected whose phase location repeats after q toroidal

transits. (
θN

pN

)
= Mp/q

q

(
θ

p

)
. (3.28)

With the values of the tangent map, one can then calculate the residue r, given

by

rq(p/q) =
2− Tr

(
TτN
q

)
4

. (3.29)

The residue can be calculated for any rational orbit. One is restricted to rationals

simply because it is not possible to follow the entire irrational trajectory because it

is infinitely long. A rational trajectory w = m/n can be followed around toroidally n

times, then the trajectory repeats, allowing the residue of the rational trajectory to

be calculated after a finite number of transits.

3.3.2 Determining Greene’s residue for an irrational orbit

Regular irrational orbits are of interest because they correspond physically to flux

surfaces consistent with pressure balance. However they are infinitely long and so
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cannot be investigated without approximation of the irrational value. The existence of

Hamiltonian trajectories is highly dependant on their winding number, and previous

work has shown the dependence to be a fractal, a “devil’s staircase”. This fractal

dependence means an approximation to an irrational via a truncation of the decimal

value (for instance to investigate 3.141592 instead of π) may not provide any insight

into the existence of a single rational to infer the existence of a nearby irrational

trajectory.

However, Greene showed that it is possible to infer the existence of an irrational

orbit by considering the residues of a sequence of rational orbits that are near to the

irrational of interest and whose winding numbers converge to that irrational.

Investigations are restricted to noble irrationals, as it has been conjectured with

evidence in simpler systems that the last regular trajectory to become irregular is

always a noble.[Mac86] Noble irrationals also satisfy the diophantine condition, and

so this conjecture of regularity is consistent with what is suggested from the KAM

theorem. For more information see Appendix A.6.

This highlights a difference in the investigation in this thesis as compared to previ-

ous computational work in the field of Hamiltonian dynamics. Previously, determina-

tions of regularity using Hamiltonian tools were restricted to simple Hamiltonian sys-

tems such as the standard map,[Gre79],[GMVF81] the Henon-Heiles system[Gre80],

and the double pendulum[PR94]. These systems are easily computable (keeping in

mind the computational power of the computer in the 1980s and 1990s) and the sys-

tems have a one-parameter perturbation that allows a simpler and cleaner transition

from regularity. As a result they provide clearer understanding of the effects that

cause irregularity. These simplified approaches are also the obvious way to find some

examples of universal behaviour, and determine general rules for which orbits are

more likely to exist. In contrast the pressure jump Hamiltonian contains an infinity

of variables capable of producing chaotic effects (owing to the complicated geometry

of fusion devices). Thus, this thesis must instead limit itself to investigating individ-

ual rotational transforms for certain system specifications that hint at more general

behaviour.

Calculating the tangent map

The components of the tangent map cannot be explicitly calculated because the

Hamiltonian is not integrable, but if one differentiates the tangent map,

dTζ
dζ

=

(
d
dζ
∂θθ
′ d

dζ
∂pθ
′

d
dζ
∂θp
′ d

dζ
∂pp
′

)
=

(
∂θ

d
dζ
θ′ ∂p

d
dζ
θ′

∂θ
d
dζ
p′ ∂p

d
dζ
p′

)
, (3.30)
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and expand it to

dTζ
dζ

=

(
∂θθ̇
′∂θθ

′ + ∂pθ̇
′∂θp

′ ∂θθ̇
′∂pθ

′ + ∂pθ̇
′∂pp

′

∂θṗ
′∂θθ

′ + ∂pṗ
′∂θp

′ ∂θṗ
′∂pθ

′ + ∂pṗ
′∂pp

′

)
, (3.31)

it can then be condensed into the differential equation

dTζ
dζ

=

(
∂θθ̇
′ ∂pθ̇

′

∂θṗ
′ ∂pṗ

′

)
Tζ . (3.32)

The elements of the matrix in Equation (3.32) here can be integrated along the field

line, because they are derivatives of the equations of motion. Thus there is a system

of four differential equations to solve along the Hamiltonian trajectory, one each for

the elements of the matrix Ti,j in addition to the phase trajectory itself. To calculate

the tangent map, one needs to integrate the four Equations (3.32) while integrating

the trajectory. So then the trajectory information is stored in the six-dimensional

array [θi,pθi,T11,T12,T21,T22].

Selecting which trajectories to investigate

Now that the residue can be calculated for a rational orbit, one must select a set of

rationals to investigate, from which one can infer the residue of that irrational. Greene

asserts, with computational evidence, that one can infer the residue of an irrational

surface from the limit of the residues of a sequence of nearby rationals, that converge

to the irrational[Gre79]. Specifically, the assertion is that if one can set up a sequence

of rational numbers τN = pN
qN

that converge to the irrational number wirr, then

r(wirr) = lim
N→∞

r(τN) , (3.33)

provided the sequence is the sequence of rationals

τN = [a0, a1, . . . , aN ] , (3.34)

whose continued fraction representation (Appendix A.6.3) is truncated at the (N)th

partial quotient. This sequence of rationals can also be generated by following the

noble path between two rationals in the Farey tree representation detailed in Ap-

pendix A.6.4. The irrational being approached in this fashion is always a unique

noble between an interval p1/q1 and p2/q2, and so in this thesis it is referred to as

γ[p1,q1,p2,q2]. The convergents within the interval are written as τ
[p1q1p2q2]
N . This notation

is described in more detail in Appendix A.6.6.

As mentioned, Greene introduced the above as assertions, with numerical evidence
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for the standard map, in 1979, with expectations that the idea could be generalised

to other maps and to other irrationals.[Gre79] Since then, some progress has been

made, the most by his student Robert MacKay in 1992[Mac92]. Still the residue as a

criterion of stochastic transition has not been rigourously proved, but there is strong

numerical evidence in the literature. All results found in this thesis were consistent

with Greene’s conjectures.

Finding a trajectory with a given winding number

Now that the rationals to investigate are known, the trajectories corresponding to

these rationals need to be found in phase space. This amounts to searching for the

initial conditions that produce a trajectory of the desired rational winding number.

We assume stellarator symmetry[DH98] so that a trajectory of any winding number

can be found with a search along the θ = 0 ray so that w = w(pθ).[Hud04] As w(pθ)

is not known, the correct field line is found iteratively. The goal is to find a certain

rational winding number, say w = p/q. By keeping the starting point at θ = 0, and

integrating the equations of motion until ζ = 2πq, the winding number can be written

as

w(pθ) =
θ(ζ)|2πq

2π
, (3.35)

(here θ ∈ R, not periodic in 2π). To find pθ, one must find the root of

w(pθ)− ι- = 0 . (3.36)

PJH does this using the NAG Routine C05NBF. This routine was used because it is

a reliable code for root finding for nonlinear equations as it guarantees global con-

vergence for starting points far from the solution and a fast rate of convergence for

reasonable conditions. However the subroutine had difficulties in highly chaotic con-

figurations. The techniques for dealing with these limitations are discussed below. As

Equation (3.35) has no explicit form, one cannot supply the derivitives, C05NBF does

not need derivitives and instead approximates the Jacobian using forward differences.

The routine iterates on pθ until

θ(ζ) = 2πm . (3.37)

This process does not require the tangent map so one can save time by only integrating

the phase information. The starting point pθ = I was used as it is guaranteed to lie

on the irrational for zero pressure (∂θf
−(0, 0) = I).

At low deformation and for small pressure jumps, we found that the routine was
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quite reliable in finding the given winding number because the irrational trajectory

lay within a region of regular irrational orbits and at each step of the iteration the

winding number was well defined. The task became more difficult when significant

areas of phase space were chaotic because the rational orbits are hidden amongst

trajectories with badly defined rotational transforms.

The iteration was improved by relying on the fact that the trajectory corresponding

to the winding number of interest will move continuously with an increase in the

purturbation (as long as it remains stable), trajectories with the same winding number

tend to have a similar initial momentum. Thus a trajectory can be followed if the

pressure jump is increased slowly enough (with the previously found initial condition

becoming a good guess for the unknown momentum).

To this effect we wrote an addtion algorithm; if the routine was having trouble

finding the intial pθ value, the code will set the pressure to zero (where chaos is at a

minimum) and start finding the root. The code then gradually increased the pressure,

ensuring pθ could be found at each step. This algorithm worked very well, especially

with variable step changes. The algorithm ceases to work when the step in the pressure

required to still track the trajectory of interest within the chaos becomes less than

machine precision, but practically the limit was well above this as the time taken

increased exponentionally with decreasing step size. However for the configurations

of interest in this thesis, this algorithm was able to track the trajectories of interest

to a pressure high enough to observe the desired results.

Once the initial conditions for the desired rational rotational transform have been

found, the integration can start again, this time integrating the tangent map as well.

Once the trajectory is calculated for the entire ζ = 2πn, one can calculate the residue

of that orbit using Equation (3.29).

3.3.3 Why not use the KAM theory?

Investigations into the regularity of Hamiltonian systems invariably refer to the KAM

theory.[Bro04] The KAM theory considers the perturbed Hamiltonian

HK = H0 + εHε , (3.38)

which is a linear combination of the Hamiltonian function H0 and the perturbation

εHε. Consider that a trajectory with winding number wirr exists in the Hamiltonian

system H0. The KAM theorem may be summarised as the statement that, so long as

wirr is sufficiently irrational, i.e. satisfies the Diophantine condition

|qw − p| > CD
qε

(3.39)
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where CD > 0 and ε ≥ 1, then the trajectory with this winding number is likely to

persist (i.e. still exist) under sufficiently small and smooth perturbations of the phase

space. What is important to note is that the theorem is perturbative.

Previous treatments of the problem have suggested using the KAM theory to

prove the persistence of flux surfaces under small perturbations in the Hamiltonian.

The first paper to use a Hamilton–Jacobi formulation in this context and the first to

investigate the suitability of using the KAM theory to infer the existence of field lines

in this problem was by Berk et al [BFL+86]. By assuming the pressure jump interface

S to be located on a magnetic surface that is somehow known to be an invariant torus

of a non-integrable vacuum magnetic field (this would be their H0), and taking the

pressure jump to be the perturbation parameter, they were then able to invoke the

KAM theorem to state persistence arguments.

The critical difference was that Berk et al were able to assume an extant invariant

torus of the unperturbed Hamiltonian H0, so that persistence conclusions could be

drawn for sufficiently smooth and small ε. In MRXMHD, one does not have the

luxury of knowing a-priori if a flux surface should exist for use as an interface, this is

equivalent to knowing if a trajectory wirr exists for the pressure jump Hamiltonian H

in the first place. So considering whether the trajectory wirr exists for the Hamiltonian

H + εHε is not possible.

Thus this thesis cannot utilise the KAM theorem. Instead the less rigorous Grene’s

residue is used. Despite its only partial mathematical justification, [Mac92], Greene’s

residue has proved very helpful in investigations of this kind in the past [Hud04, PR94,

SK81].

3.3.4 Computational calculation of the tangent map

PJH can also integrate the tangent map and calculate the resulting residue. It does

this by solving the equations

∂θθ̇ =
1

ζ̇

(
∂θg

θθpθ + ∂θg
θζpζ + gθζ∂θpζ − θ̇∂θζ̇

)
, (3.40a)

∂pθ̇ =
1

ζ̇

(
gθθ + gθζ∂pθpζ − θ̇∂pθ ζ̇

)
, (3.40b)

∂θṗ = −1

ζ̇

(
1

2
∂2
θg

θθp2
θ + ∂2

θg
θζpθpζ + ∂θg

θζpθ∂θpζ +
1

2
∂2
θg

ζζp2
ζ

+∂θg
ζζpζ∂θpζ + ∂2

θV + ṗθ∂θζ̇
)
, (3.40c)

∂pṗ = −1

ζ̇

(
∂θg

θθpθ + ∂θg
θζpζ + ∂θg

θζpθ∂pθpζ + ∂θg
ζζpζ∂pθpζ + ṗθ∂pθ ζ̇

)
, (3.40d)
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along with the equations of motion Equations (2.33). The above equations depend

on the derivitives of many quantities that must themselves be differentiated.

Each equation in Equations (3.40) is more complicated than the original equations

of motion, and these four equations must be integrated at the same time as the

equations of motion [Equations (3.7)]. This is very time consuming and a limitation

on the code. For a discussion of the possible improvements that could yet be made

to the code, see Section 6.3.

3.3.5 Residue curves

Now that residues can be calculated for periodic orbits, this section demonstrates how

these residues are used to determine whether a Hamiltonian trajectory is regular or

not.

As explained, one cannot access the residue of an irrational surface directly so one

must determine the residues for nearby rational convergents to the irrational. The

limit of the residues of the convergents approaches the residue of the irrational. To

visualise this process, one can use a residue curve, that plots the residue as a function

of the convergent rationals

Consider Figure 3.2, it contains Poincaré diagrams of the configuration in Sec-

tion 3.2.3, but this time an irrational has been searched for and located. In the

Poincaré diagram the position of the irrational is illustrated by plotting a high or-

der rational marked by crosses. The irrational is indistinguishable from the plotted

rational at the scale of the plot.

Figure 3.2 also contains residue curves of the irrational alongside the corresponding

Poincaré diagrams. The irrational of interest is

w = γ[0111] = 0.618033988... , (3.41)

the same as the prescribed rotational transform (See Appendix A.6 for further expla-

nation of the notation).

Figures 3.2(a), 3.2(c) and 3.2(e) are Poincaré diagrams of the pressure jump Hamil-

tonian at three different pressures. In Figure 3.2(a) the residues of the convergent

rationals converge to zero, from this it can be inferred that the residue of the irrational

is also zero, and so the trajectory with winding number wirr does lie on an invariant

torus (and further there exists a field configuration consistent with force balance on

the physical flux surface).

Figure 3.2(f) shows the residues approaching infinity. From this is inferred that the

irrational phase trajectory does not lie on an invariant torus and that no corresponding

field line configuration exists. In the corresponding Poincaré diagram(Figure 3.2(e)),

one can see that the points of the plotted rational trajectory are no longer equally laid
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(a) Poincaré diagram of the pressure jump
Hamiltonian (E = 0.0001000).

(b) Residue curve for the trajectory γ[0111] (E =
0.0001000).

(c) Poincaré diagram of the pressure jump
Hamiltonian (E = 0.0350621).

(d) A residue curve for the trajectory γ[0111]
(E = 0.0350621).

(e) Poincaré diagram of the pressure jump
Hamiltonian (E = 0.0200000).

(f) A residue curve for the trajectory γ[0111]
(E = 0.0200000).

Figure 3.2: Figures 3.2(a), 3.2(c) and 3.2(e) are Poincaré diagrams of the pressure jump

Hamiltonian trajectories at three different pressures. The dot-dash curve shows the pre-

scribed field and the crosses show Poincaré punctures of the trajectory of the ninth con-

vergent rational (w = τ
[0111]
9 = 0.617977...) which is very close to the irrational of interest

w = γ[0111]. Figures 3.2(b), 3.2(d) and 3.2(f) are the corresponding residue curves of the

w = γ[0111] trajectory at those same pressures. There are three possible limiting behaviours

of the residue curve, limiting to zero (regular), limiting to 0.25 (critical) and limiting to ∞
(irregular or chaotic).
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out along the pθ(θ) “curve”. Note that although the irrational trajectory no longer

forms an invariant torus, it can be seen that there is probably at least one nearby

irrational invariant torus that does, as the chaos above and below the irrational is not

connected.

Figure 3.2(d) shows the residues converging to the value 0.25. At this pressure

the irrational is said to be critical, just on the cusp of destruction so that any further

non-trivial deformation will cause the irrational trajectory to trace out a cantorus and

no longer correspond to a valid solution. However, it has been shown that cantorii

can act as partial barriers through which flux can leak through slowly.[Hud04]

In Figures 3.2(b), 3.2(d) and 3.2(f), one can see the residues take some time to

smooth out to the limit. This transient behaviour is due to the low order rationals

being so far from the irrational of interest that the convergents do not reflect the

residue of the irrational. By inspection, this transient behaviour does give a qualitative

idea of how close the irrational is to destruction, or the resilience of the orbit (See

Section 6.4.2 for a discussion of this in more detail).

There is an important tradeoff to keep in mind when calculating these plots. There

is an inevitable decrease in accuracy one succumbs to when integrating long field lines.

For example, at the 12th convergent τ12 for the interval [p1, q1, p2, q2], the PJH code

must follow the field line (q1 + q2 × 233) times toroidally. Thus field lines need to be

long to give an accurate measure of the existence test, but the longer they are the less

accurate the numerical calculation is.

One of the reasons the trajectory corresponding to 1/γ = γ[0111] is investigated

is because the toroidal transit increase per convergent is the lowest possible, reflect-

ing the fact that the golden mean and its inverse have rationals that approach the

irrational the slowest of all real numbers, and so is the most noble. In contrast, less

noble irrationals are approached by their rationals faster, resulting in less transient

behaviour in the residue curve, but longer field line tracing for each convergent, and

more computational time to determine existence.

3.3.6 Numerical error in calculating the residue

In addition to the accuracy considerations in Section 3.2.1, the calculation of the

residue requires more tolerances that affect accuracy.

Tolerance in finding the trajectory with desired winding number

After setting the integration tolerance νl, the algorithm is capable of finding a trajec-

tory with a winding number close to the desired with error ε ι-. With νl at its minimum

possible value, ε ι- was the limiting factor in the accuracy of this ι- finding algorithm.

Based on experience, ε ι- = 10−10 was the best value, though the code automatically
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p q τN (w − τN)/τN
1 2 0.500000000000 5.7×10−13

2 3 0.666666666667 -2.2×10−12

3 5 0.600000000000 -3.4×10−12

5 8 0.625000000000 9.2×10−13

8 13 0.615384615385 5.0×10−13

13 21 0.619047619048 1.6×10−14

21 34 0.617647058824 -1.4×10−13

34 55 0.618181818182 -3.9×10−12

55 89 0.617977528090 4.4×10−12

89 144 0.618055555556 1.9×10−11

144 233 0.618025751073 3.5×10−11

233 377 0.618037135279 7.4×10−11

377 610 0.618032786885 -2.7×10−10

610 987 0.618034447822 1.4×10−10

987 1597 0.618033813400 -5.0×10−10

Table 3.1: A table showing the accuracy with which PJH finds the trajectory with the

descired winding number for δ = 0.01200 and ∆P = 0.0350621 (near criticality) for tolerance

νl = 10−15 and ε ι- = 10−10. One can see the error increasing with field line length (∝ q).

These numbers are small enough so that one can say that the limiting factor of accuracy is

the calculation of the residue. This table corresponds to the plot Figure 3.2(d).

relaxed this constraint by a single order of magnitude if the desired winding number

wasn’t found. If it still was not found for ε ι- = 10−9, the results were deemed to not

be reliable.

Table 3.1 shows the accuracy to which PJH was able to find the desired rotational

transform for a typical case near criticality (near criticality, Figure 3.2(d)). One

can see that the error is often well below the set tolerance level, but begins to have

problems for very long field lines. As will be shown later, it is not usually necessary

to follow field lines for longer than 100 toroidal transits. In this regime the accuracy

of finding field lines is so good that the limiting factor of accuracy of the residue is

the integration of the tangent map, rather than the finding of the trajectory with the

correct winding number.

Integration tolerance when calculating the tangent map

While νl determines the accuracy of field line following, the calculation of the tangent

map requires an order of magnitude more calculations and the integrating procedure

could not match the accuracy achieved when following the field lines. Thus a second

tolerance νr was set to determine the accuracy of the tangent map calculation.

Numerical error is a perpetual concern with investigations involving Greene’s

residue. During integration the error will become worse if the field line is long (when
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investigating rational convergents this occurs when N is large), and will also increase

for Hamiltonian problem specifications with large perturbations (as the integrating

procedure must undergo more calculations).

Table 3.1 shows that the field lines can be found to a high accuracy, which im-

plies that the accuracy is mainly determined by the calculation of the residue, which

requires the integration of six equations of motion. As the value of the residue is not

known a-priori, determining its accuracy by comparing to the expected result is much

more difficult.

Numerical error tends to make the trajectory deviate from its true course. This

is a concern when calculating Greene’s residue because deviations from the invariant

torus causes the residue to increase in value. So it can be hard to determine if the

increase of the value of the residue is due to a transition to irregularity or to numerical

error. A qualitative test was devised to ensure accuracy and this test is outlined in

the next section.

It was observed that the integration procedure D02CJF would often fail if νr was

too small, especially if many Fourier components were required. Based on experience,

the optimum value was νr = 10−13. It is difficult to determine how accurate a given

tangent map calculation is because it is not know a-priori what the value of the

residue should be. For this reason the test in the next section was devised as a rough

indicator of accuracy.

3.3.7 Qualitative test for determining accuracy of code

Figure 3.2(b) provides a good oppportunity to determine whether numerical error is

affecting the result of the residue, because the true qualitative behaviour of these

residue curves is known from Greene’s work.[Gre79] In Figure 3.2(b), the residue

should ] decrease as regularity is assured, if the residue starts to increase, this can be

reasonably ascribed to numerical error. Figure 3.3 shows the base ten logarithm of

the residue at ∆P = 0. Here the residue increases after N = 8, though acceptable

accuracy extends to approximately N = 12.

In some situations one wishes to calculate the value of the residue and in others

one wishes to determine the critical perturbation that makes a trajectory irregular.

The accuracy of the residue is limited in the ways described above, so throughout

this thesis whenever the residue was calculated the above tests were done manually

in an effort to intuit an understanding of how accurate the determination of value of

the residue was. In the latter case there are techniques that can be used to precisely

determine the critical perturbation without need for more accurate residues, these

techniques are covered in Section 5.2.
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Figure 3.3: A plot of the logarithm of the residue for E = 0. The error increases for

longer and longer field lines and has the effect of making the residue larger than zero for a

trajectory that by construction is known to exist. This plot provides as indication of what

value of N past which one should consider the results inaccurate.

3.4 Three cases of interest

3.4.1 The simplified pressure jump Hamiltonian

There is great freedom in defining the Hamiltonian. Although defining R and Z

in Fourier form is intuitive, an analytical treatment of the introduction of Rmn and

Zmn terms quickly becomes untenable. The Fourier sum becomes convoluted when

the metric terms gij are calculated, then these terms are combined to produce the

gij that explicitly appear in the Hamiltonian. This results in a functionally compli-

cated Hamiltonian inappropriate for theoretical exploration. In order to discern some

general properties of this Hamiltonian, this freedom must be reduced in a way that

retains helpful physical interpretations.

A common simplification to fusion geometries is to take the cylindrical limit. This

limit occurs as the inverse aspect ratio ε = r0/R0 approaches zero.

In order for the periodicity length (distance) in the toroidal direction to remain

finite as ε → 0, we assume there is a discrete 1/ε-fold toroidal symmetry of the

system (i.e. there are 1/ε identical field periods in one toroidal circuit) and take a 2π

increment in ζ to correspond to a field period rather than to a full toroidal circuit.

The Cartesian coordinates are required to calculate the metric. In this case the
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Cartesian coordinates are

x = R(θ, ζ) cos (εζ)− r

ε
, (3.42a)

y = R(θ, ζ) sin (εζ) , (3.42b)

z = Z(θ, ζ) . (3.42c)

where the the x and z axes are shifted to ensure the cylindrical approximation to the

first field period has its axis centered along the y axis.

Simplifying perturbations to the deformation

There are two deformations of interest:

1. Helical deformations of the cross sectional shape (Rδ, Zδ),

2. Helical deformations of the centroid of the cross section (Ra, Za).

Figure 3.4 shows the effects of the two perturbations. The perturbations are

applied to R(θ, ζ), Z(θ, ζ)

R(θ, ζ) = R0 + r0 cos θ +Ra +Rδ , (3.43a)

Z(θ, ζ) = r0 sin θ + Za + Zδ . (3.43b)

The deformations to the centroid of the cross section are applied by adding a (0, 1)

mode to R and Z, as described in Appendix A.3.

Ra = ar0 cos(−ζ) , (3.44a)

Za = −ar0 sin(−ζ) , (3.44b)

so that the centroid draws out a helix of radius ar0.

Deformations to the cross section can be prescribed by defining the minor radius

r(θ, ζ). Consider the modifying the minor radius by adding the function

rδ(θ, ζ) = δ r0 cos (mθ − nζ) , (3.45)

which applies a “ripple” to the cross section with poloidal period m and toroidal

period n. Rδ(θ, ζ) and Zδ(θ, ζ) are the projections of rδ(θ, ζ)

Rδ(θ, ζ) = rδ(θ, ζ) cos θ , (3.46a)

Zδ(θ, ζ) = rδ(θ, ζ) sin θ . (3.46b)
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By using trigonometric identities, these functions can be written in the form of the

Fourier decomposition for R and Z,

Rδ(θ, ζ) =
δ

2
r0

[
cos ((m+ 1)θ − nζ) + cos ((m− 1)θ − nζ)

]
, (3.47a)

Zδ(θ, ζ) =
δ

2
r0

[
sin ((m+ 1)θ − nζ)− sin ((m− 1)θ − nζ)

]
. (3.47b)

Combining all the above terms, gives

R(θ, ζ) = r0

[
1

ε
+ cos θ + a cos(−ζ)

+
δ

2
cos ((m+ 1)θ − nζ) +

δ

2
cos ((m− 1)θ − nζ)

]
, (3.48a)

Z(θ, ζ) = r0

[
sin θ − a sin(−ζ)

+
δ

2
sin ((m+ 1)θ − nζ)− δ

2
sin ((m− 1)θ − nζ)

]
. (3.48b)

By substituting Equations (3.43) into Equations (3.42), one can calculate the

metric. However, despite only having two harmonics, the form of the metric is still too

complicated to provide helpful analytical insight. By expanding the metric functions

to first order in ε, a and δ, and removing any cross terms in these variables, one finds

the simpler but more intuitive metric

gθθ ∼ 1− 2δ cos (mθ − nζ)

r2
0

, (3.49a)

gθζ ∼ −a cos(θ − ζ)

r2
0

, (3.49b)

gζζ ∼ 1− 2ε cos θ

r2
0

. (3.49c)

To first order the inverse aspect ratio determines the gζζ only, the cross section defor-

mation affects gθθ only and the twist in the centroid axis introduces gθζ .

Simplifying perturbations to the potential function

The simplification is not complete, as the potential function V (θ, ζ) has not yet been

prescribed. The potential is given by Equation (2.25), expanded here,

V (θ, ζ) = −1

2
gθθ(∂θf

−)2 − gθζ(∂θf−)(∂ζf
−)− 1

2
gζζ(∂ζf

−)2 . (3.50)
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(a) a = 0, δ = 0. (b) a = 0, δ = 0.1.

(c) a = 1.5, δ = 0. (d) a = 1.5, δ = 0.1.

Figure 3.4: Deformations to the cross section (magnitude δ and mode (1, 1)) and to the

centroid of the cross section (magnitude a) together simulate a deformed surface with only

two Fourier components while being consistent with stellarator symmetry.
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The general form for f− was given in Equation (2.21), repeated here

f− = Iθ +Gζ + f̂mn sin (mθ − nζ) , (3.51)

Where the minus in the superscript has been removed for clarity when f− is expanded.

One can consider a simple perturbation to the potential by selecting one Harmonic,

say (f̂mn,m, n) = (F,mF , nF ) such that

f− = Iθ +Gζ + F sin (mF θ − nF ζ) . (3.52)

When this perturbed f− is substituted into V along with the simplified metric (Equa-

tion (3.49)) a complicated epression is then found, which can be reduced by removing

higher order terms (i.e. F 2 → 0, aF → 0, δF → 0, εF → 0) to

V (θ, ζ) ∼ −1

2
gθθI2 − gθζIG− 1

2
gζζG2 − F

r2
0

(ImF −GnF ) cos (mF θ − nF ζ) . (3.53)

The simplified Hamiltonian

With the above simplifications, the simplified pressure jump Hamiltonian is

Hr2
0 =

1

2
[1− 2δ cos (mθ − nζ)](p2

θ − I2)− a cos(θ − ζ)(pθpζ − IG)

+
1

2
(1− 2ε cos θ)(p2

ζ −G2)− F (ImF −GnF ) cos (mF θ − nF ζ) . (3.54)

This provides a potentially non-integrable Hamiltonian defined by the variables (r0, I, G)

with perturbation parameters (ε, a, δ, F ) with a choice of modes [(m,n) = (mF , nF )].

Unless stated otherwise, when investigating this simplified Hamiltonian (r0, I, G) =

(1, 1, γ). I and G are so chosen so that the rotational transform of the prescribed field

is I/G = 1/γ, and setting I = 1 ensures the continued trajectory of winding number

1/γ occurs at pθ = 1 for the unperturbed Hamiltonian.

If only one of the perturbation parameters is non-zero, the Hamiltonian remains

regular, as a transformation may always be made so that the Hamiltonian is separable.

By inspection, it is immediately obvious that the Hamiltonian is non-integrable for

any combination of two or more perturbation parameters.

The inverse formulation has a simpler form with this first order approximation as



§3.4 Three cases of interest 63

the approximation to the metric contains explicit constant terms. Therefore

Hr2
0 =

1

2
[1− 2δ cos (mθ − nζ)]p2

θ − a cos(θ − ζ)pθpζ

+
1

2
(1− 2ε cos θ)p2

ζ − F (ImF −GnF ) cos (mF θ − nF ζ)

+ δ cos (mθ − nζ) I2 + a cos(θ − ζ)IG+ ε cos θ G2

− 1

2
I2 − 1

2
G2 , (3.55)

which has the form of Equation (2.58) with a potential term that can be split into its

constant term and fluctuation terms

< B2
0 >= −2 < V > =

(
I2 +G2

)
, (3.56)

Ṽ (θ, ζ) = δ cos (mθ − nζ) I2 + a cos(θ − ζ)IG+ 2ε cos θ G2

− F (ImF −GnF ) cos (mF θ − nF ζ) , (3.57)

and the Hamiltonian for the inverse problem will be

H ′ =
1

2
(1− 2δ cos (mθ − nζ)) (p2

θ − I2)− a cos(θ − ζ)(pθpζ − IG)

+
1

2
(1− 2ε cos θ)(p2

ζ −G2) + Ṽ (θ, ζ) , (3.58)

where

H ′ = E ′ = (∆P )r2
0 +

1

2
(I2 +G2) . (3.59)

Conserving the prescribed rotational transform during deformation

The prescribed f and surface S define a rotational transform on the surface. Is it

possible, within the above first-order model, to relate f and the deformation param-

eters δ, a, ε so that the rotational transform is conserved during deformations? This

section shows that it is possible within the simplified formulation to conserve the first

order approximation to ι- during deformations.

It is hypothesised that the change to the rotational transform under a surface

deformation in the modes a : (1, 1), ε : (1, 0) and δ : (m,n) could be undone with a

change to the prescribed field with the same modes.

f(θ, ζ) = Iθ +Gζ + Fδ sin (mθ − nζ) + Fa sin(θ − ζ) + Fε sin θ . (3.60)
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The rotational transform is given by the integral

ι- =

∫ 2π

0

dθ

dζ
dζ . (3.61)

For the prescribed field, the rotational transform can be calculated using

ι- =

∫ 2π

0

gθθ∂θf + gθζ∂ζf

gθζ∂θf + gζζ∂ζf
dζ . (3.62)

Substituting the prescribed deformed field, the integrand becomes, when expanded to

first order and removing cross terms

dθ

dζ
∼ I

G

(
1− 2δ cos (mθ − nζ) +

[
I

G
− G

I

]
a cos(θ − ζ)− (1− 2ε cos θ)

+ Fδ

[m
I

+
n

G

]
cos (mθ − nζ) + Fa

[
1

I
+

1

G

]
cos(θ − ζ) + Fε

1

I
cos θ + 1

)
,

(3.63)

where ι- = I/G in the unperturbed case and the “+1” and “−1” are intentionally left

in without cancelling so that the first order metric coefficients can be identified in the

equation.

The goal is to have ι- not change under perturbations and so the integral in Equa-

tion (3.61) must remain equal to ι-. The most direct way to do this is to require the

integrand to be equal to ι- for all θ and ζ. This is a stronger restriction than just

requiring ι- to be conserved, it additionally requires that (θ, ζ) become straight field

line coordinates. Note that this is only a first order expression for ι- and so it will

only conserve the first order approximation to ι-. Equation (3.63) is set to equal I/G

and the equation is rearranged to be

I

G
=
I

G

{ (
2δ + Fδ

[m
I

+
n

G

])
cos (mθ − nζ)

+

(
a

[
I

G
− G

I

]
+ Fa

[
1

I
+

1

G

])
cos(θ − ζ)

+

(
2ε− Fε

1

I

)
cos θ

}
. (3.64)

Which allows one to equate like cosine terms for expressions for the coefficients of the
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prescribed field perturbations that conserve the rotational transform

Fδ = 2
IG

In+Gm
δ , (3.65a)

Fa = −(I −G)a , (3.65b)

Fε = −2Iε . (3.65c)

Substituting these expressions into the Hamiltonian gives

Hr2
0 =

1

2
(1− 2δ cos (mθ − nζ)) (p2

θ − I2)− a cos(θ − ζ)(pθpζ − IG)

+
1

2
(1− 2ε cos θ)(p2

ζ −G2)− Fδ (Im−Gn) cos (mθ − nζ)

− Fa(I −G) cos(θ − ζ)− FεI cos θ , (3.66)

Hr2
0 =

1

2
(1− 2δ cos (mθ − nζ)) (p2

θ − I2)− a cos(θ − ζ)(pθpζ − IG)

+
1

2
(1− 2ε cos θ)(p2

ζ −G2)− 2IG
Im−Gn
Gm+ In

δ cos (mθ − nζ)

+ (I −G)2a cos(θ − ζ) + 2I2ε cos θ . (3.67)

3.4.2 MRXMHD Interfaces

Defining the geometry of interfaces

To see how well the simplified Hamiltonian reflects the pressure jump Hamiltonian,

the second case involves solving the pressure jump Hamiltonian system for a smoothly

deformed surface. Such a deformation simulates one that SPEC may apply in an effort

to satisfy force balance on an interface as part of its calculation of the equilibrium

field. The same deformation as the simplified case, namely a twist in the centroid

Ra = ar0 cos(−ζ) , (3.68a)

Za = −ar0 sin(−ζ) , (3.68b)

and a deformation in the cross section of mode (1, 1),

rδ(θ, ζ) = δ r0 cos (θ − ζ) , (3.69)
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results in

R(θ, ζ) = R0 + r0 cos θ + ar0 cos(−ζ)

+
δ

2
r0

[
cos (2θ − ζ) + cos (−ζ)

]
, (3.70a)

Z(θ, ζ) = r0 sin θ − ar0 sin(−ζ)

+
δ

2
r0

[
sin (2θ − ζ)− sin (−ζ)

]
. (3.70b)

Equations (3.70) can be simplified further into two components reflecting the super-

position of the two deformations

R(θ, ζ) = R0 + r0 cos θ +

(
δ

2
+ a

)
r0 cos(−ζ) +

δ

2
r0 cos (2θ − ζ) , (3.71a)

Z(θ, ζ) = r0 sin θ −
(
δ

2
+ a

)
r0 sin(−ζ) +

δ

2
r0 sin (2θ − ζ) . (3.71b)

It is desirable to reduce the number of perturbative variables so δ will be set equal to

a, resulting in

R(θ, ζ) = R0 + r0 cos θ +
δ

2
r0 ( 3 cos(−ζ) + cos (2θ − ζ)) , (3.72a)

Z(θ, ζ) = r0 sin θ +
δ

2
r0 (−3 sin(−ζ) + sin (2θ − ζ)) . (3.72b)

By solving the unsimplified pressure jump Hamiltonian system with the deforma-

tions in Equations 3.71 and 3.72, the nature of these interfaces under such deforma-

tions can be determined, and their investigation should shed light on how they may

be chosen and loaded with pressure discontinuities in SPEC.

Calculating the prescribed field on interfaces

The prescribed field f− still needs to be defined for interfaces. As with the simplified

Hamiltonian, deformations to the interfaces will change the rotational transform on

those interfaces if V is not corrected.

When ι tracking was required, SPEC was modified to provide this service. SPEC can

calculate the f− required on the prescribed side for each value of the deformation.1

This f− was then used as input into the pressure jump Hamiltonian. Two flux surfaces

need to be supplied to SPEC. One (say, the outermost one) should be identically

the flux surface one wants to evaluate in PJH, with the same RZ description and

1The method SPECuses to calculate f− requires radial derivitives of the magnetic vector function
A. Details of the method can be found on the online documentation of SPEC.[spe] The method is
related to the discussion of straight field line coordinates in Appendix A.2.5.
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rotational transform.2 The inner surface does not have such strict requirements, the

only restrictions being that SPEC must be able to find a Beltrami field in between

them. To maximise the chances of this happening, a circularly symmetric flux surface

with rotational transform similar to or less than the outermost surface was used.

SPEC outputs a .pj file that can be used as input into PJH. An example of such a

file can be found in Appendix A.7. When SPEC was used to provide an input file, the

provided Fourier series sometimes had to be truncated otherwise PJH would run too

slowly. Details of the truncation can be found in Section 3.4.3.

3.4.3 Flux surfaces

The third case of interest in this thesis are flux surfaces that are not constructed as

interfaces, but naturally appear within the volumes in MRXMHD. SPEC has the ability

to extract such flux surfaces from within an MRXMHD volume. Unlike interfaces,

such internal flux surfaces may be destroyed by the chaos surrounding them, and are

not smoothly and arbitrarily deformed.

This case should provide a more generalised idea of existence under pressure jumps,

as the perturbation caused by deformation is no longer an artificial, arbitrary, smooth

choice. In this configuration the deformation applied to the flux surface is the result

of nearby islands influencing the interior flux surface in a potentially fractal way.

Knowledge of how much pressure an internal flux surface may withstand could be

helpful for SPEC if it becomes necessary for SPEC to introduce an extra interface. The

internal flux surface could perhaps be tested for robustness before having pressure

loaded onto it.

Using SPEC to extract flux surfaces

Consider a volume bounded by two circular axisymmetric flux surfaces of rotational

transform ι-0 and ι-1. Under a reasonable assumption of linear shear between the two

flux surfaces, one should be able to identify an infinite number of flux surfaces existing

between these two prescribed surfaces with rotational transforms corresponding to the

real nubers between ι0 and ι1. If the interfaces were deformed, flux surfaces would

start to be destroyed within the volume but, according to the KAM theorem, a finite

measure of the flux surfaces within the volume will persist under these deformations.

These surviving flux surfaces are not smoothly perturbed and so considering a pressure

discontinuity across these surfaces should represent a more realistic simulation than

applying a pressure discontinuity across a smoothy deformed interface.

We calculate the equilibrium field in SPEC by prescribing two axisymmetric inter-

faces. The outermost surface was given a major radius of 1.0 and a minor radius of

2The way PJH stores surfaces and surface potentials as Fourier series is idential to how SPEC does.
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r = 0.3. The outer surface’s minor radius was then perturbed according to

rd = 0.3 + d cos (2θ − ζ) + d cos (3θ − ζ) . (3.73)

SPEC then calculated the field in the volume between the two interfaces. The inner

interface was deformed to satisfy force balance so that the equilibrium field in the

interface reflects a global solution. SPEC was used to extract the geometry of a flux

surface with ι- = γ[1213] for various values of d.

This case has the least number of arbitrary prescriptions in the pressure jump

Hamiltonian. While d explicitly parametrises a deformation of the outermost surface,

the actual deformation to the extracted flux surface is now implicit in the chaotic

mechanisms that can be evinced in SPEC. Of course, there is still some artificiality as

the chaotic behaviour in the volume depends on how the outmost surface is warped,

and here it is being warped in a smooth, prescribed way.

Truncating the SPEC Fourier series

PJH is limited by the number of Fourier terms it can use. As each term needs to be

added multiple times at every evaluation point of the numerical integrator the code

slows exponentially as more terms are added. To decide which terms to keep, terms

were selected based on the measure

Wmn =
√
R2
mn + Z2

mn + f 2
mn . (3.74)

calculated from the triplet (Rmn, Zmn, fmn). Those terms with large Wmn would have

the biggest effect on the trajectory and so were kept. PJH was written so that the

user may select a number of Fourier terms to keep, or select a minimum Wmin such

that all terms with Wmn > Wmin are kept.

Truncating Fourier terms in this way leads to less accurate results near criticality,

as in this regime the functions R, Z, and f have long Fourier tails. The magnitude of

the truncation was decided on a case by case basis as there is a tradeoff between more

Fourier terms being needed to correctly describe the flux surface, and more Fourier

terms leading to more numerical evaluations and higher numerical error. As such the

truncation was decided with consideration of the test described in Section 3.3.7.

3.4.4 Summary of accuracy parameters of PJH

Collecting all the mentions of accuracy so far provides four quantities that determine

the accuracy of the code. Their default values are provided in Table 3.2.
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symbol value description
νl 10−15 Integration tolerance when following field lines
ε ι- 10−10 Minimum error in winding number when finding trajectories

with a desired winding number
νr 10−13 Integration tolerance when calculating the tangent map
Wmin 10−10 Minimum size of the RMS of the Fourier terms provided as

input

Table 3.2: A table summarising the parameters that determine the accuracy of PJH. The

first three are computational tolerances that result in random error, Wmin determines how

well the input described the physical situation and so is a source of systematic error.
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Chapter 4

Phase space

4.1 Phase space of the simplified pressure jump

Hamiltonian

Figure 4.1 shows Poincaré diagrams for the simplified pressure jump Hamiltonian with

each of the perturbative set (ε, a, δ, F ) non zero, and ∆P = 0. For these plots, and

all Poincaré sections to follow, the black crosses are the punctures of the continued

trajectory with the rotational transform equal to the ninth convergent of the irrational

1/γ plotted to show the choice of the selected continued field. The dot-dash line is

the curve ∂θf(θ, 0) = Bθ and can be thought of as a field line or trajectory of the

prescribed field (or reference field, in the case of the two sided formulation).

On Poincaré diagrams of perturbed systems, the dot-dash line functions as a ref-

erence to the unperturbed case. In the case of a cylinder with no pressure jump

[Figure 4.1(a)], the continued field (black crosses) and the prescribed/reference field

(black dot-dashed line) are the same, as expected. The continued field is not the

same as the reference field in the other four figures, even with no pressure discontinu-

ity because deformations to the geometry or to F in general give the reference field a

different rotational transform to the one that is searched for on the other side.

In the case of (ε, a, δ, F ) = 0, the Hamiltonian corresponds to a free particle on a

cylinder, and as such all trajectories are regular [Figure 4.1(a)]. Introducing δ forms an

island according to its harmonic [in this case (m,n) = (1, 1)] [Figure 4.1(c)]. The heli-

cal twist of the centroid of the surface similarly appears as a harmonic [(m,n) = (0, 1)],

though the island is smaller than the one caused by δ [Figure 4.1(d)]. Adding a pertur-

bation to the prescribed field by defining (F,mF , nF ) will add islands corresponding

to that mode [Figure 4.1(e)]. By making ε non-zero the (m,n) = (1, 0) island appears

at the bottom of the Poincaré diagram, which provides the mechanism by which

toroidicity may incite chaos [Figure 4.1(b)].

Figure 4.2 shows Poincaré diagrams for the simplified pressure jump Hamilto-

nian with (ε, a, δ, F ) = (0.05, 0.05, 0.1, 0) and (ε, a, δ, F ) = (0.15, 0.15, 0.3, 0), both

for zero pressure jump. In this case the three sources of islands overlap to create

71
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(a) (δ, a, ε, F ) = (0, 0, 0, 0). This corresponds
to a free particle on a cylinder.

(b) (δ, a, ε, F ) = (0, 0, 0.1, 0). A large aspect
ratio torus, the phase trajectories are warped
owing to a large island (the (0, 1) island) at
(θ, pθ) = (0, 0).

(c) (δ, a, ε, F ) = (0.05, 0, 0, 0). All trajectories
are still regular, a large island has been intro-
duced from an elliptic cross sectional deforma-
tion (m,n) = (1, 1).

(d) (δ, a, ε, F ) = (0, 0.05, 0, 0). This corre-
sponds to a cylinder that has an axis twisted
into a helix of radius 0.05r0.

(e) (δ, a, ε, F ) = (0, 0, 0, 0.01). A cylinder, but
the prescribed field has been perturbed with
the mode (mF , nF ) = (3, 1).

Figure 4.1: Poincaré sections of the simplified pressure jump Hamiltonian showing the

effect of introducing the perturbations. δ r0 is the magnitude of an elliptic cross sectional

deformation [(m,n) = (1, 1)], ar0 is radius of the helical twist in the centroid of the cross

section and ε is the inverse aspect ratio (ε = 0 corresponds to the cylindrical limit).
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additional islands and regions of chaos. The chaotic regions almost dominate phase

space and it looks like the last trajectory to survive is the trajectory with a similar

rotational transform to the prescribed field (though, as mentioned, a deformation has

changed the rotational transform of the prescribed field so its value is unknown).

4.1.1 The effect of changing energy

Figure 4.3 shows the simplified Hamiltonian system under the perturbations (δ, a, ε, F ) =

(0.01, 0.01, 0.1, 0) with positive values for the energy. Increasing the energy increases

the magnitude of the pressure jump from the reference case or prescribed side. See

Section 2.4.2 for details of how the energy should be interpreted.

Note that once E is non-zero, the prescribed field no longer matches up with the

trajectories. From this one can infer that it is impossible to continue the field across

a pressure discontinuity without having an associated discontinuity in the field. This

reflects the fact apparent in Equation (2.14d).

Increasing energy “stretches” phase space, allowing trajectories with higher mo-

mentum and causing the regions of chaos to grow. The effect is qualitatively reminis-

cent of the Hénon Heiles Hamiltonian under increasing energy, especially the chaotic

region in Figure 4.3(d).[Gre80] The regular trajectories toward the top of the phase

diagrams have a very high rotational transform and do not feel the low order per-

turbations. More and more of these are allowed as the energy is increased. This

makes sense from a Hamiltonian mechanics point of view, as increasing the energy of

the system (increasing the pressure) allows the trajectory possibilities to access more

momentum (higher pθ = Bθ).

Note that there is a maximum pθ orbit available, corresponding to the orbit with

the highest winding number. This occurs when the equations for pζ [Equations (3.7)]

becomes imaginary because the term under the square root [the same term as in

Equation (2.34)]

C = gζζ
[
2∆P − 2V (θ, ζ)− gθθp2

θ

]
+
(
gθζpθ

)2
(4.1)

becomes negative. For the equations of motions to remain real, pθ must satisfy

p2
θ <

gζζ

gθθgζζ − (gθζ)2
[2∆P − 2V (θ, ζ)] , (4.2)

along the entire length of the trajectory. PJH may run into this situation, at which

stage the code outputs an error.

Figure 4.4 shows the same system but at negative energy levels. Decreasing the

energy removes the trajectories with higher momentum, restricting those to lower

rotational transform. The decreasing pressure also reverses the phase of the islands,
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(a) (ε, a, δ, F ) = (0.05, 0.05, 0.1, 0).

(b) (ε, a, δ, F ) = (0.15, 0.15, 0.3, 0).

Figure 4.2: Poincaré sections of the simplified pressure jump Hamiltonian with ∆P = 0

and with the perturbations such that there is induced chaos. δ is the magnitude of an elliptic

cross sectional deformation [(m,n) = (1, 1)], a is radius of the helical twist in the centroid

of the cross section and ε is the inverse aspect ratio (ε = 0 corresponds to the cylindrical

limit). The crosses are the punctures of the trajectory whose winding number is the ninth

convergent (τ9) of the irrational γ[0111] = 1/γ.
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(a) E = 0.00. (b) E = 0.53.

(c) E = 10.00. (d) E = 100.00.

Figure 4.3: Poincaré sections of the simplified pressure jump Hamiltonian with perturba-

tions (δ, a, ε, F ) = (0.01, 0.01, 0.1, F ) for increasing positive values of the energy. In general

this expands the phase space to allow more trajectories and at the same time looks to

increase the chaos. Large positive values lead to more trajectories with higher rotational

transforms that are not affected by the low order perturbations. Note the the scale of the

vertical axis is larger in the second row of images, and in these images the energy was so

large that the selected continued solution with w = τ9 could not be found.
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and there is a point around E ≈ −0.5 at which much of the chaos seems to disappear.

Decreasing energy past this point results in the islands increasing in size with the

opposite phase, introducing chaos that eventually destroys the irrational trajectory of

interest. At a low enough energy all energetically available orbits remain within the

(0, 1) island.

The increasing pressure does not seem to introduce islands, but it still has a

destructive effect. To understand this consider a Hamiltonian trajectory of fixed

winding number. If this orbit is regular but has a chaotic region nearby, the scaling of

the phase diagram means the chaotic regions expand, possibly overlapping the position

of the trajectory of interest. As flux surfaces are defined by their rotational transform,

an increase of pressure that causes chaos to expand and overlap with the corresponding

Hamiltonian trajectory means that an increase in pressure can effectively make field

continuation across the flux surface impossible.

At the lowest energies no orbits can escape the (1, 0) island. The point at which

the trajectory can no longer form a rotational invariant surface occurs at some energy

E > Emin. The lowest energy for which a covering is possible should occur at the point

Er = max[V (θ, ζ)], as at energies lower than the maximum value of the potential, the

trajectory will not be able to access the points at which the potential is higher than

the energy of the particle. Note that this is a necessary condition, but not sufficient

as the last trajectory that is able energetically to reach all points of the torus is likely

to be already chaotic.

It is likely that each field line configuration will cease to exist at a high enough

pressure for any nontrivial deformation, but configurations with higher rotational

transforms can exist instead. So although additional high–winding–number orbits are

allowed under the increase in energy, the chaotic region expands and tends to destroy

low–winding–number orbits. In the supplied Poincaré diagrams, the high iota region

is quite clear of chaos, but this is probably due to the simple deformation (which

contains only low order resonant Fourier terms) that was applied. More complicated

deformations may resonate with high ι- rationals. These islands may not be accessible

for small pressure jumps, but may appear when E is increased.

It should also be mentioned that, while increasing the energy expands chaotic

regions, some field line configuration will probably exist no matter how high the

energy, so long as one is willing to allow a very high rotational transform on the

continued side, and thus a large rotational transform discontinuity. It is not known

how physical such a state would be, but there is evidence that discontinuities in

rotational transform across flux surfaces are unstable to tearing modes.[MHD09]
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(a) E = 0.00. (b) E = −0.4.

(c) E = −0.5. (d) E = −1.3.

(e) E = −2.0.

Figure 4.4: Poincaré sections of the simplified pressure jump Hamiltonian with pertur-

bations (δ, a, ε, F ) = (0.01, 0.01, 0.1, 0) for values of the energy decreasing from zero. The

lower energies reverse the phase of the islands leading to much less chaos, the amount of

chaos appears to reach a minimum around E = −0.5. Past this point the islands start to

increase in size with the opposite phase, increasing the amount of chaos. At the same time

the lower energy brings the maximum and minimum pθ values toward zero. Eventually the

only energetically available orbits reside in and cannot escape the (0, 1) island. This latter

case corresponds to a field line that “wiggles” like a sine curve about θ = π on the innermost

edge of the torus.
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Comparison to double pendulum Hamiltonian

As mentioned in Section 2.4.3, a comparison to the double pendulum Hamiltonian

may help to visualise the trajectories of the pressure jump Hamiltonian.

Each pendulum can either librate (swing back and forward) or rotate (do a full

spin around its fixed point). Both these behaviours can be seen for the angles in

the pressure jump Hamiltonian. Librational motion can be seen most obviously in

the large island in Figure 4.4(d). A trajectory in this island never reach the point

θ = 0. When mapped to configuration space the field lines are seen to “wriggle”

along the inner edge of the torus (θ = pi). These librational trajectories do not

have an irrational rotational transform and so the corresponding field line cannot be

considered a solution to field balance by the restrictions in Section 3.2.5.

This also provides a visualisation of the effect of reducing the island size. With

reference to Figure 4.4, at E = 0 a low-momentum trajectory hamonically oscillates

(librates) about the curve θ = 0, the outermost geodesic on the surface, as ζ increases.

By reducing the enery to E = −0.5, it looks as if even the lowest momentum trajec-

tories can rotate completely around with a well defined rotational transform. As the

energy is increased past this point, the low momentum orbits start oscillating around

the shortest geodesic on the torus, the θ = π curve.

The double pendulum is a non-integrable Hamiltonian system that becomes in-

tegrable in the low and high energy limits. At the low limit, a small angle approxi-

mation can be made, and nonlinear terms may be ignored leading to a pair of linear

oscillators.[RWB09] In the high energy regime, the kinetic term dominates and the

pendulums fully extend and spin together as a fixed rotor. To be considered solutions

to force balance, trajectories of the pressure jump Hamiltonian require an irrational

rotational transform and so both angles must undergo rotation [Section 3.2.5]. In the

case of the high energy limit of the double pendulum, both angles rotate at the same

rate, which, in the force balance problem would correspond to a field line of ι- = 1.

Field lines with other rotational transforms would correspond to a double pendulum

with rotational motion in both angles, with the two angles rotating at a different rate.

4.1.2 The effect of conserving rotational transform

The constraint to conserve rotational transform adds fluctuations to the prescribed

field that compensate for the deformation to the surface and ensure that under de-

formations the rotational transform of the prescribed field remains constant. This

may be of importance if one wishes to determine continuation for a field of a given

rotational transform under deformations.

Typically, trajectories with irrational rotational transform are more robust to

chaos.[Gre79] Intuitively one may think that forcing the prescribed field to have an
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(a) (δ, a, ε) = (0, 0, 0). Unperturbed system
with unperturbed prescribed field.

(b) (δ, a, ε) = (0, 0, 0). Unperturbed sys-
tem with conserved prescribed rotational trans-
form.

(c) (δ, a, ε) = (0.010, 0.010, 0.1). Perturbed
system with unchanged prescribed field f−.

(d) (δ, a, ε) = (0.010, 0.010, 0.1). Perturbed
system with prescribed field changed to con-
serve prescribed rotational transform.

(e) (δ, a, ε) = (0.015, 0.015, 0.1). A more per-
turbed system than above, still with unchanged
prescribed f−. The trajectory remains regular.

(f) (δ, a, ε) = (0.015, 0.015, 0.1). A more per-
turbed system than above with f− conserving
prescribed rotational transform. At this point
the convergent to the irrational suggests the
continued trajectory is critical.

Figure 4.5: Poincaré sections of the simplified pressure jump Hamiltonian with ∆P = 0

showing the effect of conserving the rotational transform of the prescribed field. In general

it was observed that continuation occurs for smaller energy values when the rotational

transform of the prescribed field is constrained via Equations (3.65).
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irrational rotational transform may reduce the chaos in the Hamiltonian. Figure 4.5

shows the phase space at three levels of increasing deformation at ∆P = 0. The

right column of plots show the system with rotational transform conservation and the

left column shows the same perturbations without ι- conservation. In this case the

ι- conservation increases the amount of chaos for a given perturbation and results in

the continued field configuration becoming critical at a lower deformation.

Looking at the Hamiltonian under ι- conservation, the fact that it has a prescribed

field perturbation at all is probably the cause of the increased chaos. Alternatively the

intuitive thought may be incorrect because this phase space is unlike other Hamilto-

nian systems in that, at H = ∆P = 0, continuation is always allowed for the solution

for the same rotational transform. Prescribing this rational must suppress any islands

that would ordinarily destroy it in the H = 0 case. This constructed ensured exis-

tence for the rational is unnecessary in the two-sided formulation, and so is avoided

unless continuation from a certain prescribed field is required. Perhaps the restriction

of Equations (3.65) is too strong, or that the first order conservation of the rotational

transform is insufficient.

4.2 Phase space of SPEC interfaces

The previous section investigated the simplified pressure jump Hamiltonian system.

We now move back to the unsimplified Hamiltonian system and investigate the phase

space of a Hamiltonian that represents the prescribed interfaces that would be used

in MRXMHD and in SPEC. To allow some comparison to the previous section, we

deform the surface in the following way

S =



m n Rmn Zmn

0 0 1.0 0.0

1 0 0.2 0.2

0 1 3
2
δ −3

2
δ

2 1 1
2
δ 1

2
δ


. (4.3)

The prescribed field in these cases was found using SPEC for each of the above

deformations, and so at each deformation the f− is such that its rotational transform

is ι− = γ[0111] = 0.618033.... See Section 3.4.2 for more information on how the case

of SPEC interfaces were defined.

At the largest deformation, 40 Fourier terms were found to provide a scan indis-

tinguishable by eye from cases with less truncation Section 3.4.3. The plots in this

section were done with 60 Fourier terms.



§4.2 Phase space of SPEC interfaces 81

4.2.1 Phase space under specific deformation of interface

Figure 4.6 shows the phase space of the pressure jump Hamiltonianfor the surface

defined in Equation (4.3). The trajectory with winding number ι- = τ9 for the interval

[0111] was selected as the continued solution in each plot. The maximum deformation

for which SPEC could calculate the prescribed field was d = 0.02870.

The most obvious change to the phase space is that chaotic structures begin to

appear and that these chaotic structures get more numerous and larger as the deforma-

tion increases. The large islands visible in the centre of the Poincaré diagrams corre-

spond to the harmonics of the deformation, which is easiest seen when the deformation

is written in the form of Equation (4.3). The position of the chaos on the Poincaré

diagram was observed to be highly sensitive to the form of the deformation array,

suggesting that the existence of regular orbits was dependent on the deformation in

a very complicated way.

The phase diagrams are reminiscent of, but sufficiently different from the simpli-

fied version to suggest that the simpified version is unsuitable as an approximation.

Instead the simplified system should be considered a “toy problem” reflecting the

basic chaotic nature of the pressure jump Hamiltonian.

As the deformation increases further, more and more of the phase space becomes

chaotic. It was not possible to increase the deformation until the entire volume became

chaotic at a pressure jump of zero, because PJH makes its calculations predicated on

the existence of f−, which SPEC is required to calculate first. In situations where

PJH used customised f− functions not taken from SPEC, it was possible to concoct

geometries and prescribed fields in which the only possible solution was f− = f .

As each orbit corresponds to a field line configuration, it is clear that increasing

the deformation of the flux surface results in less candidate field line configurations

that can satisfy the pressure jump condition. Also, there is a maximum limit to the

rotational transform that would satisfy the pressure jump condition, and this limit

decreases with increasing deformation.

4.2.2 Phase space under change in energy

Figure 4.7 shows Poincaré diagrams for the surface defined by Equation (4.3) for dif-

ferent values of the energy. Again the continued solution is the same as the prescribed

field, which is calculated using SPEC. The three plots show the phase space for the

minimum energy for which a solution can be found, zero energy and the maximum

energy for which the continued solution can be found respectively.

The qualitative behaviour is similar to the simplified version, supporting the lat-

ter’s role as a toy problem.

Increasing the energy can certainly have a destructive effect on trajectories, mean-
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ré
se

ct
io

n
s

o
f

th
e

p
re

ss
u

re
ju

m
p

H
am

il
to

n
ia

n
fo

r
an

in
te

rf
ac

e
d

efi
n

ed
in

E
q
u

at
io

n
(4

.3
)

w
it

h
δ

=
0
.0

10
61

.
S
P
E
C

w
as

u
se

d
to

ca
lc

u
la

te
th

e
f
−

re
q
u

ir
ed

to
en

su
re

th
e

ro
ta

ti
on

al
tr

an
sf

or
m

of
th

e
p

re
sc

ri
b

ed
fi

el
d

w
as
γ

[0
1
1
1
].

T
h

e
fi

rs
t

an
d

th
ir

d
p

lo
ts

sh
ow

h
ow

P
J
H

ca
n

id
en

ti
fy

th
e

en
er

gy
a
t

w
h

ic
h

th
e

co
n
ti

n
u

ed
tr

a
je

ct
or

y
n

o
lo

n
ge

r
co

rr
es

p
on

d
s

to
a

va
li

d
so

lu
ti

on
.



84 Phase space

ing that large pressure discontinuities across SPEC interfaces do make continuation less

likely. Inspecting phase space cannot provide many more answers than this, so the

next chapter considers the range of parameters for which continuation is possible.

4.2.3 Phase space for different prescribed fields

Figure 4.8 shows Poincaré diagrams for the deformation δ = 0.01061 where each case

has the prescribed f− such that the prescribed field has a different ι-− in each plot.

The continued solution is selected as the one whose winding number ι- is the same as

the prescribed rotational transform.

The prescribed fields have a rotational transform from the following list

• γ[0111] (Figure 4.8(a)),

• γ[0113] (Figure 4.8(b)),

• γ[1211] (Figure 4.8(c)),

• γ[1121] (Figure 4.8(d)),

• γ[2311] (Figure 4.8(e)),

• γ[1132] (Figure 4.8(f)).

The left column of Poincaré diagrams in Figure 4.8 have prescribed fields with rota-

tional transforms that belong to the class of irrationals from the interface [c, c+ 1, 1, 1]

for c ∈ N. Irrationals in this class approach unity as c → ∞ and as they do they

become less noble. Comparing cases of members of this set will allow comparison

between irrationals of decreasing irrationality as c increases. The other irrationals in

the above list are selected to provide a variety of cases for contrast.

Generally f− dictates the contours of the pθ(θ) curves. This is because in the

trivial case pθ(θ) = f(θ, 0). However from Figure 4.8 it is clear that different versions

of f− interact with the same deformation to produce quite different chaotic regions.

This effect is lost in the simplified system, where the first order approximation to V

arising from perturbations in f− ignored the interaction between the metric (which

is a function of the deformation) and the f−.

4.3 Phase space of flux surfaces

In this case the phase space of flux surfaces extracted from between two interfaces in

SPEC is visualised. In contrast to the simplified Hamiltonian earlier in the chapter and

the interfaces in the previous section, these flux surfaces are not smoothly deformed.
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(a) ι-0 = [0111], ι- = ι-0 (b) ι-0 = [0113], ι- = ι-0

(c) ι-0 = [1211], ι- = ι-0 (d) ι-0 = [1121], ι- = ι-0

(e) ι-0 = [2311], ι- = ι-0 (f) ι-0 = [1132], ι- = ι-0

Figure 4.8: Poincaré sections of the pressure jump Hamiltonian system with ∆P = 0

for an interface defined in Equation (4.3) with δ = 0.01061 for prescribed fields of various

rotational transform. The continued field is chosen to have a winding number the same as

the prescribed transform in each case.
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Instead the surface is deformed by the islands and chaotic structures that naturally

appear in a plasma region as its outer boundary is deformed. For more information

about how these flux surfaces were extracted, and the details of the deformation, see

Section 3.4.3.

At the largest deformation (d = 0.00153), 60 Fourier terms were found to provide

a scan indistinguishable by eye from cases with less truncation Section 3.4.3. The

plots in this section were done with 70 Fourier terms.

The three Poincaré diagrams in Figure 4.9 show the effect of the increasing de-

formation. In contrast to the previous sections, there are fewer and smaller islands.

Instead the “contours” of pθ(θ) are very intricate. In contrast to the earlier cases,

Figure 4.9 suggests that the small but numerous deformation harmonics result in a

complicated and intricate prescribed f−. In the case of flux surfaces, the phase space

is affected by the deformation less through the metric (which the previous cases has

shown creates islands and chaos), and more through the prescribed field (which were

shown to affect more the contours of the invariant tori).

4.3.1 Effect of changing energy

Figure 4.10(e) shows the effect of changing the energy for the Hamiltonian defined

on a extracted flux surface for the case where the outer interface was deformed by

d = 0.00050. In configuration space, this would correspond to loading a pressure

discontinuity across the flux surface that itself lies within the plasma volume.

Destruction comes about mainly through the increasing chaos around the (1, 0)

island. As shown in the simplified case, this island is primarily caused by the toroidic-

ity. Perhaps the main determinant of continuation is the aspect ratio. The island

suppression and reversal is also present and shown in Figures 4.10(a,b,c).
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(a) E = −3.47. The minimum energy for
which the continued field can still be found.
It is on the edge of chaos from the (1, 0)
island and is critical.

(b) E = −0.34. The energy for which the
(1, 0) island appears to be most suppressed,
akin to the effect noticed in the simplified
Hamiltonian system.

(c) E = 0. The trivial continuation of no
pressure jump where < B2 >=< B2

0 >.
(d) E = 1.0. The effect of increasing energy
continues. The difference between the pre-
scribed field (dot-dashed line) and the po-
tential field configurations shows the mag-
nitude of the change.

(e) E = 4.5. The continued field is just past
critical. The chaos causing this criticality
mainly comes from the (1, 0) island like in
the negative energy case.

Figure 4.10: Poincaré sections of the pressure jump Hamiltonian for a surface extracted

from a SPEC volume with the outer interface of the volume deformed with d = 0.00050.

PJH can load a pressure discontinuity across this flux surface by setting the energy of the

pressure jump Hamiltonian E 6= 0.



Chapter 5

Robustness

5.1 Robustness

5.1.1 Concept of robustness

With solutions to the pressure jump Hamiltonian system now calculated, the applica-

bility of the solutions resolved, and a test to determine if such solutions are regular,

it is now possible to investigate the conditions of regularity for a given trajectory.

Beyond the concern of how close a given trajectory is to destruction, is the more

general question of which trajectories are most resilient to the most number of per-

turbations. The (global) property of a trajectory to survive under a range of pertur-

bations is referred to as robustness, to distinguish it from the (local) property of how

close to destruction the trajectory is for a given pressure and deformation, i.e. the

trajectory’s resilience.

To visualise this reliability of a flux surface under all perturbations, this section

introduces the concept of a robustness graph, which plots the regularity of the pressure

jump Hamiltonian trajectory as a function of the perturbations to the system. Such

a plot requires an automated test of regularity, described in the next section.

5.2 Determining critical perturbation in an auto-

mated way

It will become necessary to determine the regularity of a vast number of trajectories

under different perturbations and so an automated test of existence must be used.

While most investigations into criticality are concerned with determining an accurate

value for the perturbation at which the orbit of interest becomes irregular, this thesis

is only concerned with collecting general information regarding the conditions for

which the Hamiltonian system gives regular solutions.

An irrational is selected (using the nomenclature in Appendix A.6) by selecting

the interval [p1q1p2q2] for which the noble path gives the irrational number γ[0111]. The

sequence of rational numbers that converge to the noble irrational is {τ [p1q2p2q2]
N | N →

89
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∞}.
Although only the limit of the residues of the infinite series of rational trajectories

provides the value of the residue of the irrational trajectory (Section 3.3), it was noted

that this limit is usually obvious from a “high enough” convergent. The simplest way

to determine the regularity of an irrational orbit is to select a convergent, say the

Nth one, then calculate that convergent’s residue rN(τ
[p1q1p2q2]
N ) and check that it is

small compared to 0.25.[Hud04] It was observed that doing this provided a reasonable

and repeatable measure of the existence of the desired irrational. This dovetails

with the findings of MacKay where various methods of averaging the residues were

tried, but simply considering a close enough convergent was sufficient.[MS92] It has

been observed in the simpler systems in which Greene’s residue method has been

implemented that searching for the N such that r(N) = 0.25 gives the quickest

measure of criticality for the trajectory with w equal to the golden mean.[Mac86]

MacKay’s residue criterion

A more advanced test for the critical perturbation was introduced by MacKay[Mac86]

as an extension to Greene’s residue criterion. For two convergent orbits with rotational

transform τ
[p1q2p2q2]
N−1 and τ

[p1q2p2q2]
N , calculate the residues r(τ

[p1q2p2q2]
N−1 ) and r(τ

[p1q2p2q2]
N ).

Then calculate the quantity

ρN([p1q1p2q2]) =
1

γ2
ln |r(τ [p1q2p2q2]

N )|+ 1

γ
ln |r(τ [p1q2p2q2]

N−1 )| , (5.1)

The trajectory is regular if

ρN([p1q1p2q2])� ln(0.2500888) . (5.2)

This test is referred to as MacKay’s residue criterion.

In 1994, Paul et al compared the above two tests. They investigated the Hamil-

tonian of the double pendulum because it cannot be written in such a way as to

apply perturbation theory to the Hamiltonian, nor can one construct a mapping with

which other methods may be applied.[PR94] Their goal was to compare Greene’s

method to the more theoretically developed MacKay’s residue criterion. It was found

that MacKay’s residue criterion was superior because it did not require long peri-

odic orbits to be followed, though the double pendulum did prove simple enough for

Greene’s method to “not be inaccurate”. The similarity in nature between the double

pendulum and the pressure jump Hamiltonian system descrbed in Section 2.4.3 and

Section 4.1.1 lend encouragement to the idea that tests based on Greene’s residue

are appropriate for the pressure jump Hamitlonian. In this thesis we choose to use

MacKay’s residue criterion based on Paul et al ’s findings.
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5.2.1 Testing the accuracy of the criteria

Although there are similarities, the pressure jump Hamiltonian is more computation-

ally complicated than the double pendulum so we produced a comparison similar to

that of Paul et al. Figure 5.1 shows the result of the test for the critical perturbation

(in this case the critical value of EC = ∆PC as a function of the orbits convergent

to the irrational ι- = γ[0111] = 1/γ) for a SPEC interface under the deformation in

Equation (3.72). The data points for Greene’s residue provide the ∆P for which the

residue of the convergent orbit was equal to 0.25. The solution is not accurate at low

convergents, but the critical ∆P becomes quite accurate for longer trajectories. The

points corresponding to MacKay’s residue criterion provide the value of ∆P for which

ρ = ln(0.2500888). The method converges to the same critical perturbation value at

a lower convergent in this case, and in all other cases observed.

The difference in Figure 5.1 may not be great, but the difference becomes more

pronounced in highly chaotic systems. The more chaotic the system was, the more

difficult it was to find convergent orbits with long field lines. MacKay’s method can

provide accurate results with shorter convergent orbits, but one needs to find two

shorter orbits.

The decision as to which fixed convergent N ′ was used was made on a case by case

basis, by comparing the robustness graphs using one convergent less (N ′− 1) and one

convergent more (N ′ + 1). If the robustness graph was observed to not be sensitive

to the convergent used, then (N ′) was used. If the robustness graph was sensitive,

then the deformation or the prescribed field are too complex for PJH to give reliable

results.

For the purposes of this thesis, whose goal is to determine general behaviour, it

was found that using the MacKay residue criterion at N = 6 would provide accura-

cies indistinguishable by eye on robustness graphs from the higer convergent tests.

In addition the lower convergent curves tended to be smoother, as high convergent

trajectory tracing was very difficult and often failed to find the rational convergent.

Also the rate at which ρ increased as a critical perturbation (say E) was reached was

lower for the lower convergents. Conversely, for long convergents ρ(δ) approached a

step function, making the critical perturbation quite difficult to find.

As a shooting code, PJH is especially prone to numerical error during the tracing of

long trajectories. This issue tended to overestimate irregularity, as numerical errors

in following the irrational path would be more likely to deviate from the invariant

torus, increasing the trace of the tangent map leading to a larger residue.

In an attempt to sidestep the issue of accuracy brought about by using a shoot-

ing code, another version of the code was devised that takes a different approach

to calculating the field line. Based on a variational principle, the formulation as-
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sumed a piecewise linear field line whose points can be varied to satisfy the pressure

jump condition. This formulation, its advantages and disadvantages are outlined in

Section 6.3.1.

5.2.2 Problems with the test

At low deformations, it is possible for the energy to be low enough so as not to allow

the high rotational transform orbits that would be affected by the (1, 1) island. This

means that the island does not appear in phase space, so at the point of criticality

only the (1, 0) is encroaching on the continued irrational orbit. Above the orbit there

is no discernible chaos and below there is. If τN−1 is a rational convergent to γ and

τN−1 > γ, then τN < γ and so the residue rτN may be large, while rτN−1 will be

small. This ruins the convergence of the relied on assumption from Greene’s paper

that the residues of the convergent rationals with converge to the residue of the

irrational. In this case the test was less reliable. This problem was only present at

low negative energies and so the robustness graphs to follow are cut off at negative

energies, producing a flat bottom at which the this difficulty rendered the results

inaccurate.

5.3 The Robustness graph for the simplified pres-

sure jump Hamiltonian system

The simplified system has the perturbative parameters (δ, a, ε, F ). The following

sections explore the robustness of the simplified pressure jump Hamiltonian system

under various combinations of these parameters.

5.3.1 Robustness plot for a torus

For ε = 0.1 and F = 0, Figure 5.2 shows a robustness graph that visualises the

regimes in which field continuation in possible, for changing energy and deformation.

The two deformations δ and a are set equal to each other to allow one parametrisation

of surface deformation.

The plot is a contour plot of ρ6([0111]) with its axes the two perturbations of

interest E and δ = a. The brightness of the blue is propotional to ρ6 with a bright

blue colour representing a large negative value of ρ6, and white representing large

positive values of ρ6. The points at which ρ6 = ln 0.2500888 = −1.38594 is traced out

with a black line that represents at which point the continued trajectory is critical.

For situations within the black curve, the continued solution exists, for situations

outside, the continued solution does not exist.
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Figure 5.2 shows that for zero deformation, an infinite pressure discontinuity is

allowed, and, in agreement with Section 4.1.1 there is a minimum negative energy at

which the trajectory of the same rotational transform can be found. The MacKay

residue criterion experiences difficulties in this area, which causes the perfectly flat

sections at the bottom. This difficulty was described in Section 5.2.2.

The point E = 0 corresponds to a pressure discontinuity of zero and provides the

trivial continuation, where the continued field is equal to the prescribed field. Field

continuation is not possible for all deformations, because once δ 6= 0 a rotational trans-

form discontunity occurs. This ι- discontinuity comes about because, as mentioned

before, a deformation changes gij = gij(δ), but f0 remains the same. A change in δ

modifies the rotational transform of the prescribed field, but the continued field will

always have a rotational transform of γ[0111] because this is the irrational trajectory

searched for.

In Figure 5.2 there is a region of existence pointing out from the otherwise smooth

curve for negative energies. This strucure appears often, and will be referred to as a

wisp, to reflect its appearance. This structure represents a small range of deformations

for which the energy may destroy the continued field of interest, but then as the energy

is made even more negative the continued field exists again. To visualise what may be

happening, Figure 5.3 contains Poincaré diagrams for three points on the robustness

graph along the δ = 0.031 line. Figure 5.3(a) shows the continued field for E = −0.4

and it is past critical. If the energy is decreased further (making the pressure more

different on the continued side than the reference case) the continued trajectories

becomes regular again, an example of this is shown in Figure 5.3(b) for E = −0.58.

Further increasing the pressure to E = −0.6 [Figure 5.3(c)] results in the continued

trajectory no longer being regular again.

This effect will be referred to as energy healing or pressure healing, as it results in

field configurations coming back into existence as the pressure discontinuity is made

larger. It is thought that the poorly–understood interaction between the deformation

and the energy combine in such a way so as to suppress chaos near the irrational of

interest. In particular the islands above the continued trajectory at E = −0.58 look

to diminish.

5.3.2 Pressure jumps in the inverse formulation

Selecting a value for the energy at a given deformation and prescribed field determines

the pressure discontunity between the prescribed side and the continued side. However

from the point of view of the inverse formulation, the prescribed side can be considered

to be a reference case, and two continuations [defined by (w1, E1) and (w2, E2)] can

be selected and placed on each side. A simple continuation is the special case where
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(w1, E1) = ( ι-−, 0). However in the more general inverse formulation two energies can

be selected and the pressure jump becomes the difference in the two energies E1−E2.

Any two values of energy for which the trajectory exists can be selected. In the

case of d = 0.1 in Figure 5.2, one can select two energies between the two critical

energies EC
a and EC

b . The maximum pressure jump allowed is then ∆P = EC
a − EC

b ,

and any jump lower than this is allowed (−|EC
a − EC

b | < ∆P < |EC
a − EC

b |).
However, for d = 0.031 there are four critical energies (EC

a , E
C
b , E

C
c , E

C
d ) and two

ranges of energies that have regular solutions. Selecting energies within these two

ranges results in bands of allowed pressure jumps. These bands are discussed further

in Section 6.1.3.

5.4 The robustness of MRXMHD interfaces

With MRXMHD in mind, one desires interfaces that would be robust to a range of

perturbations. This is especially important in SPEC, as the interfaces need to be able

to support pressure discontinuities and surface deformations during the optimisation,

which will continuously distort and redistribute pressure among the interfaces. For

more details on how the SPEC algorithm works, see Section 6.1.2 .

This section contains robustness plots of the unsimplified pressure jump Hamil-

tonian for interfaces that are smoothly deformed in order to simulate a deformation

that may be produced in SPEC.. A more detailed description of this case can be found

in Section 3.4.2. All plots were again symmetric about δ = 0, so only the positive

values of deformation are shown.

Many types of deformations were investigated, with vastly different robustness

plots. Trends were noticed and the plots below were selected to reflect the observed

trends.

5.4.1 Truncation

SPEC was used to create the input files to ensure that the prescribed rotational

transform was constant under deformations. The input files were generated with

mmax = 14, nmax = 7 resulting in 218 Fourier terms, all of which were included in the

following calculations.

5.4.2 Robustness of an interface

Figure 5.4 shows the robustness plot for a SPEC interface with a prescribed field

calculated using SPEC to have a rotational transform of ι-0 = γ[0111]. As before,

the existence of the continued field with rotational transform ι- = ι-0 is tested by

calculating ρ6 for various values of deformation and energy.
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Figure 5.4 suggests that the simplified Hamiltonian does function as a good toy

problem as far as robustness is concerned as the plot have the same general behaviour.

The major difference is that there are no wisps, though there is a hint at a small wisp

for negative energy around δ = 0.0157. Other interface deformations were seen to

have wisps, though they are not included for brevity.

The region of existence is cut off at δ = 0.02870, which was the maximum defor-

mation for which SPEC could provide the prescribed field. The range of energies at

this point is small but non-zero, from which we can infer that the field is likely to

exist for deformations larger than SPEC could access.

5.4.3 Robustness of interfaces with different rotational trans-

forms

The two robustness plots in Figure 5.5 show two different prescribed fields on the

same interface.

Figures 5.4 and 5.5 follow the same exponential behaviour with no wisps. The

case with prescribed field γ[1211] [Figure 5.5(b)] can maintain a larger pressure jump

at lower deformations, but continuation with the prescribed γ[0111] is possible for

larger deformations. Thus there is no simple way to compare robustness as a whole,

as some system specifications can be more resilient than others in different regimes of

perturbation.

However in general it was observed that the more irrational the prescribed sur-

face was, the higher the deformation it could withstand. At lower deformations the

advantage can reverse, with cases like the prescribed γ[1211] [Figure 5.5(b)] capable of

being continued across a larger pressure discontinuity at smaller deformations than

the more irrational γ[0111].

Figure 5.6 shows two more robustness plots with prescribed rotational transforms

γ[2311] and γ[3411] and where ι- = ι-0. One can see that these irrationals (along with the

case γ[0111] in Figure 5.4) are the noble irrationals for the intervals [c, c+ 1, 1, 1], c ∈ N.

As c increases, these irrationals become less irrational because their partial fractions

get larger as the irrational numbers approach the rational 1/1. (See Appendix A.6 for

more information). Comparing the robustness graphs for all four interfaces shows that

in this case decreasing the irrationality of the prescribed field results in a configuration

that can withstand higher pressures at very small deformations, but can withstand

less of a pressure discontinuity at higher deformations.

Figure 5.5(a) is cut off as SPEC had difficulty calculating f− for this combination

of ι-0 and δ. The robustness plot shows that indeed it was close to destruction, as

at the maximum available δ, the maximum E is close to zero. However, the critical

curve is not symmetric about E = 0 at this maximum deformation. It is possible that
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the region of existence extends past this maximum deformation, but below E = 0. In

this regime, <B2> � <B2
0> meaning the continuation would only be possible if a

pressure jump is set up across the interface. This is tantalising evidence that in some

cases a pressure discontinuity allows a field to be continued across the surface when

it would not be possible for a continuous field.

5.4.4 Robustness of interfaces with rotational transform dis-

continuities

Figure 5.7 shows robustness plots for continued fields of different winding number

for the same prescribed field γ[0111]. The robustness plots are much more intricate in

this case, especially Figure 5.7(a), which has wisps in which pressure healing occurs

multiple times.

Figures 5.4, 5.7(b), 5.8(a) and 5.8(b) can be compared in the same manner as the

prescribed fields were in Section 4.2.3, namely that the contined winding numbers

decrease in their irrationality. There is a corresponding decrease in the ability to

withstand pressure jumps at high deformation. In fact the maximum deformation at

which these discontunitous continued fields exist occur at a negative energy. At these

deformations the field requires a pressure discontinuity to allow the jump in rotational

transform.

5.5 Robustness of flux surfaces

This section shows a robustness plot for a flux surface that has been extracted from

a MRXMHD volume calculated by SPEC. For more details about how the flux surface

was calculated in SPEC, see Section 3.4.3.

5.5.1 Truncation

The flux surface with ι- = γ[1213] was extracted for deformations d from zero to 200.

SPEC used (mmax, nmax) = (50, 25) resulting in 2, 576 Fourier terms. Figure 5.9 shows

the number of Fourier components that must be kept in order to include all Fourier

terms greater than Wmin, as a function of the deformation.

The limit Wmin = 10−10 was sufficient to get accurate residues. The PJH code

became too slow for more than 700 Fourier components and so results only include

the range d = 0, 0.00150. This limit also passed the test described in Section 3.3.7 in

that 700 Fourier components did not lead to decreased numerical accuracy from the

added calculations.
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5.5.2 Robustness of flux surface with same continuous rota-

tional transform

Figure 5.10 shows a robustness plot for the extracted flux surface with rotational

transform γ[1213], the horizontal axis denotes d, the deformation of the outermost

boundary which now is a parameter for the destruction of the flux surface. The

existence of the continued field configuration is tested using ρ6(1213) so that the

continued field has the same rotational transform.

The robustness plot of the flux surface has a complex structure at negative energy,

but for positive energy it has the same exponential like behaviour as has been seen

before. Only deformations up to d = 0.00150 are shown, although SPEC could calculate

up to d = 0.00200, the Fourier tails for cases higher than d = 0.00150 would require too

many Fourier terms for PJH. The fact that there is still a large range of energies that

are allowed suggests that indeed that the surface will likely survive past d = 0.00150.
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Figure 5.1: The critical energy determined by the Greene’s residue test and MacKay’s

residue criterion as a function of the convergent at which the test is applied. MacKay’s test

is superior in this case. Low convergent tests using MacKay’s criterion tend to overestimate

the critical value, but are sufficient if the critical point does not need to be determined

precisely.
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Figure 5.4: Robustness plot for a SPEC interface with prescribed field ι-0 = γ[0111] and

continued field ι- = ι-0 tested by calculating ρ6. The overall behaviour of the plot is similar

to the simplified system, with an exponential–like decrease in energy allowed for increasing

deformations. Note in this case there are no regions of healing.
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Figure 5.9: The number of Fourier component triplets (Rmn, Zmn, fmn) whose size measure

Wmn have a value larger than Wmin = 10−10. Wmin was observed to be a good minimum

limit for which the residues behaved as expected.
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Figure 5.10: The robustness graph for a flux surface that is being warped by the appear-

ance of islands and chaos in the plasma volume. There are many more wisps, stemming

from the additional harmonics present in this more complicated case.
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Chapter 6

Implications and future work

6.1 Implications for SPEC and MRXMHD

6.1.1 Original motivation of thesis

The original motivation that led to the work in this thesis was the need to understand

the nature of flux surfaces withstanding pressure jumps for the purposes of both the

SPEC code and to inform the MRXMHD formulation.

Throughout this section the pressure jump Hamiltonian will be considered in the

context of the entire plasma volume. As a result two Hamiltonian systems and there-

fore two different sources of chaos will be discussed. See Appendix A.4 for more

information about the differences between the two systems. The reader must keep in

mind that the pressure jump Hamiltonian can only be defined on each flux surface,

and the trajectories determine whether the field can be connected across the pressure

discontinuity, whereas the magnetic field line Hamiltonian is defined in the entire vol-

ume, and the trajectories are the field lines and determine make up equilibrium field.

The trajectories of each Hamiltonian must agree on the two sides of each interface.

6.1.2 How SPEC works

As mentioned earlier, SPEC considers the fusion plasma to contain a set of interfaces

which represent assumed-to-exist nested flux surfaces Sl each defined by a rotational

transform ι-l, where l ∈ Z, l = 0, N where N is the outermost boundary and l = 0 gives

the magnetic axis. These surfaces are then used as boundaries for a modified Taylor

relaxation to determine the Beltrami field between each of the flux surfaces.[HHD07]

This modified Taylor relaxation shows that there is a constant pressure within each

volume. As a result all the pressure changes occur on the interfaces and thus there is

a discontinuity in the pressure at each of the flux surfaces.

In general, after the relaxation, the Beltrami field calculated in each volume will

not necessarily satisfy force balance on each of the surfaces Sl. The next step then

is to warp the boundaries (by modifying the quantities Rmn, Zmn) to match force

balance. Of course, this will change the prescribed fields on the interfaces that act

109
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Figure 6.1: A stylised version of the principles by which SPEC works. One solves for the

Beltrami field in the volumes between a set of flux surfaces set as interfaces. Then one

modifies the shape of the flux surfaces to satisfy force balance. This changes the boundary

conditions for the calculation of the Beltrami field, which must be repeated. This iteration

convergences to the equilibrium field.

as boundaries for the internal Beltrami field. Thus the Beltrami field will need to be

recalculated with the new boundaries. This process is iterated until force balance is

satisfied at which point the union of the resultant Beltrami fields gives the equilibrium

field. Figure 6.1 shows a stylised illustration of the algorithm.

However, there is an assumption that the iteration will converge with a set of

smooth interfaces consistent with force balance. Whether this is true was not clear

and indeed the basic nature of pressure discontinuous flux surface was not clear. This

led to the formulation of the pressure jump Hamiltonian system and consequently

the PJH code. The pressure jump Hamiltonian system gives a necessary condition for

such convergence in SPEC. Since work started on this thesis, convergence testing has

been done with SPEC with promising results.[HDHM12] The PJH code complements

these findings by utilising Hamiltonian theory to explore the domains over which the

necessary condition of force balance holds. The computational results of the previous

chapters provide evidence to the following findings relevant to the progression of SPEC.
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6.1.3 Results that have implications for SPEC and MRXMHD

There is a Hamiltonian formulation for internal flux surfaces

The pressure jump Hamiltonian system derived in Section 2.3 is a generalisation of

the Hamiltonian formulation of force balance on the last closed flux surface proposed

originally by Berk et al [BFL+86] to force balance on a flux surface residing inside the

plasma.

Results from the pressure jump Hamiltonian do map homeomorphically

back to configuration space

Using the Birkhoff theorem in Section 2.3.6 it was shown that trajectories map home-

omorphically to field lines on the surface, and the winding number of the trajectories

is conserved so that it is equal to the rotational transform of the resulting field line.

The simplified Hamiltonian is suitable as a toy problem

The simplified version of the pressure jump Hamiltonian reduces the number of har-

monics present in the Hamiltonian and results in a system in which the effect of each

perturbation can be identified. The system was shown to have the same general be-

haviour as the original problem, though its simplifications are too strong for it to

make any predictions about realistic cases.

The conservation of the rotational transform is in principle possible, but the at-

tempt made in this thesis was not successful. It may be that the conservation results

in many f components, which would defeat the purpose of the simplified model.

Despite this the simplified Hamiltonian was helpful in explaining the effects of the

perturbations of the system.

The simplified Hamiltonian is an interesting Hamiltonian in its own right. It is

easily visualised and provides multiple perturbative parameters.

Flux surfaces may be destroyed during warping

The statement here that flux surfaces may be destroyed during warping may seem

obvious from the KAM theorem. However the “smooth and small” perturbations

that ensure some tori persist within JAM theory, can not easily be identified with the

perturbations to the pressure jump Hamiltonian (gij, f−). That is it is not clear how

a modification of the geometry of a flux surface can be designed so that it is “smooth

and small” enough to ensure that force balance is still possible.

Currently, SPEC uses a steepest descent method to warp the surfaces. In this

case the Fourier components of the shape of the surface are modified to reduce the

discrepancy in the pressure jump condition from zero in the least steps possible. The
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numerical investigation of this thesis suggests that it may be important to apply a

constraint of smoothness to the steepest descent algorithm, lest the algorithm sharply

warp the flux surface and make force balance impossible. SPEC’s behaviour in such a

situation is not well understood. We suspect that convergence will become difficult

if no solution is possible for the pressure jump and rotational transform prescribed.

In this case it may be necessary to re-start the calculation with other prescribed

boundaries that are more likely to persist.

There is another advantage to a smoothness constraint on the flux surfaces dur-

ing the iterations and that is purely computational. The more Fourier components

required, the more computational time is needed to perform any calculations. Com-

putation time is extremely sensitive to the number of Fourier components as the

corresponding Fourier series often appear as convolutions or as quadratic quantities

in the SPEC code.

Higher pressure jumps tend to destroy flux surfaces

It was shown that, in general there is a maximum pressure jump for which contin-

uation is possible for a given reference field. In some cases though, increasing the

pressure jump further past the point at which it can no longer be continued resulted

in the continuation becoming possible again for a small range of larger pressures.

These appeared as “wisps” in the robustness plot and seemed to be more likely to

be present in situations where the deformation had many Fourier components (i.e.

complex geometries).

From the perspective of the inverse formulation, the results show that the maxi-

mum pressure discontinuity (maximum difference between the average of the squares

of the fields) in general becomes smaller as the surfaces are warped. The existence of

wisps shows that the decrease is not smooth. Indeed, as one is free to select any two

continuations from the reference case, wisps correspond to energy bands for which the

inverse problem may be solved. These bands have an analogue in quantum mechanics

as Brillouin zones, and in the pressure jump Hamiltonian problem the width of these

bands correspond to the maximum pressure jump that is allowed for force balance to

be satisfied.

The rotational transform of the surfaces should be kept constant during

their deformation

It has been shown that the resilience of flux surfaces is highly sensitive to their rota-

tional transform, as implied by the KAM theorem. As SPEC relies on the existence

of the flux surfaces during deformation, it is important to maintain ι- on S otherwise

the interfaces will become a different flux surface with a different robustness profile.
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The requirement that ι- be kept constant under deformation of the interface, how-

ever, is theoretically inconsistent with Helicity conservation. One possible solution to

this problem is to slightly relax one of the other constraints in Equation (2.8) (mass,

entropy or helicity conservation) to allow more freedom in the deformation. The prob-

lem of helicity and rotational transform conservation has been noted as a difficulty

since the early development of SPEC[HHD07] and remains unsolved[HDHM12].

Rotational transform of flux surfaces should be strongly irrational

One of the issues with an equilibrium code like SPEC is that one is trying to deter-

mine the chaotic structure of a Hamiltonian system (the field line Hamiltonian, see

Appendix A.4) that is highly perturbed to begin with. This is different from other

systems in which one may start with an unperturbed, smooth system and perturb it

to determine information about its nature (an investigation of this form allows one to

appeal to the KAM theory). When applying SPEC one is confronted with an unknown

and highly chaotic system and needs to somehow determine which flux surfaces exist

so that one can use these flux surfaces as interfaces (and thus for this task we cannot

use the KAM theory). It is important then to have a method to determine which

flux surfaces should be prescribed that would 1) exist and 2) continue to exist under

perturbations.

The KAM theory does however answer part 2), as it has proved the most irrational

are most likely to survive smooth and small perturbations. As it was shown that the

winding number of Hamiltonian trajectories is conserved during the mapping to a

field line on the surface, the KAM result that the most-likely-to-persist-invariant tori

are irrational can itself be mapped to configuration space to imply that flux surfaces

with irrational rotational transform are the most robust to sufficiently smooth and

small perturbations.

In general it was observed that the more irrational the continued field, the higher

the deformation it could survive. The effect of energy was less obvious and it was

possible for less irrational continued fields to be continued across larger pressure dis-

continuities for small deformations. This suggests that pressure jumps should be

portioned amongst interfaces depending on the irrationality of the field either side.

Though just how to do this is not clear. The results in this thesis suggest that highly

deformed surfaces are likely only to exist if they are highly irrational, and in that case

only a small pressure discontinuity could be loaded on that interface. For less de-

formed surfaces the situation is less clear, as rotational transforms of less irrationality

may hold more pressure at low deformations. Further work is required to clarify this.
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Greene’s residue can be utilised to predict imminent destruction

Before a force balance iteration of SPEC, it would be desirable to know whether force

balance is possible at all. As mentioned in Section 6.1.3, SPEC would likely have

difficulty converging if force balance is not possible and this would only be appar-

ent with a convergence test that would check how force balance is satisfied as more

Fourier components are included. However we have provided evidence that Greene’s

reside could be used to check if force balance can be satisfied without the need for a

convergence test.

It would likely be beneficial to include a more specialised version of PJH as a

module in SPEC that can monitor the flux surfaces by following the field lines and

computing Greene’s residue. This would allow SPEC to adapt its algorithm to ensure

it is not wasting time attempting to satisfy force balance when its solution is not

possible. Further, in situations similar to Figure 5.5(b), a scan of Greene’s residue for

various perturbations will provide a domain of pertubrations to gij, f− and ∆P that

are allowed, allowing SPEC to change the pressure and find a solution.

However, the use of PJH in SPEC is not the most efficient way to determine the

closeness of a flux surface to destruction. This is because PJH is highly computationally

intensive and uses a shooting method. While SPEC has the capability to follow orbits,

it uses a variational approach on the Fourier decomposition of the 3D magnetic field

B(θ, ζ, s) when calculating the equilibrium field. This means that when SPEC considers

the flux surfaces, it considers not the field lines, but the two dimensional magnetic field

B(θ, ζ; sl) and by extension the surface potential fl(θ, ζ). All the information about

the magnetic field is contained in fl, and so following the field lines would be wasted

computation. Instead one could either 1) adapt PJH to use a variational principle

(see Section 6.3.1 for the issues with this) or calculate some other quantification of

resilience directly from f (see Section 6.4.2 for suggestions in this vein).

Multiple pressure jumps can be applied across a given surface

Most discussion so far has assumed that one can load whatever pressure one desires

on each interface. Surely though there must be some constraint that determines how

much of a pressure discontinuity should be loaded. One suggestion has been that

every surface has a pressure discontinuity such that it is critical. However the energy

healing observed in Chapter 5 shows that this is not unique, as the critical line can

be multi-valued for a given deformation.

While there is some ambiguity, the results also showed that in general the pressure

jumps should be kept small.
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6.1.4 Suggestions for SPEC code

Listed here is a summary of possible modifications to SPEC that the pressure jump

Hamiltonian formulation investigation has suggested may help its accuracy and sta-

bility.

1. Ensure the interfaces have a highly irrational (noble) ι-.

2. Apply a smoothness constraint to the descent algorithm that modifies the Fourier

coefficients of the prescribed surfaces to satisfy the pressure jump condition.

3. The PJH code can be inserted into SPEC as a diagnostic tool to ensure not just

that the invariant torus exists, but that it is not close to destruction. A more

elegant improvement in this vein would be to calculate a quantity such as the

analyticity width directly from f(θ, ζ) (See Section 6.4.2).

4. Using one side of the interface as the reference case, the inverse formulation

allows one to test both sides of the surface at the same time, the iteration in

which the surfaces are warped may benefit from this formulation.

5. The conservation of the rotational transform of the interfaces is important, and

so a modification to the relaxation formulation that ensures this is the case dur-

ing modification of the boundaries is suggested. Perhaps allowing small leakages

of ideally conserved quantities through the flux surface during deformation may

allow this to occur.

6.2 Other uses for PJH

6.2.1 Used to investigate high–n stability of flux surfaces

The PJH code has already been used to further research on the nature of flux surfaces

in the MRXMHD formulation in a manner that was not originally intended when it

was formulated. In 2010 Barmaz used PJH to aid in their investigation the high–n

stability of flux surfaces with pressure discontinuities.[Bar11]

This work investigated the question how stable flux surfaces are to displacements

of the interface when the surfaces held a pressure discontinuity. While this thesis asks

questions about whether flux surfaces exist or are likely to exist by making the first

variation of the MHD energy vanish, this complementary MHD stability investigation

asks how stable the surfaces are to deformations using the second variation of the

MHD energy.

The work of Barmaz[Bar11] generalised a stability treatment of Bernstein et al [BFKK58]

of an interface with a vacuum magnetic field on one side. Barmaz generalised it to
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the situation of a flux surface with a plasma either side. This is analagous to the gen-

eralisation of the pressure discontinuity condition of Berk et al to the more general

plasma–plasma boundary derived in this thesis.

First Barmaz determined that a flux surface in a plasma at equilibrium is stable to

deformations unless there are points of zero shear (where B− ‖ B+). Axisymmetric

surfaces can have zero shear everywhere, but for a three dimensionally deformed

surface it can be the case that there are lines (or points, though they are very rare)

in which the inner field is parallel to the outer field and thus susceptible to instability

under further deformation.

To investigate these instabilities, Barmaz was able to run PJH and identify lines

of zero shear. In these neighbourhoods the results from PJH could be inserted into

the energy variation equation to compare the interaction between curvature and the

stability of the surface. From this it was determined that a high curvature in the

low magnetic shear region can keep the surface stable while undergoing geometric

deformation.

6.3 Suggested improvements and extensions to the

PJH code

6.3.1 Use of a variational integrator

In order to address issues that arise from using a shooting code for finding periodic

orbits, work was done toward a variational version of the code. Given a Hamilto-

nian system, one can construct the discrete Lagrangian which solves the Hamilton-

Jacobi equation exactly and this discrete Lagrangian can be solved for an exact

solution.[MW01] Such a method is superior to the shooting method for finding trajec-

tories of certain winding numbers because the boundary conditions of the configura-

tion variables set the rotational transform and so a search is not required. Variational

integrators also avoid the problem that shooting codes face, in which the problem be-

comes stiff for long orbits, especially those orbits with high Lyapunov number.[Jac91]

Using the pressure jump Hamiltonian Equation (2.22), one can assume a pointwise-

linear magnetic field line consisting of θ and pθ values at certain points of ζ, so

(θ, pθ) = [θ(ζi), pθ(ζi)] for i ∈ Z, i = 0, N with ζ0 = 0 and ζN = 2π. The momentum

is periodic so pθ(ζN) = pθ(0). The initial values for the functions were set to

θ(ζi) = ι-ζi , (6.1)

pθ(ζi) = f( ι-ζi, ζi) . (6.2)

Care would need to be taken with trajectories with high winding numbers as it
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these trajectories would require more points, though a swap to θ as the independent

variable for trajectories with ι- = 1 would remedy this problem. As would the fun-

damental long Fourier tails difficulties finding orbits near criticality. The difficulty of

resolving orbits near criticality will still be present as more and more Fourier terms

are required in this domain.

However the biggest difficulty in using a variational method is the determination

of Greene’s residue. Variational equivalents of the residue criterion can be found

in the Lagrangian-derived method of Meiss and MacKay.[MM83] However for more

than one dimension the expression becomes very complicated involving determinants

of determinants. The author’s conversations with MacKay suggested that a higher-

dimensional solution is in principle possible, but the determination of its form proved

too difficult.

There is an alternative expression for a variational measure like Greene’s residue

in Bountis’ PhD thesis.[Bou78] However it came to our attention too late for this

thesis.

6.4 Suggested future work

6.4.1 Further investigate energy healing

If the precise mechanism for energy healing could be determined, it may provide

methods for which the phenomenon could be avoided (perhaps by constraining how

the interfaces are warped) or exploited (allowing access to larger pressure jumps).

6.4.2 Use of analyticity width to quantify resilience

Resilience information in residue curves

The limit of the residue curve implies the nature of the Hamiltonian trajectory, how-

ever there is more information in the residue curves than simply a litmus determi-

nation of regular/not regular. Consider Figure 6.2, which shows the residue curves

of a certain irrational trajectory at various stages of increasing deformation of the

flux surface. Note that all residue curves limit to zero, so at each of the deforma-

tions the field line configuration satisfies the pressure jump condition. However, as

the deformation increases the number of convergents required before the curve can

be confidently said to be limiting to zero also increases, which is reflected in a slower

approach of the curve to zero in the graphs.

This correlation between residue decay rate and how close the trajectory is to

being not regular has been observed and commented on before.[Gre79][SK81][Mac92]
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(a) The residue curve for ∆P = 0.3.

(b) The residue curve for ∆P = 0.7.

(c) The residue curve for ∆P = 1.0.

Figure 6.2: At each of these pressures the trajectory is regular, but the residue takes longer

to converge to zero. Thes are taken from the simplified Hamiltonian with perturbation

(δ, a, ε, F ) = (0.01, 0.01, 0.1, 0).
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Some of these papers suggested quantifications of the residue decay rate which are

investigated in Section 6.4.3.

This thesis submits that this information can be used to determine how resilient the

field line configuration is. Further, the analyticity width is identified as a quantification

of resilience.

Analyticity width

The analyticity width is a measure of how “difficult” the transformation to action angle

coordinates is. This would amount to a method of quantifying how close a surface is

to destruction. Such a quantity would provide a measure of resilience, allowing one

to ignore the specific sensitivities to certain perturbations caused by the changes in

the Hamiltonian system specification. That is, there would be no need for a multi-

parameter robustness investigation, instead the analyticity width a could be used as a

single measure of closeness to destruction. The practical use of the analyticity width

in this manner was first suggested by Stuart Hudson in a private conversation and

has since been discussed with Robert MacKay, leading to the following findings.

Definition of analyticity width

In Section 3.2.4 it was shown how the ability to make a transformation to straight

field line coordinates determines whether the trajectory is chaotic or not. However,

while the transformation is either possible or not, it is possible to extract a measure

of how close the transformation is to being impossible.

In Arnol’d ’s proof of the KAM theorem he proves that, when the invariant torus

is written parametrically as a function of the action-angle variables, the invariant

torus is analytic within a complex band of the real axis.[GP81] So that not only can

a transformation to action angle coordinates be defined, but such a transformation

can be done in a finite region into the complex plane.

To be more precise, a solution to a Hamiltonian system can be written as the

mapping

θ 7→Mθ , (6.3)

as the mapping brings the trajectory back to where it started, M is then a periodic

mapping. The mapping can be written in general form as[DM92]

M(θ) = θ + ι- +m(θ) , (6.4)

where m(θ) some function with periodicity 2π.
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There may be a diffeomorphism transforming the mapping M(θ) = θ + ι- + m(θ)

to a circle mapping

RΘ = Θ + ι- . (6.5)

This circle mapping acts on a new set of coordinates Θ, identified as action angle

coordinates. The diffeomorphism between R and M exists if the parametrisation

θ = XΘ = Θ + x(Θ) . (6.6)

exists for Θ extending into the complex plane. In this case R and M are said to be

topologically conjugate.

This conjugacy needs only to be proved for a single mapping, because if

XR = MX , (6.7)

then

XRN = MNX . (6.8)

The maximum extent to which Θ can be complex and the parametrisation still

exist defines the analytic width or analyticity width α > Im θ.[Mac92]

The parametrisation X is the conjugacy between the mapping [Equation (6.3)]

and rigid rotation [Equation (6.5)]

XR = MX , (6.9)

The conjugacy also applies to continuous solutions like pressure jump Hamilto-

nian trajectories, in which case ζ has been declared as the time coordinate, matched

with the timing of the mapping.

To find the analytic width of X, one complexifies X(Θ) to CX = X(Θr+ iΘi), and

finds the maximum Θi for which the X still exists, i.e. the distance Θi to the nearest

singularity.

Greene and Percival have shown that the analyticity width decreases in magnitude

along with increases in destructive perturbations, and an analyticity width of zero

successfully predicts the breakup of a surface for the standard map.[GP81] There

is no proof that the analyticity width has the same behaviour for more complex

Hamiltonians, but Greene and Percival conjecture that it behaves the same way for

general nonintegrable systems.
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Calculating analyticity width for field line configurations

The analyticity width can be calculated by complexifying the transformation to ac-

tion angle coordinates. In the pressure jump Hamiltonian formulation the action

angle coordinates were seen to be equivalent to straight field line coordinates (See

Appendix A.2.5). It states that one can transform to straight field line coordinates

via the transformation

θ = Θ−
ˆf(θ, ζ)

I
, (6.10)

ζ = ζ , (6.11)

which amounts to removing the periodic deviations away from f so that it is linearised

to f(Θ, ζ) = IΘΘ + Gζζ. This leads to the magnetic field components BΘ, Bζ

becoming constant as a function of the new angular variables, hence straight field line

coordinates.

The fmn terms that describe the action of the solution trajectory can be calculated

from

pθ(θ, ζ) = I +
∞∑
m,n

mfmn cos (mθ − nζ) , (6.12)

which comes from the relation in Equation (2.26).

In principle the process of calculating the analyticity width involves transforming

Equation (6.10) to the form of Equation (6.6). One must then complexify the resulting

function X using the coordinate Θ = Θr + iΘi. The result will be an expression for

the analyticity width that is a function of fmn.

Calculating the analyticity width of a trajectory of even the most simple Hamilto-

nian system is a highly computationally intensive task. For instance Rosengaus and

Dewar[RD82] showed that the Fourier tail of conjugate expansions must be followed

to a large value of m, and even then the behaviour of the coefficients is not monotonic,

and the limit is not well defined. The pressure jump Hamiltonian is extremely compli-

cated for any reasonably realistic conditions and so the calculation of the analyticity

width is left as future work, with pessimism toward it being practically calculable

without some new derivation.

Analyticity width in the magnetic field line Hamiltonian

In principle the analyticity width can be calculated for the magnetic field line Hamil-

tonian too. The analyticity width in the magnetic field line Hamiltonian would again

represent how resilient the field line is, but would not contain information about

the effect of the pressure discontinuity. The perturbations to the magnetic field line
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Hamiltonian are solely due to the deformation of the flux surfaces, and so the associ-

ated analytic width would tell how resilient the flux surface is to deformations only.

The pressure jump Hamiltonian in contrast can only be defined on a flux surface,

but the analytic width represents the resilience with regard to deformation and the

pressure jump.

6.4.3 Other measures of resilience

Because of the difficulty of reliably measuring the analyticity width, other measures

have been suggested in the literature that may provide an approximate measure. Stud-

ies of Greene’s residue criterion have spawned various attempts to quantify “closeness

to destruction”. The definitions that follow are theoretical approximations or com-

putational measures that have been shown to be correlated with resilience. The

advantage of these measures is that they are much more computationally tractable

than the analyticity width, but of course are merely approximations to it.

Shenker technique

Shenker and Kadanoff looked at residue curves and came to the same observation

as outlined in Section 6.4.2, that the behaviour of the residue curve reflects how

close the trajectory is to being chaotic.[SK81] Shenker and Kadanoff found that the

following equations matched the residues “quite closely” in the limit of large qi and

small ε = EC − E[SK81]

Re
i ∼ Re

∞ ι-
(EC−E)β0qi (6.13)

Rh
i ∼ Rh

∞ ι-
(EC−E)β0qi . (6.14)

where the two parameters to fit are β0, Re
∞. There are two equations, one for the

elliptic (positive) residue Re
i and one for the hyperbolic (negative) residue Rh

i .

MacKay technique

Another model has been introduced by MacKay. This model has a more rigorous

definition, it is a predicted expression for the asymptotic behaviour of the residue,

relying on the fact that the analyticity extends continuously to the analytic boundary.

The model is the asymptotic (large q) expression [Mac92]

R ∼ ±R∞(q, | ι-− p/q|)e−qα. (6.15)

where R∞(q, | ι-− p/q|) depends on the convergent (parametrised by q) and the close-

ness of the convergent to the irrational it is approximating (| ι- − p/q|). The nature
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of the function R∞ is “unknown”[Mac92], but the exponential envelope can be fitted

to give a value for the analyticity width. The ± implies there is a separate fit for

hyperbolic and elliptic orbits, like the Shenker fit.

This expression for the residue agrees with Greene and Percival when they showed

that the rates of exponentiation of R(q) agreed to 4.5 figures to the analyticity width

calculated by studying the behaviour of the Fourier tail. There is numerical evidence

that MacKay’s model is correct for the inverse golden mean in the semistandard

map.[GP81]

More accurate than the previous two measures (but strongly related) is MacKay’s

theorem 4,[Mac92] that

lim sup
n→∞

q−1
n log |Rn| = µ( ι-) ≤ −α , (6.16)

which gives a minimum value for the analyticity width α.

The above methods may provide a simpler and faster way to infer resilience for a

trajectory, which would be a helpful diagnostic for SPEC. However their application

has only been compared for the standard map, and more work would be required to

ensure they are applicable as replacements for the analyticity width.

6.4.4 Edge localised modes

The break up of a flux surface sustaining a large pressure discontinuity could provide

a simple mechanism for edge localised modes. The redistribution of pressure that

would need to occur when a flux surface withstanding a pressure discontinuity breaks

up may result in the destruction of nearby flux surfaces. If this starts a chain reaction

the net result may be the translation of pressure radially outward and eventually out

of the outermost flux surface, where the mass would escape confinement.

This explanation would fit with observations that show a reduction in the severity

of edge localised modes when chaotic modes are induced in the outer plasma region.

A simulation of this effect should be possible with SPEC in the near future.

6.4.5 Current sheets in other physical systems

Flux surfaces sustaining a pressure or rotational transform jump are an example of

current sheets, which have been observed particularly in astrophysics where magnetic

forces push currents and localise them along two-dimensional surfaces. While this

thesis concentrated on toroidal surfaces, current sheets have investigated in many

other topologies (e.g. linear and hyperbolic).[Par94]

An analogous Hamiltonian system for these geometries may shed light on their

nature. Including determining a necessary condition for when these sheets may exist
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in equilibrium.

6.4.6 Further investigation into the idea of a “Hamiltonian

within a Hamiltonian”

The pressure jump Hamiltonian is defined on an invariant torus of the magnetic

field line Hamiltonian. This is a strange formulation which sees a non-integrable

Hamiltonian system imbedded within another non-integrable Hamiltonian system.

This can be seen in the structure of the Hamiltonian:

∆P =
1

2
gijpipj −

1

2
gij∂if−∂jf− . (6.17)

The potential function is of the form of the kinetic term, which is itself the form

of the problem of finding geodesics on a torus. The magnetic field line Hamiltonian

influences this Hamiltonian through the metric terms, which describe an invariant

torus of the magnetic field line Hamiltonian dynamics.

This situation was reflected in the robustness plots based off SPEC equilibria in this

thesis. These plots showed how the stability of the pressure jump Hamiltonian de-

pend on how close the invariant torus of the magnetic field line Hamiltonian was to

destruction. Past this it is not clear what could be done to garner some fundamental

knowledge of this situation, but this peculiar construction that sees “chaos within

chaos” may be worth further investigation.
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Appendix

A.1 Covariant and contravariant representations

Consider a position vector R. We can define the vector function Rc to convert a set

of cartesian coordinates x, y, and z to give R, but we want to instead use a new

general coordinate system defined by the three numbers u1, u2, and u3, for which one

would need a function Ru,

R = Ru(u
1, u2, u3) = Rc(x, y, z) . (A.1)

This implies there must exist functions

u1 = u1(x, y, z) (A.2a)

u2 = u2(x, y, z) (A.2b)

u3 = u3(x, y, z) , (A.2c)

that transform the Cartesian coordinates to our general curvilinear coordinates. As

Cartesian coordinates are a valid coordinate system, the condition for u1, u2, and

u3 to be a valid coordinate system is that the transformations between them [Equa-

tions (A.2)] be one to one, i.e., there must be one u1, u2, and u3 point for every x, y,

and z point.1

Providing the new coordinate set is valid, it is helpful to define the basis vectors

of the coordinate system. The ei basis vectors point in the direction in which Ru

changes with respect to ui, thus the basis vectors of the ui set are

e1 =
∂Ru

∂u1
, e2 =

∂Ru

∂u2
, e3 =

∂Ru

∂u3
. (A.3)

1A transformation to a toroidal topology would need the functions in Equations (A.2) to be
multiple valued, this is allowed.[DHCS91]
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Now we can write the position R as

R = x ex + y ey + z ez ⇔ (x, y, z) (A.4)

= u1e1 + u2e2 + u3e3 ⇔ (u1, u2, u3) , (A.5)

note that the right hand side uses brackets for different basis sets, which basis set

should be used should be clear from the context.

This choice of basis vectors is not the only choice. For any curvilinear coordinate

system it can be helpful to define another set of basis vectors ei, that points in the

direction that ui changes with respect to the vector Ru. defined by

e1 =
∂u1

∂Ru

= ∇u1, e2 =
∂u2

∂Ru

= ∇u2, e3 =
∂u3

∂Ru

= ∇u3. (A.6)

So we can write R as

R = x ex + y ey + z ez = (x, y, z) (A.7)

= u1e
1 + u2e

2 + u3e
3 = (u1, u2, u3) . (A.8)

To aid in visualisation, the basis vectors ei are tangent to the ui coordinate curves,

whereas the basis vectors ei are perpendicular to the coordinate surface ui = const,

as shown in Figure A.1.

The two definitions of basis vectors seem similar and indeed they are stongly

Figure A.1: An example of a transformation of a point in space in Cartesian coordinates

to the same point in space in curvilinear coordinates. Here the basis vectors ei are in the

direction in which Ru changes with respect to ui, i.e., tangent to the ui coordinate curve.
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related. In fact it is simple to show that with the above definitions, that

ei · ej = δij , (A.9)

where δij is the Kronecker delta. This orthogonal relation means conversion between

the two basis sets can be trivial, so the two sets of bases are very helpful when dealing

with curvilinear coordinate systems. Because of the relation in Equation (A.9), the

two sets are referred to as reciprocal basis sets (a name that is more fitting when one

campares their original definitions).

As these two basis sets span R3, any three dimensional vector can be written in

either of the two bases by writing the vector as a linear combination of the basis

vectors like so,

D = D1e
1 +D2e

2 +D3e
3 = (u1, u2, u3) = Die

i (A.10a)

= D1e1 +D2e2 +D3e3 = (u1, u2, u3) = Diei , (A.10b)

here the vectors are written in Einstein notation.

The two representations in Equations (A.10) are identified by the script (super

or sub) of the components. Components of a vector with a subscript (e.g. Di) are

referred to as covariant components. Components of a vector with a superscript (e.g.

Di) are referred to as contravariant components. Thus, the first representation [Equa-

tion (A.10a)] is referred to as the covariant representation of the vector D because

the components of the vector has subscripts (Di), and the second representation is the

contravariant representation of the vector D because the components of the vector

has superscripts (Di).

One can determine the covariant or contravariant components of a vector by simply

taking the dot product with the corresponding basis vectors.

Di = D · ei (A.11a)

Di = D · ei . (A.11b)

To transform from, say the covariant representation Die
i to the contravariant

representation, Djej, one would need to first determine the contravariant components

Dj. This is done by combining Equation (A.11a) to Equation (A.10a)

Dj = D · ej (A.12)

= (Die
i) · ej (A.13)

= Dig
ij , (A.14)



130 Appendix

where

gij = ei · ej , (A.15)

is a metric coefficient. As one might expect, transforming the other way, from con-

travariant components to covariant components uses metric coefficients

gij = ei · ej . (A.16)

The metric coefficients contain information about the transformation between the

two representations. They inherit nice properties from the vectors that make them

up, including

gij = gji, gij = gji , (A.17)

and

gijg
jk = δki . (A.18)

The metric is mainly used for transforming between representations. As well as

transforming vector components, one can transform the basis vectors themselves using

metric coefficients

ei = gije
j (A.19a)

ei = gijej . (A.19b)

One less common terminology used in this thesis is referring to a transformation

that results in a transformation that converts a component or vector with a subscript

to a superscript as raising the indices, and referring to the opposite transformation

as a lowering of the indices.

The metric coefficients gij can be collected into a matrix [gij], the i, jth element

being gij. Similarly, one can also create a matrix [gij]. When these matrices are

multiplied, we get a result that mirrors Equation (A.18)

[gij][g
ij] = I , (A.20)

where I is the identity matrix. The determinant of each of these matrices are inverses
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of each other

g = det[gij] (A.21a)

g−1 = det[gij] . (A.21b)

The determinant of the matrix is important, because it is related to the Jacobian of

the transformation from Cartesian coordinates to the curvilinear coordinate system.

The Jacobian of the transformation from (x, y, z) to (u1, u2, u3) is

J =

∣∣∣∣∣∣∣
∂x
∂u1

∂x
∂u2

∂x
∂u3

∂y
∂u1

∂y
∂u2

∂y
∂u2

∂z
∂u1

∂z
∂u2

∂z
∂u3

∣∣∣∣∣∣∣ . (A.22)

Writing out the definition of the components of the metric matrix and simplifying

gives the following relation

J =
√
g. (A.23)

There are other ways to write the Jacobian, including

J = e1 · e2× e3 =
√
g (A.24)

J −1 = e1 · e2× e3 =
√
g−1 . (A.25)

A.1.1 Other helpful relations

There are further advantages to using covariant and contravariant representations.

Dot products are simplified when using reciprical representations:

C ·D = CiDjδ
j
i (A.26)

= CiD
jδij , (A.27)

or

C ·D = CiDjgij (A.28)

= CiDjg
ij . (A.29)

A common form for cross products uses raising and lowering operations to calculate

cross products. Expanding in either the covariant or the contravariant representation,

C ×D = CiDjei× ej = CiDje
i× ej , (A.30)
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you can find the covariant or contravariant component of the resultant vector by

dotting with the corresponding basis vector Equations (A.11),

(C ×D)k = (CiDjei× ej) · ek (A.31)

= εijk
√
gCiDj , (A.32)

where εijk is the Levi-Civita symbol. Similarly,

(C ×D)k = εijk
1
√
g
CiDj . (A.33)

The torus S is embedded in an ambient, 3-dimensional Euclidean space with its

own metric, Gij say. If (θ, ζ, ψ) are curvilinear coordinates in this ambient space such

that ψ = const on S, then the covariant components Gij, i, j ∈ {θ, ζ}, are identical

to gij on S, but the contravariant components are different, they would be

gij = Gij − GψiGψj

Gψψ
for i, j ∈ {θ, ζ} . (A.34)

A.1.2 Why curvilinear coordinates are so helpful in Fusion

theory

he coordinates one sets when treating a fusion plasma should be chosen to follow the

contours of the plasma. For instance, the radial direction is often parametrised by

a nested set of surfaces of constant flux. This way the coordinate contours are flux

surfaces. This is always done with equilibrium codes that assume nested surfaces, but

becomes difficult when some flux surfaces cease to exist due to the presence of chaos.

By virtue of the coordinates following the contours of the plasma, the Jacobian

(and by extension the metric) of the transformation contains all information about

the transformation from cartesian coordinates to curvilinear coordinates, and thus

contains all the information of the geometry of the fusion plasma.

When the geometry of the flux surface is defined as in Section 2.2.1, it completely

defines the metric. Conversely, inspection of a given metric can tell you everything

about the surface.
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A.2 Coordinate systems used in fusion theory

A.2.1 General comments on toroidal coordinate systems

Toroidal topology is two–fold symmetric, and so a point on a torus can be uniquely

defined by

u = u mod 2π (A.35)

v = v mod 2π . (A.36)

Obviously these are extremely general, and in fact are underdefined leaving op-

portunity to define coordinates to suit certain tasks. For instance, one can redefine

these coordinates to minimise the Fourier terms you need in a Fourier description of

a torus (this is described in Appendix A.3).[HL86]

A.2.2 Cartesian coordinates

We assume the Cartesian coordinates of a point r to be given by r = xex+yey +zez.

A.2.3 s, θ, ζ coordinates

These are the simplest coordinates from a geometric point of view and are given by

(s, θ, ζ). The poloidal direction (short way round) is parameterised by θ. Similarly

the toroidal direction is parametrised by the angle ζ.

The radial coordinate s can also be used when dealing with a toroidal volume.

To simplify matters, the contours of the flux surfaces within the plasma volume are

defined to be surfaces of constant s. This way a choice of s = const specifies a flux

surface, and θ and ζ then parameterise the points on the flux surface. That the

level surfaces of s coincide with flux surfaces means that s effectively ‘labels’ the flux

surfaces.

Consider a surface s = const. A point on this surface is defined by (θ, ζ), but theta

and zeta are still largely undefined. It is often simpler not to think of them as angles

from the centre axis, but to think of them as simply parameterisations of a distance

along the surface S, which we refer to as angle–like. As the majority of this thesis is

concerned with single flux surfaces, s will commonly not be mentioned.
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A.2.4 RZ coordinates

We use the term RZ coordinates to refer to the set (R, φ, Z) where

R = R(s, θ, ζ) (A.37)

Z = Z(s, θ, ζ) (A.38)

φ = ζ , (A.39)

as shown in Figure 2.1(a).

R(θ, ζ) gives the distance of the point on the surface s = const to the vertical axis,

while Z(θ, ζ) gives the distance of the point on the surface to the horizontal plane.

The relationship between the RZ coordinates and Cartesian coordinates is given by

x = R(s, θ, ζ) cos(ζ) (A.40)

y = R(s, θ, ζ) sin(ζ) (A.41)

z = Z(s, θ, ζ) sin(θ) . (A.42)

These coordinates are especially helpful at constant φ, where such an intersection

results in an (R,Z) Cartesian description of the plasma cross section.

These coordinates can be used to prescribe surfaces as shown in Section 2.2.1.

A.2.5 Straight field line coordinates (SFLC)

Consider an integrable fieldB such that invariant tori (good flux surfaces) are smoothly

nested. We then choose the level surfaces of s to be these invariant tori. In this case

B ·∇s ≡ 0, i.e. Bs ≡ 0. Combined with the fact that the magnetic field is divergence

free, gives

∇ ·B =
1

J

[
∂

∂θ
(JBθ) +

∂

∂ζ
(JBζ)

]
= 0, (A.43)

where J is the Jacobian.

This implies that

JBθ = −∂ν(s, θ, ζ)

∂ζ
and (A.44)

JBζ = −∂ν(s, θ, ζ)

∂θ
. (A.45)

Thus wherever the magnetic field is divergence free (i.e. everywhere), the field can be

written as the spatial derivative of a potential. As the field is the derivative of this
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potential function, it must be linear and periodic in the angle coordinates,[DHCS91]

ν = u(s)θ + v(s)ζ + ν̂(s, θ, ζ) , (A.46)

where θ and ζ are the previously defined periodic coordinates with the above men-

tioned freedom and where ν̂ is a function that is periodic in θ and ζ.

The goal then in defining SFLCs is to find the angles for which the surface potential

does not have this periodic part. This is done by linearly transforming the coordinates,

so as to cancel the periodic terms like so:

θ = Θ− CΘ
ν̂

u(s)
, (A.47)

ζ = φ− Cφ
ν̂

v(s)
, (A.48)

where CΘ + CΦ = 1.

This gives the desired form for ν

ν = u(s)Θ + v(s)φ . (A.49)

In MRXMHD u(s) and v(s) are not well defined because we allow chaotic struc-

tures to form between flux surfaces, indeed single good flux surfaces surrounded (per-

haps infinitely closely) by chaos. In this situation ν is only defined on flux surfaces

and is given by the surface potential f(θ, ζ).

A.3 The Fourier representation of a toroidal sur-

face

The pressure jump Hamiltonian problem is defined on a flux surface of some geometry.

A method of prescribing a flux surface is desired that is both intuitive and takes up

little storage in computer memory.

Consider the (R, φ, Z) coordinate system introduced in Section A.2.4,

R = R(s, θ, ζ) (A.50)

Z = Z(s, θ, ζ) (A.51)

φ = ζ . (A.52)

By setting the level surfaces of s to coincide with the invariant tori of the pressure jump

Hamiltonian system, the choice s = const selects a toroidal surface whose geometry
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is given by

x = R(θ, ζ) cos(ζ) , (A.53)

y = R(θ, ζ) sin(ζ) , (A.54)

z = Z(θ, ζ) . (A.55)

Now the surface is completely defined by only two functions R(θ, ζ) and Z(θ, ζ). One

can take the Fourier transform of these functions

R =
N∑

n=−N

M∑
m=0

Rmn cos (mθ − nζ) , (A.56)

Z =
N∑

n=−N

M∑
m=0

Zmn sin (mθ − nζ) , (A.57)

so that the functions are defined using the sets of coefficients

R =


R11 R12 . . . R1M

R21
. . . R2M

...
. . .

...

RNM . . . . . . RNM

 , Z =


Z11 Z12 . . . Z1M

Z21
. . . Z2M

...
. . .

...

ZN1 . . . . . . ZNM

 . (A.58)

This Fourier representation allows a smooth toroidal surface to be stored on a com-

puter with nmax + 1 +mmax(2nmax + 1) terms, where m ≥ 0 and |n| ≤ m.[HW83]

Not only does it provide a convenient way to store toroidal surfaces computa-

tionally, this prescription also allows a more intuitive description of a surface. For

instance, an axisymmetric torus with major radius R0 and minor radius r0 can be

given by the components R00 = R0, R10 = Z10 = r0.

The surface as a whole can be represented with a surface array, for example:

S =



m n Rmn Zmn

0 0 R 0

1 0 r0 r0

0 1 δ −δ
2 1 δ δ


. (A.59)

The surface array in Equation (A.59) is used in this thesis for deforming an inter-

face in Section 3.4.2.
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Magnetic field line Hamiltonian Pressure jump Hamiltonian
P implicit P explicit
Defined throughout plasma volume Defined on a given magnetic surface
Phase space and time a representation
of Euclidean 3-space

Phase space a combination of a Rie-
mannian 2-space = magnetic surface
(configuration space) and field compo-
nents (momentum space)

All orbits are field lines Orbits are not field lines, projections
of regular orbits with specified ι- onto
configuration space are field lines

Table A.1: A table summarising the differences between the magnetic field line Hamilto-

nian and the pressure jump Hamiltonian.

A.4 Comparison of Hamiltonians

In this section we compare the magnetic field line Hamiltonian system often used

in the literature to the pressure jump Hamiltonian system introduced in this paper.

The magnetic field in the plasma volume be written as [Boo83]

B = ∇ψ ×∇θ +∇ζ ×∇χ . (A.60)

Using the equation of the field line dr/dt = B(r), one finds [Boo04]

dθ

dζ
=

∂χ

∂ψ
(A.61)

dψ

dζ
= −∂χ

∂θ
, (A.62)

which are of the form of Hamilton’s equations. Thus each field line can be described

as the solution of the magnetic field line Hamiltonian χ, in a phase space with the

poloidal angle θ and toroidal flux function ψ as canonical variables.

Trajectories of this Hamiltonian correspond directly to magnetic field lines within

the plasma volume. Trajectories that lie on invariant tori correspond to field lines

that draw out flux surfaces. Trajectories that are chaotic correspond to chaotic field

lines that fill the chaotic regions of the plasma.

The pressure enters implicitly into the magnetic field line Hamiltonian system,

exciting currents that determine the flux functions. The field line dynamics feed back

into the determination of the pressure as a function of position.

In contrast, the pressure is explicitly prescribed in the pressure jump Hamiltonian

as the magnitude of the pressure discontinuity across the surface, and functions as

the Hamiltonian energy. While the trajectories of this Hamiltonian system are not
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identically the field lines, the projection of the phase trajectories onto the 3D torus

are field lines of the given rotational transform. If the surface potential can be found,

then the surface is a flux surface.

The two Hamiltonian systems are related in that the pressure jump Hamiltonian

system may be “embedded” into the magnetic field line Hamiltonian system. An

invariant torus of the magnetic field line Hamiltonian system corresponds to a flux

surface in the plasma volume. The pressure jump Hamiltonian may be used to in-

vestigate the effect of setting a pressure discontinuity across this flux surface. The

geometry of the invariant torus of the magnetic field Hamiltonian system is supplied

to the pressure jump Hamiltonian through the metric coefficients gij. The pressure

discontinuity is introduced by setting the energy of the pressure jump Hamiltonian to

be non-zero.

A summary of the differences of the Hamiltonian systems in given in Table A.1.

A.5 A general derivation of the pressure jump con-

dition

This section contains a general derivation to complement the SPEC-motivated deriva-

tion in Section 2.3. This is provided mainly to show that the condition has more

relevance than may be immediately discerned from the SPEC context.

As in plasma equilibrium theory, the plasma is assumed to be static (i.e. mass

flow is negligible) and the ion and electron Larmor radii to be negligible. There is no

minimum scale length model and discontinuities are in principle possible, provided the

net force density at each point r in the plasma vanishes (the force balance condition).

Also, a corollary of the assumed flowless state is that electric fields are also negligible.

We assume the kinetic stress is described by the isotropic pressure tensor P (r)I,

where I is the unit dyadic. Adding the electromagnetic stress, the total stress tensor

is

T ≡ P I +
B2

2
I−BB , (A.63)

where B ≡ BSI(r)/
√
µ0, BSI being the magnetic field in SI units and µ0 the perme-

ability of free space. The force balance condition is then [Fre87]

∇ · T = 0 . (A.64)

If P and B are differentiable, Equation (A.64) may be written in the more usual

form ∇P = (∇ × B) × B; but at surfaces of discontinuity P and B are step

functions and ∇×B contains a Dirac delta function component, corresponding to a
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sheet current at the discontinuity. Then (∇×B)×B is not well defined and it is

better to regard Equation (A.64), interpreted in the weak sense of distribution theory,

as the fundamental form of the force balance relation.

Consider a surface S, defined as ς = 0 where ς is the distance from S. For the

purposes of deriving the pressure jump condition, the definitions of B± are extended

radially so they are both smooth everywhere (i.e. not by themselves discontinuous)

and remain bounded in both volumes. The discontinuous pressure profile P (r) and

the corresponding discontinuous complete magnetic field B(r) can then be expressed

as

P = P−(r)h(−ς) + P+(r)h(ς) , (A.65)

B = B−(r)h(−ς) +B+(r)h(ς) , (A.66)

where h is the unit Heaviside step function, which causes the discontinuity in B, as

both B± are themselves not discontinuous. Such a form for P and B gives

∇P± = j± ×B± , (A.67)

where j± = ∇×B± are the associated currents. Dotting Equation (A.67) with B±

gives B± ·∇P± = 0, which implies the pressure is constant along a magnetic field line.

As a flux surface is composed of a single magnetic field line, we have the condition

that on both sides of the surface

P± = const . (A.68)

Substitution of Equation (A.66) into ∇ ·B = 0 gives

∇ ·B = (A.69)

ς· [[B]] δ(ς) +∇ ·B−h(−ς) +∇ ·B+h(ς) , (A.70)

where ς is the unit normal to S and where [[x]] is the jump of x across the interface,

[[x]] = x+ − x−. The divergence can only be zero if

[[Bς ]] ≡ ς · [[B]] = 0 , (A.71)

i.e., the normal component of the magnetic field must be continuous.

Similarly, when Equations (A.65 - A.66) are substituted into the stress tensor in

Equation (A.64),

ς ·
[[
PI

(
1

2
B2 −BB

)]]
= 0 . (A.72)
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Substituting Equation (A.71) into the above and dotting with ς gives the condition[[
P +

1

2
B2

]]
= Bς [[Bς ]] = 0 , (A.73)

removing the middle equality gives the pressure jump condition.

As Bς is continuous, Equation (A.73) can be written as

[[
(ς ×B)2]] = −2 [[P ]] , (A.74)

so long as [[P ]] 6= 0,

[[ς ×B]] 6= 0 . (A.75)

Crossing Equation (A.72) with ς gives

Bς [[ς ×B]] = 0 . (A.76)

Combining Equation (A.75) with Equation (A.76) implies

ς ·B± = 0 . (A.77)

Thus, if there is a pressure discontinuity across a surface, the field lines must lie on

that surface.

The plasma in the neighborhoods either side of the surface is assumed to be force

free, so that ∇P = 0. Equation (A.67) then implies that j± is parallel to B±, which

on comparison with Equation (A.77) implies

ς · j± = ς · (∇×B±) = 0 . (A.78)

Thus, if there is a pressure discontinuity across a surface, the curl of the magnetic

field must be parallel to the surface at all points on the surface.

A.6 Irrational numbers and their representations

A.6.1 Importance of different rational and irrational number

representations

The idea of degrees of irrationality is not well known outside of number theory, and

is best explained using certain representations of real numbers. In this appendix, two

representations of real numbers and how they each quantify degrees of irrationality
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are explained. The representations also provide ways to identify and group sequences

of rationals and irrationals which provide standards by which to base comparisons

between their associated orbits.

A.6.2 The number line

The real number line is composed of rational and irrational numbers. A rational

number w is one that can be written as a fraction w = m
n

. For example

1/1 = 1 , (A.79)

1/2 = 0.5 , (A.80)

2/3 = 0.(6) = 0.6666... , (A.81)

13/21 = 0.(619047) , (A.82)

89/144 = 0.6180(5) , (A.83)

where (x) refers to the repeating decimal string x.

An irrational number on the other hand cannot be written as a fraction. For

instance

√
2 = 1.41421... , (A.84)

π = 3.14159... , (A.85)

e = 2.71828... , (A.86)

γ = 1.61803... . (A.87)

Rational numbers are countably infinite, i.e. there are an infinite number of them

but there is one rational for every integer. Irrationals are uncountably infinite in that

there are infinitely more irrationals than there are rationals. Thus almost all real

numbers are irrational.

A.6.3 The continued fraction representation of real numbers

One can write any real number b in the form[Niv56][Mei92]

b = a0 +
1

a1 + 1
a2+ 1

a3+...

= [a1, a2, a3, ...] . (A.88)

This representation is known as the continued fraction representation and the ai are

referred to as the partial fractions of b.

Any sequence of integer partial fractions will give a real number. The nomenclature

is to represent the number as a sequence of integers in square brackets.



142 Appendix

Only a rational number can be written as a fraction, so the number b is ra-

tional if and only if the continued fraction terminates at some an, for example,

b = [a0, a1, ..., an] is a rational. The number is irrational if it requires an infinite

number of partial fractions to obtain it.

A.6.4 Farey tree representation of real numbers

The Farey tree technique is a method of organising irrationals and allows a more visual

representation. A Farey tree is defined from some Farey interval I, consisting of two

rational numbers p1/q1, and p2/q2; the interval is written as [p1q1p2q2]. Any number,

rational or irrational, can be reached by following a Farey path within this interval. To

follow the Farey path, one calculates the mediant of the interval [(p1 + p2)/(q1 + q2)],

then one considers the interval to be split into two intervals by this mediant. The path

involved making a choice, to choose one of the two subintervals for further splitting

with the new mediant. Continually dividing the interval a finite number of times will

allow one to find any rational number within the original interval. Infinite divisions are

required to find an irrational. Each subdivision can be considered to be a new interval

at a different depth, both intervals below a given interval are termed daughters of the

parent interval. This thesis defines a depth of zero to be at the interval I = [0110].

Thus, with reference to the Farey tree, a number is defined by its interval I and

its path P . The path is given by a series of L’s and R’s, representing a choice of

subinterval toward zero and toward infinity respectively. The path is a succession of

L’s and R’s with repeated patterns surrounded with ()∞.

Rationals are converged to when the direction is repeated [e.g. a path ending in

(R)∞] and irrationals are converged to when the direction is alternated forever [e.g.

a path ending in (RL)∞ or (RRL)∞].

A.6.5 Relationship between the Farey tree technique and the

continued fraction representation

The two methods are strongly related. The sum of the continued fraction elements

gives the depth on the Farey tree at which the rational occurs, that is,[Mei92]

Depth([ao, a1, ..., ai]) =
i∑

j=0

aj . (A.89)

The continued fraction for a daughter on the Farey tree is given by incrementing ai

by 1. As each rational has two equivalent continued fractions,

[a0, a1, ..., ai] = [a0, a1, ..., ai − 1, 1] . (A.90)
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Figure A.2: The Farey tree with a Farey path of the interval [0111]. One initially takes

the mediant between 0/1 and 1/1 which is 1/2, to step to the right one takes the mediant

between 1/2 and 1/1. This Farey path is the noble path because it approaches the noble

irrational γ[0111].

Adding 1 to the aith element gives the two daughters on the Farey tree. In the above

equation, ai 6= 1 must be used if the current step in the Farey tree is the same as the

last one, and ai = 1 must be used if the current step is in the opposite direction.

A.6.6 Using rationals to approach irrationals

Consider an irrational ι- = [a0, a1, a2, ...]. The set of rationals τn formed by truncating

the series at an approach the irrational number and in the limit n → ∞, equal the

irrational. The elements in this sequence of rationals are referred to as the convergents

of ι-.

Quantitatively, a measure of irrationality is a measure of the difficulty one has of

approaching the irrational number with partial fractions. For example, consider the

famous irrational number π. Its continued fraction representation is [Mei92]

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, ...] . (A.91)

The approximations to π as a function of its convergents are given in Table A.6.6.

One can see that the larger the partial fraction, the smaller the correction. Conver-

gents with large partial fractions must eventually reach its irrational ‘faster’ than an

irrational which has smaller partial fractions in its convergents. By this logic, the

irrational whose partial fractions are an infinite string of 1s must be the most irra-

tional, as 1 is the smallest integer. Indeed [1, 1, 1, 1, ...] = γ, is the golden mean, and

is the most irrational number.
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Additional Partial Fraction Convergent.

3 3.00000000

7 3.142857142857143

15 3.141509433962264

1 3.1415929203539825

292 3.1415926530119025

1 3.141592653921421

1 3.1415926534674368

A.6.7 Noble irrationals

All numbers whose continued fraction representation ends in an infinite string of ones

[· · · , (1)∞] are known as noble numbers, and are typically “very” irrational as 1 is the

smallest non-trivial integer. Thus a trail of 1’s converges slowest. The idea that noble

irrationals converge the slowest is related to the idea of the Diophantine condition,

which identifies irrationals by their “distance” from nearby rationals, specifically,

|qw − p| > CD
qε

, (A.92)

where CD > 0 and ε ≥ 1.

The idea of approaching irrationals with a sequence of rationals is built into the

concept of a Farey tree. One writes the irrational as an integer and a path. Following

the path in the manner described above gives a sequence of rational numbers that

approach the irrational of interest.

The phrase “noble” to classify irrationals that are highly irrational and similar to

the golden mean is a play on the use of the phrase “noble metals” to classify metals

on their similarity to gold (in their resistance to corrosion).

A.6.8 The noble path

As a tail of ones in the continued fraction representation generates a noble irrational,

the path down the Farey tree to a noble irrational is (RL)∞, what this thesis refers

to as a noble path. The sequence of this path is given by a simple equation. Starting

from the custom interval I = [p1/q1, p2/q2], one takes the mediant (p1 + p2)/(q1 + q2)

then considers, say the right interval R. This involves taking the mediant between

the interval [(p1 + p2)/(q1 + q2), p2/q2], which is (p1 + 2p2)/(q1 + 2q2). Next one must

consider the interval to the left [(p1 + p2)/(q1 + q2), (p1 + 2p2)/(q1 + 2q2)], and the

mediant of this is [(2p1 + 3p2)/(2q1 + 3q2)]. In general, the path (RL) results in a
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sequence of rationals τn given by

τn =
F [n]p1 + F [n+ 1]p2

F [n]q1 + F [n+ 1]q2

, (A.93)

where F [n] is the nth value of the Fibonacci sequence F [n] = F [n − 1] + F [n − 2]

where F [0] = 1 and F [1] = 1. Dividing the fraction in Equation (A.93) by F [n], gives

the more common form

τn =
p1 + F [n+ 1]/F [n]p2

q1 + F [n+ 1]/F [n]q2

. (A.94)

After an infinite number of steps (RL)∞ down the Farey tree the rationals τ
[p1q1p2q2]
n

will approach an irrational unique to the interval, and so the irrational is written as

γ[p1q1p2q2]. That is,

lim
n→∞

τ [p1q1p2q2]
n = γ[p1q1p2q2] . (A.95)

The limit of the ratio of Fibonacci terms is a well known result

lim
n→∞

F [n+ 1]/F [n] = γ , (A.96)

where γ is the golden mean.

Thus the equation

p1 + γp2

q1 + γq2

= γ[p1q1p2q2] , (A.97)

gives the most noble (most irrational) number between the rationals p1/q1 and p2/q2.

The most noble irrational in the positive real number line results from following

the Farey tree from the interval [0110], giving the limit γ[0110] = γ.

Note that if the noble path (LR) for the interval [p1/q1, p2/q2] is taken instead,

one can consider it to be an (RL) path from the interval [p1/q1, (p1 + p2)/(q1 + q2)] =

γ[0111] = 1/γ.

In this thesis, the most noble irrationals are investigated because they tend to

persist according to the KAM theorem. As described in Section 3.2.1, the PJH code

should investigate low rotational transforms to improve accuracy. It is for this reason

that γ[0111] (the lowest of the two most noble irrationals) is the most investigated

irrational in this thesis.
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A.6.9 Rationals nearby to irrationals

Each step n down the noble path to an irrational gives rational numbers τ
[p1q1p2q2]
n

that come closer and closer to the noble irrational γ[p1q1p2q2]. At each successive step,

the rationals alternate from being larger than the irrational, to being smaller. On an

R step, τ
[p1q1p2q2]
n > γ[p1q1p2q2], and on an L step, τ

[p1q1p2q2]
n < γ[p1q1p2q2].

When computationally investigating an irrational trajectory, it is impossible to

calculate something like the tangent map because it requires following the trajectory

around its entire lengh (which is infinite). However, Greene in his 1979 paper showed

that one can investigate a sequence of rationals and infer from this the properties of

the irrational of interest. The noble path is a unique, simple and well defined sequence

that can be used as a standard from which to select the rationals that will approximate

the irrational of interest, and is the class of rational approximates which Greene bases

his criterion.[Gre79] For more information on Greene’s residue, see Section 3.3.

A.7 Example PJH input file

The following describes the input file required by PJH. The systems investigated in

this thesis use outputs from the SPEC code, so this input file was adapted from the

output of SPEC.

The structure of the file is:

mpol ntor Nper

I G p_1 q_1 p_2 q_2 iota

m n Rmn Zmn fmn (line repeats)

The first line provides the maximum number of poloidal Fourier terms, the max-

imum number of toroidal Fourier terms and the periodicity of the torus respectively.

The second line contains the linear coefficients of f− (I and G), followed by the four

integers that define the rotational transform of the prescribed field ( ι- = γ[p1q1p2q2] =

(p1 + γp2)/(q1 + γq2). The final quantity on this line is the value of ι- which is not

used by PJH as it can be calculated from the previous four integers.

The rest of the input is a list of the Fourier components of R, Z, and f . The order

is not important and not every term needs to be included. Included below are the

first few lines of an example input, that of the file:

ftype=flux:d=+000000070:i=1213:m=50:n=25.pj.

It describes the geometry of the flux surface investigated in section Section 5.5 at

deformation d = 0.0007:

50 25 1

1.602482782598277E-01 2.170964943090546E+01 1 2 1 3 3.819660112501052E-01

0 0 0.000000000000000E+00 1.011883293862249E+00 0.000000000000000E+00
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0 1 1.903682304824032E-03 2.743723715999463E-05 -2.649053788556549E-05

0 2 -7.215186204071873E-08 4.010105268195271E-07 -4.037489994378693E-07

0 3 -9.414894633177399E-11 9.019503117908511E-10 -8.929292943761234E-10

0 4 1.786932821030318E-11 -1.862855860289560E-12 6.876148162324898E-12

0 5 4.236357807392120E-12 5.970444496832302E-13 3.414712149341478E-12

0 6 1.518009145671197E-12 8.460986740156065E-13 1.235087065607961E-12

0 7 -2.292649597167320E-13 5.915493894908175E-13 7.544340300943025E-13

0 8 -1.188196864976156E-13 2.970334017405310E-13 -7.400373501624922E-15

0 9 -3.531894977999118E-13 7.273873963657775E-14 1.197434069522337E-13

0 10 -1.593831782852235E-13 -1.151337091388156E-13 2.670914857066155E-13

0 11 -8.367145004801490E-14 -1.122133125240327E-13 2.220974156581872E-13

0 12 8.739927610373481E-14 -1.390714686144284E-13 2.773010866364469E-13

0 13 -1.350883917311067E-13 -1.594805248828504E-13 1.354471483221640E-13

0 14 -1.329063074016138E-13 -1.678059793769671E-13 2.450463850439677E-13

0 15 -6.739912245746812E-14 -9.910774225860136E-14 2.430722413664868E-13

0 16 -2.327735299827873E-14 -1.391636909994966E-13 2.051999889200389E-13

0 17 -3.174150136267247E-14 -5.324123255693829E-14 1.677671068103827E-13

0 18 -4.784418041610107E-14 -6.735578065487449E-14 1.383994315687093E-13

0 19 -2.447378535118569E-14 -6.383912634804883E-14 1.090205421488613E-13

0 20 -2.342237267088002E-14 -9.825481339943048E-14 9.833907638461509E-14

0 21 2.421055735380396E-14 -4.253225195626140E-14 7.328129459926446E-14

0 22 -1.664755146012630E-14 -4.220994181855950E-14 6.532894935669340E-14

0 23 1.486197756742576E-14 -4.950148500718326E-14 6.645425704027112E-14

0 24 -1.173617541706657E-14 -4.388494979998016E-14 3.044285856817655E-14

0 25 -2.871595621459857E-15 -3.562278815007381E-14 1.764153718771605E-21

1 -25 -4.135134406290914E-14 7.905676202629663E-14 6.894147311828538E-14

1 -24 2.279152768746409E-14 5.619171351570669E-14 7.780760717796765E-14

1 -23 -1.906146009512602E-13 1.948920719878788E-14 9.335245358890085E-14

1 -22 1.588700383385743E-13 4.483783903158251E-14 9.654596009162614E-14

1 -21 -3.547326706792123E-13 1.811792163856202E-14 8.954138647462649E-14

1 -20 2.036588874061538E-13 2.393444814689247E-14 9.669577881902347E-14

1 -19 -6.211145744716014E-15 3.174606333405774E-14 9.888304241641806E-14

...



148 Appendix



Bibliography

[Arn89] V. I. Arnol’d. Mathematical Methods of Classical Mechanics. Springer,

New York, 2nd edition, 1989. Translated by K. Vogtmann and A. Wein-

stein.

[Bar11] D Barmaz. High-n stability of a pressure discontinuity in a three-

dimensional plasma. Master’s thesis, Research School of Physics and

Engineering, Australian National University, 2011.

[BFKK58] I B Bernstein, E A Frieman, M D Kruskal, and R M Kulsrud. An energy

principle for hydromagnetic stability problems. Proc. R. Soc. Lond. A,

244:17–40, 1958.

[BFL+86] H L Berk, J P Freidberg, X Llobet, P J Morrison, and J A Tataronis. Ex-

istence and calculation of sharp boundary magnetohydrodynamic equilib-

rium in three-dimensional toroidal geometry. Phys. Fluids, 29(10):3281–

3290, October 1986.

[BL96] O P Bruno and P Laurence. Existence of three-dimensional toroidal

MHD equilibria with nonconstant pressure. Comm. Pure Appl. Math.,

49(7):717–764, 1996.

[Boo83] A H Boozer. Evaluation of the structure of ergodic fields. Phys. Fluids,

26(5):1288–1291, May 1983.

[Boo04] A H Boozer. Physics of magnetically confined plasmas. Reviews of Mod-

ern Physics, 76:1071–1141, 2004.

[Bou78] T Bountis. Nonlinear Models in Dynamics and Statistical Mechanics.

PhD thesis, Physics Dept., University of Rochester, N.Y., 1978.

[Bro04] H W Broer. Kam theory: The legacy of Kolmogorov’s 1954 paper. Amer-

ican Mathematical Society, 41(4):507–521, Feb 2004.

[DH98] R L Dewar and S R Hudson. Stellarator symmetry. Physica D, 112:275–

280, 1998.

[DHCS91] W D D’haeseleer, W N G Hitchon, J D Callen, and J L Shohet. Flux Co-

ordinates and Magnetic Field Structure. Springer Series in Computational

Physics. Springer-Verlag, 1991.

149



150 Bibliography

[DHM+08] R L Dewar, M J Hole, M McGann, R Mills, and S R Hudson. Relaxed

plasma equilibria and entropy-related plasma self-organization principles.

Entropy, 10:621–634, 2008.

[DM92] R L Dewar and J D Meiss. Flux-minimizing curves for reversible area-

preserving maps. Physica D, 57:476–506, April 1992.

[EMB+06] T E Evans, R A Moyer, K H Burrell, M E Fenstermacher, I Joseph, A W

Leonard, T H Osborne, G D Porter, M J Schaffer, P B Snyder, P R

Thomas, J G Watkins, and W P West. Edge stability and transport con-

trol with resonant magnetic perturbations in collisionless tokamak plas-

mas. Nature Physics, 2:419 – 423, 2006.

[ET12] T E Evans and the D-IIID Team. Suppression and mitigation of edge

localised modes in (the d-iiid) tokamak with 3D magnetic perturbations.

Plasma and Fusion Research: Regular Articles, 7:2402046, 2012.

[Eva13] T E Evans. ELM mitigation techniques. Journal of Nuclear Materi-

als (Supplement: Proceedings of the 20th International Conference on

Plasma-Surface Interactions in Controlled Fusion Devices), 438:S11–S18,

2013.

[Fre87] J. P. Freidberg. Ideal Magnetohydrodynamics. Plenum Press, New York,

1987.

[Gar64] P R Garabedian. Partial Differential Equations. John Wiley & sons,

1964.

[GMVF81] J M Greene, R S MacKay, F Vivaldi, and M J Feigenbaum. Universal

behaviour in families of area-preserving maps. Physica D, 3(3):468–486,

1981.
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