Containing a star on earth: PPPL and the promise of fusion energy

Walter Guttenfelder

Princeton Plasma Physics Laboratory (PPPL) Plainsboro, New Jersey

PPPL is 1 of 17 Department of Energy (DOE) National Laboratories

• **PPPL Vision:** Enable a world powered by safe, clean and plentiful fusion energy while leading discoveries in plasma science and technology.

What is a plasma?

(Not the blood kind)

Let's review atoms

Plasma – the 4th state of matter ("super heated gas")

99% of (known) matter in universe is plasma

 Sun, stars, interstellar and intergalactic medium account for most mass and are largely plasma

Ionized gas in the Milky Way

Numerous examples of plasmas on or near earth

lightning

neon signs

tv

satellite plasma thrusters

aurora

semiconductor processing

At PPPL, we try to understand many aspects of plasmas

For example...

Experiments to study astrophysical "reconnection" (solar flares)

MRX

Magnetic Reconnection Experiment

 Laboratory experiment to mimic interaction of solar flare impinging on earths magnetic field (relevant to telecommunications)

Onda d'urto Sole Vento solare Magnetopausa 🔩

Experiments to study plasma thrusters for satellites and deep space exploration

The success of NASA's Dawn mission to orbit two asteroids depended on plasma thrusters

HTX Hall Thruster Experiment

Additional plasma research at PPPL

- Astrophysics
- Plasma thrusters
- Basic plasma physics
- Nanotechnology
- Plasma-surface chemistry interaction
- Developing medical isotopes
- Plasma theory and simulation

Plasmas for nuclear fusion energy research

What is nuclear fusion?

Nuclear Fusion: Energy release occurs due to fusing two small nuclei

Deuterium

Nuclear Fusion: Energy release occurs due to fusing two small nuclei mass of mass of

Tritium

Helium

Opposite of <u>nuclear fission</u> that powers today's "nuclear" reactors

• Splitting large atoms also leads to energy release

Why study fusion energy research?

- No carbon emission
- Fuel is available for thousands of years

Why study fusion energy research?

- No carbon emission
- Fuel is available for thousands of years
- Inherently safe only grams (<minute) of fuel in the device

no melt down/runaway concerns

- Very little (and short lived) radioactive material compared to nuclear fission
- Compared to non-carbon renewables (solar, wind) fusion is compact and continuous (not intermittent)
- Disadvantages: Hard to do!

Must overcome repulsive electrostatic force to fuse atomic nuclei

Force between two charged particles increases as they get closer

Temperatures must be ~150 million degrees Celsius \rightarrow no longer a gas, but a <u>plasma</u> (Core of the sun ~15 million C)

How do we contain a hot plasma on earth?

Magnetic field confines charged particles (plasma) away from boundaries

No magnetic field

Magnetic field line

Electron

We use strong electromagnets to generate the magnetic field

 But hot particles can easily leak out the ends of a straight magnetic field...

The Tokamak (Russian acronym for "toroidal chamber with magnetic coils")

At PPPL:

National Spherical Torus Experiment-Upgrade (NSTX-U)

At PPPL:

National Spherical Torus Experiment-Upgrade (NSTX-U)

Secretary of Energy Ernest Moniz, Sen. Cory Booker and Rep. Bonnie Watson Coleman dedicated the NSTX-U project just last Friday!

http://www.nj.com/

Example magnetic fields, measured in units of Tesla [T]

We've created a magnetically confined plasma – how do we heat it?

Mini particle accelerators (<u>Neutral Beam</u> <u>Injectors</u>) are used to heat the plasma

Mini particle accelerators (<u>Neutral Beam</u> <u>Injectors</u>) are used to heat the plasma

Microwave heating is also used (works similar to microwave ovens)

RF antenna

Video of NSTX-U plasma

There are many tokamaks around the world studying different plasma parameters & shapes

Previous experiments have demonstrated sufficient temperatures!

Tokamak Fusion Test Reactor (PPPL, 1982-1997) Reached 500 million degrees Celsius!

10 MW of fusion power using 46 MW of heating power

Next step: ITER is being built to study "burning plasmas"

 Goal: 500 MW fusion power using 50 MW heating power
 →large fusion gain Q = 10

Seven partners

China, EU, India, Japan, Korea, Russia, US

ITER is being constructed in France, just north of Marseille

Government bureaucracy, time delays & large costs leads to much stress

Thankfully, the lavender is plentiful...

and the wine isn't too expensive

So why is ITER so big (and expensive)?

Video of sun

NASA Solar Dynamics Observatory

Video of NSTX-U

Turbulence in the plasma is very efficient at taking away the heat

Turbulence in the plasma is very efficient at taking away the heat

Analogous to convective bubbles when heating a fluid from below ... boiling water (before the boiling)

NSTX-U built to study more compact (spherical) configuration

More compact ⇒ cheaper!

What problems remain to generate electricity from fusion?

Summary

- Nuclear fusion offers a promising solution for clean, global energy demands
- PPPL is studying many aspects of plasma (super-heated gas of charged particles) including magnetic fusion
- More information at www.pppl.gov
 - Lab tours are available first and third Friday of every month

Thank you!

