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Overview 

• Experimental motivation - favourable i E,th ~ *
-(0.8-0.95) dependence in STs 

– Microtearing modes found to be unstable in experimental * scans, lin ~ e 

 

• Linear microtearing properties for high-  NSTX discharges 

– Electromagnetic, electron drift mode with narrow resonant current layer, j< s 

– Non-monotonic dependence  on e/i/ , threshold in e and Te  

– Zeff (and s/q) scaling distinct from ETG 

 

• Non-linear simulations 

– Necessary to “resolve” (distinguish) each simulated rational surface 

– Transport is experimentally significant and dominated by magnetic “flutter” 

 

• Scaling of non-linear transport 

– Predicted e,sim ~ e
1.1 close to experimental trend 

– “Stiff” with Te but suppressible by experimental levels of E B shear 
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Experimental motivation - strong collisionality scaling in STs 

3 

• Ion transport is neoclassical, consistent with strong toroidal flow and flow shear 

• What is the cause of anomalous electron thermal transport? 

• Will favorable E scaling hold at lower * envisioned for next generation ST (high 

heat flux, CTF, …)? 

NSTX (no-Lithium) 
NSTX*  (Kaye et al., Nucl. Fusion 2007) 

MAST  (Valovič et al., Nucl. Fusion 2011) 

ITER  (PIPB, Doyle et al., Nucl.Fusion 2007) 
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*Y. Ren, TI-2.2 

 S. Kaye, PP-9.30 (Thurs. PM) 

 S. Gerhardt, YI-2.2 (Fri. AM) 
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Experimental motivation - strong collisionality scaling in STs 

4 

• Ion transport is neoclassical, consistent with strong toroidal flow and flow shear 

• What is the cause of anomalous electron thermal transport? 

• Will favorable E scaling hold at lower * envisioned for next generation ST (high 

heat flux, CTF, …)? 

95.0

e*

th

E ~

Following simulations based on a single NSTX high- * discharge 

BT=0.35T, Ip=0.7 MA, PNBI=4 MW, ne 6 1019 m-3, Te(0)~1 keV 

82.0

e*

th

E ~

NSTX*  (Kaye et al., Nucl. Fusion 2007) 

MAST  (Valovič et al., Nucl. Fusion 2011) 

2.0

e*

)2(04,th

E ~

ITER  (PIPB, Doyle et al., Nucl.Fusion 2007) 

*Y. Ren, TI-2.2 

 S. Kaye, PP-9.30 (Thurs. PM) 

 S. Gerhardt, YI-2.2 (Fri. AM) 

          

NSTX (no-Lithium) 
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GYRO* used for gyrokinetic simulations 

• Eulerian solver of gyrokinetic-Maxwell equations, evolving f(E, ,r, , ) 

 

 

 

 

 

• Kinetic ions (D+C) and electrons, general equilibrium 

• Fully collisional & electromagnetic ( A||, B||) (both important in NBI heated ST) 

• Freedom to include toroidal flow and flow shear (important in NBI heated ST) 

• Can use experimental profile variations, T(r), n(r), q(r), etc… (likely important in ST, 

s/a~1/100, s/L~1/40) 
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parallel 

binormal 

radial High-aspect ratio, 

low  limit 

*J. Candy & R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003);  J. Comp. Physics 186, 545 (2003);  https://fusion.gat.com/theory/Gyro 

 J. Candy, Phys. Plasmas Control. Fusion 51, 105009 (2009);  E.A. Belli & J. Candy, Phys. Plasmas 17, 112314 (2010). 
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GYRO* used for gyrokinetic simulations 

• Eulerian solver of gyrokinetic-Maxwell equations, evolving f(E, ,r, , ) 

 

 

 

 

 

• Kinetic ions (D+C) and electrons, general equilibrium 

• Fully collisional & electromagnetic ( A||, B||) (both important in NBI heated ST) 

• Freedom to include toroidal flow and flow shear (important in NBI heated ST) 

• Can use experimental profile variations, T(r), n(r), q(r), etc… (likely important in ST, 

s/a~1/100, s/L~1/40) 

 

• All following linear calculations performed in the local flux-tube limit (periodic BC’s) 

 without toroidal flow & shear 
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*J. Candy & R.E. Waltz, Phys. Rev. Lett. 91, 045001 (2003);  J. Comp. Physics 186, 545 (2003);  https://fusion.gat.com/theory/Gyro 

 J. Candy, Phys. Plasmas Control. Fusion 51, 105009 (2009);  E.A. Belli & J. Candy, Phys. Plasmas 17, 112314 (2010). 
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• Microtearing dominates over r/a=0.5-0.8, k s<1 (n 5-70) 

• Real frequencies in electron diamagnetic direction, *e = (k s) (a/Ln+a/LTe) (cs/a) 

• ETG mostly stable due to larger Zeff 3, (R/LTe)crit,ETG~(1+ZeffTe/Ti) 

 

 
 

 

 

 

 

 

 

 

 
 

 

Microtearing modes found to be unstable in many high * 

discharges 

7 
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• Microtearing dominates over r/a=0.5-0.8, k s<1 (n 5-70) 

• Real frequencies in electron diamagnetic direction, *e = (k s) (a/Ln+a/LTe) (cs/a) 

• ETG mostly stable due to larger Zeff 3, (R/LTe)crit,ETG~(1+ZeffTe/Ti) 

• KBM competes farther out (r/a 0.8) where MHD=-q2R  much larger (larger q, a/Ln) 

 
 

 

 

 

 

 

 

 

 
 

 

 

    Following calculations mostly for r/a=0.6 

Microtearing modes found to be unstable in many high * 

discharges 
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Linear microtearing instability 

• High-m tearing mode around a rational q(r0)=m/n surface (k||(r0)=0) 

 (Classical tearing mode stable for large m, -2m/r<0) 

• Driven by Te with time-dependent parallel thermal force*  requires e-i collisions 

  

 Conceptual linear picture 

• Imagine helically resonant (q=m/n) Br perturbation 

 

• Br leads to radially perturbed field line, finite island width 

 

• Te projected onto field line gives parallel gradient 

 

• Parallel thermal force (RT|| ~ - ( )ne ||Te) drives parallel electron current that 

reinforces Br via Amperes’s law 

 

• Instability requires sufficient Te, e, e, and time dependence ( ) important 

0e
r0e

0e|| T
B

B

B

TB
T



)nmcos(~Br
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*e.g. Hazeltine et al., Phys. Fluids 18, 1778 (1975); Gladd et al., Phys. Fluids 23, 1182 (1980); 

        D’Ippolito et al., Phys. Fluids 23, 771 (1980); M. Rosenberg et al., Phys. Fluids 23, 2022 (1980). 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 
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x-y perpendicular plane ( =0) 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 

• Finite A||  (resonant tearing parity), strongly ballooning 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 

• Finite A||  (resonant tearing parity), strongly ballooning 

• Narrow ne & Te perturbations 

• Nearly unmagnetized/adiabatic ion response    
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A distinguishing feature of the microtearing mode is the non-

monotonic dependence on e/i/

• Peak  occurs for e/i/ = Zeff ei/ ~ 1-6, similar to slab calculations (Gladd et al., 1980) 

•   decreases with e in experimental range, qualitatively consistent with confinement scaling 

13 
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A distinguishing feature of the microtearing mode is the non-

monotonic dependence on e/i/  

• Peak  occurs for e/i/ = Zeff ei/ ~ 1-6, similar to slab calculations (Gladd et al., 1980) 

•   decreases with e in experimental range, qualitatively consistent with confinement scaling 

• In addition to shifting peak in e/i/ , Zeff can enhance instability through shielding potential 

(from adiabatic ion response, ni~-Zeff /Ti ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Zeff (and s/q)* dependence opposite to ETG expectations 

14 

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011) 
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Microtearing instability exhibits thresholds in electron 

temperature gradient and beta 

• In this high- * discharge, a/LTe and e are 2-3  larger than linear thresholds 

15 

Threshold determined from 

r/a=0.6 parameters 

exp. 

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011) 
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NSTX has studied electron transport for a range of beta and 

collisionality 

• Ren (2011) * experiment (invited talk TI-2.2) performed at lower e compared to 

Kaye (2007) (lower density and NBI power) 

16 
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NSTX has studied electron transport for a range of beta and 

collisionality 

• Ren (2011) * experiment (invited talk TI-2.2) performed at lower e compared to 

Kaye (2007) (lower density and NBI power) 

• Also at lower Zeff – increase in MT threshold, but smaller ETG threshold 
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NSTX has studied electron transport for a range of beta and 

collisionality 

• Ren (2011) * experiment (invited talk TI-2.2) performed at lower e compared to 

Kaye (2007) (lower density and NBI power) 

• Also at lower Zeff – increase in MT threshold, but smaller ETG threshold 

 

 

 

 

 

 

 

 

 

 

 

 

• Nonlinear simulations run for high- e, high- e where only microtearing unstable 
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First nonlinear microtearing simulations in NSTX* 

• Simulations where only microtearing unstable, no ETG (NSTX 120968, r/a=0.6)  

– Electromagnetic ( , A||) and collisional ( e) 

– Varying E B shear (mostly E=0) 

– Deuterium only (but Zeff in collision operator) 

– “Local”  no profile variation in equilibrium quantities 

–  k s=[0,0.105,0.21,…], same as n=[0,5,10,…] 
 

 

 

 

 

 

 

  

 Acknowledgements: NERSC & OLCF (INCITE award FUS023) 
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Lx Ly=80 60 s 

nx ny=400 8  ( x=0.2 s) 

n =14 (parallel mesh points) 

nE=8, n =12  2 (velocity space) 

120968 r/a=0.6 surface 

a/LTe=2.73      a/Ln=-0.83 

q=1.69           s=1.75 

=1.7             =0.13 

Te/Ti=1.05      Zeff=2.9 

e=8.8%        ei=1.46 cs/a 

e,unit=2.5%) 

* W. Guttenfelder et al., Phys. Rev. Lett. 106, 155004 (2011) 
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Fine radial resolution required to obtain decaying nonlinear 

spectra 

• Unphysical pile-up at high-k with insufficient resolution ( x=0.4 s) 

• Smoothly decaying turbulent spectrum with better resolution ( x=0.2 s, x=0.15 s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Similar high-k pile-up observed in first careful attempts of GS2 MAST simulations – for more 

discussion see Applegate Ph. D. thesis (2007, Imperial College London) 

20 

Poor resolution – unphysical 

pile-up at high-k 

Better resolution – smoothly 

decaying turbulent spectrum 
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Fine radial resolution required to distinguish linear resonant 

layers of fastest growing mode 

Rough rule-of-thumb:   x  min[ rrat]/4      x/ s  1/(4 max[k s] s) 

21 

Lx  = 80 s = 88 rrat 

nx = 200 

x =0.4 s 

Lx  = 80 s = 88 rrat 

nx = 400 

x = 0.2 s 

Lx  = 0.9 s = rrat 

nx = 32 

x = 0.03 s 

Linear calculation using box width and 

resolution of nonlinear simulations 

 

 

 

“Typical” linear flux-tube 

calculation 

 

 

m/n=51/30 
      

 

 

      

 
m/n=50/30 

m/n=51/30       

 

                      

      

  

m/n=50/30 

m/n=51/30 

J|| J|| J|| 
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Predicted electron thermal transport comparable to 

experiment 

• Simulated transport (1.2 s
2cs/a, 6 m2/s) comparable to experimental transport (1.0-1.6 s

2cs/a) 

• Well defined peak in transport spectra (k s 0.2), downshifted from maximum lin (k s 0.6) 

• Slowly decaying tail - predicted transport increases ~25% with higher resolution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Negligible particle, momentum, or ion thermal transport 

22 

Fractional transport spectra 

1 simulation 

~250,000 cpu-hrs 

 

Transport time series 

1 ms 

exp. 
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• Flux surfaces become distorted in linear phase (t=25) 

• Globally stochastic* in saturated phase, complete island overlap wisland(n) > rrat(n) 

 

 

 

 

 

 

 

 

 

 
 

•  e,EM close to collisionless Rechester-Rosenbluth* ( mfp=12 m, Lc 2.5 m) 

a

c
9.0fvD

2
2             

s2

)]0(r)s(r[
limD s

2

s
pTest

2/1

RR

2

ii

s
st

~98% of transport due to magnetic “flutter” contribution 
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fp 63% passing particles 

*Wang et al., Phys. Plasmas (2011); Nevins et al., Phys. Rev. Lett. (2011); 

  Rechester & Rosenbluth, Phys. Rev. Lett. (1978); Harvey et al., Phys. Rev. Lett. (1981)  

t=25 (linear phase) t=500 (saturated phase) 
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Narrow density perturbations remain in nonlinear simulations 

• Narrow radial n, , j|| structures need to be resolved but A|| very broad 

•  Br/B ~ 0.15%  ~  e/LTe = 0.065% 

•  Br/B ~ e/LTe analytic approximation from Drake et al. PRL 1980; used for NSTX 

in Wong et al. PRL 2007 

24 

n/n  0.5% 
Br/B  0.15% 

Te/Te  2% 

ve,||/cs  6% 

A||/ sB  0.8% 
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Near linear scaling of transport with e consistent with 

experimental scaling 

• As transport drops, a/LTe will increase (for fixed heat flux), at some point ETG 

(TEM?) should become important 

• This transition likely to determine limit of “favorable” * scaling 

• Also likely to depend on ionic charge (Zeff) – above with D only (nc=0) 

25 

Non-linear transport 

NSTX experimental scaling 

(Kaye et al., 2007) 

i E ~ -0.95 
 

D only 

(ncarb=0) 
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Predicted transport “stiff” with Te, increases with e 

• Complicates simple interpretation from e,sim~ e
1.1 scaling 

• Useful to characterize scaling of threshold gradient (work in progress) 

 

 

 

 

 

 

 

 

 

 

 

 

• Non-linear threshold ~40% bigger than linear threshold -- possible influence 

from limited numerical resolution 
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Non-linear transport 

Error bars represent rms variation in transport 

Non-linear transport 

NSTX experimental scaling 

(Kaye et al., 2007) 

i E ~ -0.1 
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Nonlinear microtearing transport sensitive to E/ lin 

• Transport reduced when increasing E to local experimental value ( E,exp~ lin,max~0.17 cs/a) 

• Transport partially recovered with increase in Te 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Higher ionic charge (Zeff>1, through adiabatic response) and improved resolution (binormal 

and radial) could increase transport 

• Profile (non-local) effects could also matter - s/a 1/100 & edge more strongly driven 

27 

Fractional transport spectra 

E (cs/a) 
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What hope is there to experimentally identify microtearing 

modes? 

28 

n/n0 Br (Gauss) 

Movies at http://www.pppl.gov/~wgutten/ 

BT0=3.5 kG 
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• BES suitable for long poloidal 

scale (U-Wisconsin, Smith et al., 

RSI 2010) 

• May average over narrow radial 

scale – requires synthetic 

diagnostic and instrument 

function (D. Smith, BO4.2) 

 

BES for density fluctuations 

29 

n/n0 

 

BES fiber views 
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• New UCLA polarimetry system 

 (J. Zhang, PP9.71) 

• Simulations suggest ( B/B)internal 0.1% may 

be detectable (1-20 or ~0.30 rms mixer phase) 

 

Polarimetry for magnetic field fluctuations 

30 

Br (Gauss) BT0=3.5 kG 

 

polarimeter 

Radial propagation, 

retroreflection from center stack 

~2 ms 
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Summary 

• Microtearing modes found to be unstable in experimental * scans 

– Scaling of linear growth rates lin ~ e – potential candidate to explain experimental 

confinement trend 

– Linear thresholds exist in a/LTe & e 

– Ionic charge (Zeff) can enhance instability (opposite to ETG expectations) 

 

• First non-linear microtearing simulations in NSTX 

– Require relatively fine radial resolution ( x 0.2 s, nx=400) to capture physics 

– Transport dominated by electromagnetic contribution ( A||)  stochastic field lines 

– Predicted e,sim ~ e
1.1 close to experimental scaling 

– “Stiff” with Te but suppressible by experimental levels of E B shear 
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