

Supported by

Simulation of microtearing turbulence in **NSTX and scaling with collisionality**

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Walter Guttenfelder¹

J. Candy², S.M. Kaye¹, W.M. Nevins³, E. Wang³, J. Zhang⁴, R.E. Bell¹, N. Crocker⁴, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, Y. Ren¹, H. Yuh⁵

¹PPPL, ²General Atomics, ³LLNL, ⁴UCLA, ⁵Nova Photonics Inc.

APS-DPP, Salt Lake City Nov. 14-18, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

Office of

Overview

- Experimental motivation favourable $\Omega_i \tau_{E,th} \sim v_*^{-(0.8-0.95)}$ dependence in STs
 - Microtearing modes found to be unstable in experimental v_* scans, $\gamma_{lin} \sim v_e$
- Linear microtearing properties for high- β NSTX discharges
 - Electromagnetic, electron drift mode with narrow resonant current layer, $\Delta_j < \rho_s$
 - Non-monotonic dependence on $v^{e/i}/\omega$, threshold in β_e and ∇T_e
 - Z_{eff} (and s/q) scaling distinct from ETG
- Non-linear simulations
 - Necessary to "resolve" (distinguish) each simulated rational surface
 - Transport is experimentally significant and dominated by magnetic "flutter"
- Scaling of non-linear transport
 - Predicted $\chi_{e,sim} \sim v_e^{-1.1}$ close to experimental trend
 - "Stiff" with ∇T_e but suppressible by experimental levels of E×B shear

Experimental motivation - strong collisionality scaling in STs

- NSTX^{*} (Kaye et al., Nucl. Fusion 2007) $\Omega \tau_{\rm E}^{\rm th} \sim v_{*e}^{-0.95}$

MAST (Valovič et al., Nucl. Fusion 2011)

$$\Omega\tau_{\rm E}^{\rm th} \thicksim \nu_{*e}^{-0.82}$$

ITER (PIPB, Doyle et al., Nucl.Fusion 2007)

$$\Omega\tau_{\rm E}^{\rm th,04(2)} \thicksim \nu_{*\rm e}^{-0.2}$$

^{*}Y. Ren, TI-2.2 S. Kaye, PP-9.30 (Thurs. PM) S. Gerhardt, YI-2.2 (Fri. AM)

- Ion transport is neoclassical, consistent with strong toroidal flow and flow shear
- What is the cause of anomalous electron thermal transport?
- Will favorable τ_{E} scaling hold at lower ν_{\star} envisioned for next generation ST (high heat flux, CTF, ...)?

Experimental motivation - strong collisionality scaling in STs

- Ion transport is neoclassical, consistent with strong toroidal flow and flow shear
- What is the cause of anomalous electron thermal transport?
- Will favorable τ_{E} scaling hold at lower ν_{*} envisioned for next generation ST (high heat flux, CTF, ...)?

GYRO^{*} used for gyrokinetic simulations

• Eulerian solver of gyrokinetic-Maxwell equations, evolving $\delta f(E,\lambda,r,\alpha,\theta)$

- Kinetic ions (D+C) and electrons, general equilibrium
- Fully collisional & electromagnetic ($\delta A_{\parallel}, \delta B_{\parallel}$) (both important in NBI heated ST)
- Freedom to include toroidal flow and flow shear (important in NBI heated ST)
- Can use experimental profile variations, T(r), n(r), q(r), etc... (likely important in ST, $\rho_s/a \sim 1/100$, $\rho_s/L \sim 1/40$)

^{*}J. Candy & R.E. Waltz, Phys. Rev. Lett. **91**, 045001 (2003); J. Comp. Physics **186**, 545 (2003); https://fusion.gat.com/theory/Gyro J. Candy, Phys. Plasmas Control. Fusion **51**, 105009 (2009); E.A. Belli & J. Candy, Phys. Plasmas **17**, 112314 (2010).

GYRO^{*} used for gyrokinetic simulations

• Eulerian solver of gyrokinetic-Maxwell equations, evolving $\delta f(E,\lambda,r,\alpha,\theta)$

- Kinetic ions (D+C) and electrons, general equilibrium
- Fully collisional & electromagnetic ($\delta A_{\parallel}, \delta B_{\parallel}$) (both important in NBI heated ST)
- Freedom to include toroidal flow and flow shear (important in NBI heated ST)
- Can use experimental profile variations, T(r), n(r), q(r), etc... (likely important in ST, $-\rho_s/a \sim 1/100$, $\rho_s/L \sim 1/40$)
- All following <u>linear</u> calculations performed in the local flux-tube limit (periodic BC's) without toroidal flow & shear

. . .

^{*}J. Candy & R.E. Waltz, Phys. Rev. Lett. **91**, 045001 (2003); J. Comp. Physics **186**, 545 (2003); https://fusion.gat.com/theory/Gyro J. Candy, Phys. Plasmas Control. Fusion **51**, 105009 (2009); E.A. Belli & J. Candy, Phys. Plasmas **17**, 112314 (2010).

Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, $k_{\theta}\rho_s$ <1 (n≈5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger $Z_{eff} \approx 3$, $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$

Microtearing modes found to be unstable in many high v_{*} discharges

- Microtearing dominates over r/a=0.5-0.8, $k_{\theta}\rho_s$ <1 (n \approx 5-70)
- Real frequencies in electron diamagnetic direction, $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$
- ETG mostly stable due to larger $Z_{eff} \approx 3$, $(R/L_{Te})_{crit,ETG} \sim (1+Z_{eff}T_e/T_i)$
- KBM competes farther out (r/a \geq 0.8) where α_{MHD} =-q²R β ' much larger (larger q, a/L_n)

Following calculations mostly for r/a=0.6

Linear microtearing instability

- High-m tearing mode around a rational q(r₀)=m/n surface (k_{||}(r₀)=0) (Classical tearing mode stable for large m, ∆'≈-2m/r<0)
- Driven by ∇T_e with time-dependent parallel thermal force^{*} \Rightarrow requires e-i collisions

Conceptual linear picture

- Imagine helically resonant (q=m/n) δB_r perturbation
- δB_r leads to radially perturbed field line, finite island width
- ∇T_e projected onto field line gives parallel gradient
- Parallel thermal force $(R_{T\parallel} \sim -\alpha(\omega)n_e \nabla_{\parallel}T_e)$ drives parallel electron current that reinforces δB_r via Amperes's law $k_{\perp}^2 \rho_s^2 \hat{A}_{\parallel} = \frac{\beta_e}{2} \hat{j}_{\parallel}$, $B_r = ik_{\theta}A_{\parallel}$
- Instability requires sufficient ∇T_e , β_e , ν_e , and time dependence (ω) important

*e.g. Hazeltine et al., Phys. Fluids 18, 1778 (1975); Gladd et al., Phys. Fluids 23, 1182 (1980); D'Ippolito et al., Phys. Fluids 23, 771 (1980); M. Rosenberg et al., Phys. Fluids 23, 2022 (1980).

th $w = 4 \left(\frac{\delta B_r}{B} \frac{rR}{n\hat{s}}\right)^{1/2}$ $\nabla_{\parallel} T_{e0} = \frac{\vec{B} \cdot \nabla T_{e0}}{B} = \frac{\delta B_r}{B} \nabla T_{e0}$

 $\delta B_r \sim \cos(m\theta - n\phi)$

Linear mode structure in perpendicular plane illustrates key microtearing mode features

Narrow resonant current channel ($\approx 0.3 \rho_s \approx 1.4$ mm) centered on rational surface •

(D) NSTX

Linear mode structure in perpendicular plane illustrates key microtearing mode features

- Narrow resonant current channel ($\approx 0.3 \rho_s \approx 1.4$ mm) centered on rational surface •
- Finite $\langle A_{||} \rangle_{\theta}$ (resonant tearing parity), strongly ballooning

Re[A 0.6 Im[A_{II}] 0.4 0.2 0 -0.2 -10 -5 5 10 0 θ/π

() NSTX

"ballooning" space

 $k_r(\theta) = \hat{s}k_{\theta}(\theta - \theta_0)$

APS-DPP 2011 Salt Lake City (Guttenfelder)

Linear mode structure in perpendicular plane illustrates key microtearing mode features

- Narrow resonant current channel ($\approx 0.3 \rho_s \approx 1.4 \text{ mm}$) centered on rational surface
- Finite $\langle A_{||} \rangle_{\theta}$ (resonant tearing parity), strongly ballooning
- Narrow n_e & T_e perturbations
- Nearly unmagnetized/adiabatic ion response $\Rightarrow \frac{\widetilde{n}}{n_0} \approx -Z_{eff} \left(\frac{e\widetilde{\phi}}{T_e} \right)$

() NSTX

0.5

-0.5 ^上 -10

0.6

0.4

0.2

-0.2

0

-10

APS-DPP 2011 Salt Lake City (Guttenfelder)

A distinguishing feature of the microtearing mode is the nonmonotonic dependence on $v^{e/i}/\omega$

- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} \cdot v_{ei}/\omega \sim 1-6$, similar to slab calculations (Gladd et al., 1980)
- γ decreases with v_e in experimental range, qualitatively consistent with confinement scaling

A distinguishing feature of the microtearing mode is the non-monotonic dependence on $v^{e/i}/\omega$

- Peak γ occurs for $v^{e/i}/\omega = Z_{eff} \cdot v_{ei}/\omega \sim 1-6$, similar to slab calculations (Gladd et al., 1980)
- γ decreases with v_e in experimental range, qualitatively consistent with confinement scaling
- In addition to shifting peak in ν^{e/i}/ω, Z_{eff} can enhance instability through shielding potential (from adiabatic ion response, δn_i~-Z_{eff}δφ/T_i)

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

Microtearing instability exhibits thresholds in electron temperature gradient and beta

• In this high- v_* discharge, a/L_{Te} and β_e are 2-3× larger than linear thresholds

* Guttenfelder et al., Scaling of linear microtearing stability for a high collisionality NSTX discharge, submitted to Phys. Plasmas (Oct, 2011)

NSTX has studied electron transport for a range of beta and collisionality

• Ren (2011) v_* experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)

NSTX has studied electron transport for a range of beta and collisionality

- Ren (2011) ν_{*} experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)
- Also at lower Z_{eff} increase in MT threshold, but smaller ETG threshold

NSTX has studied electron transport for a range of beta and collisionality

- Ren (2011) v_* experiment (invited talk TI-2.2) performed at lower β_e compared to Kaye (2007) (lower density and NBI power)
- Also at lower Z_{eff} increase in MT threshold, but smaller ETG threshold

• Nonlinear simulations run for high- β_e , high- ν_e where only microtearing unstable

First nonlinear microtearing simulations in NSTX*

- Simulations where only microtearing unstable, no ETG (NSTX 120968, r/a=0.6)
 - Electromagnetic (ϕ , A_{\parallel}) and collisional (v_e)
 - Varying E×B shear (mostly $\gamma_E=0$)
 - Deuterium only (but Z_{eff} in collision operator)
 - "Local" \rightarrow no profile variation in equilibrium quantities
 - $k_{\theta}\rho_{s}$ =[0,0.105,0.21,...], same as n=[0,5,10,...]

 $\begin{array}{l} L_x \times L_y = 80 \times 60 \rho_s \\ n_x \times n_y = 400 \times 8 \quad (\Delta x = 0.2 \ \rho_s) \\ n_\theta = 14 \ (\text{parallel mesh points}) \\ n_E = 8, \ n_\lambda = 12 \times 2 \ (\text{velocity space}) \end{array}$

<u>120968 r/a=0</u>	.6 surface
a/L _{Te} =2.73	a/L _n =-0.83
q=1.69	s=1.75
к=1.7	δ=0.13
$T_e/T_i=1.05$	Z _{eff} =2.9
β _e =8.8%	v_{ei} =1.46 c _s /a
(β _{e.unit} =2.5%)	

Acknowledgements: NERSC & OLCF (INCITE award FUS023)

* W. Guttenfelder et al., Phys. Rev. Lett. 106, 155004 (2011)

Fine radial resolution required to obtain decaying nonlinear spectra

- Unphysical pile-up at high-k with insufficient resolution ($\Delta x=0.4 \rho_s$)
- Smoothly decaying turbulent spectrum with better resolution ($\Delta x=0.2 \rho_s$, $\Delta x=0.15 \rho_s$)

 Similar high-k pile-up observed in first careful attempts of GS2 MAST simulations – for more discussion see Applegate Ph. D. thesis (2007, Imperial College London)

Fine radial resolution required to distinguish *linear* resonant layers of fastest growing mode

Predicted electron thermal transport comparable to experiment

- Simulated transport (1.2 $\rho_s^2 c_s/a$, 6 m²/s) comparable to experimental transport (1.0-1.6 $\rho_s^2 c_s/a$)
- Well defined peak in transport spectra ($k_{\theta}\rho_{s}\approx0.2$), downshifted from maximum γ_{lin} ($k_{\theta}\rho_{s}\approx0.6$)
- Slowly decaying tail predicted transport increases ~25% with higher resolution

• Negligible particle, momentum, or ion thermal transport

~98% of transport due to magnetic "flutter" contribution

- Flux surfaces become distorted in linear phase (t=25)
- Globally stochastic^{*} in saturated phase, complete island overlap $w_{island}(n) > \delta r_{rat}(n)$

• $\chi_{e,EM}$ close to *collisionless* Rechester-Rosenbluth^{*} (λ_{mfp} =12 m, L_c \approx 2.5 m)

$$\mathbf{D}_{st} = \lim_{s \to \infty} \frac{\left\langle \left[\mathbf{r}_{i}(s) - \mathbf{r}_{i}(0) \right]^{2} \right\rangle}{2s} \qquad \qquad \chi^{RR} \approx 2 \left(\frac{2}{\pi} \right)^{1/2} \mathbf{D}_{st} \mathbf{v}_{Te} \mathbf{f}_{p} \approx 0.9 \left(\frac{\rho_{s}^{2} c_{s}}{a} \right) \qquad \qquad \mathbf{f}_{p} \approx 0.9 \left(\frac{\rho_{s}^{2} c_{s}}{a} \right)$$

 $f_{p}\approx63\%$ passing particles

*Wang et al., Phys. Plasmas (2011); Nevins et al., Phys. Rev. Lett. (2011); Rechester & Rosenbluth, Phys. Rev. Lett. (1978); Harvey et al., Phys. Rev. Lett. (1981)

Narrow density perturbations remain in nonlinear simulations

- Narrow radial n, ϕ , $j_{||}$ structures need to be resolved but $A_{||}$ very broad
- $\delta B_r / B \sim 0.15\% \sim \rho_e / L_{Te} = 0.065\%$
- $\delta B_r/B \sim \rho_e/L_{Te}$ analytic approximation from Drake et al. PRL 1980; used for NSTX in Wong et al. PRL 2007

 $\begin{array}{l} \delta T_{e}/T_{e}\approx 2\%\\ \delta v_{e,\parallel}/c_{s}\approx 6\% \end{array}$

Near linear scaling of transport with v_e consistent with experimental scaling

- As transport drops, a/L_{Te} will increase (for fixed heat flux), at some point ETG (TEM?) should become important
- This transition likely to determine limit of "favorable" v_* scaling
- Also likely to depend on ionic charge (Z_{eff}) above with D only $(n_c=0)$

Predicted transport "stiff" with ∇T_e , increases with β_e

- Complicates simple interpretation from $\chi_{e,sim} \sim v_e^{1.1}$ scaling
- Useful to characterize scaling of threshold gradient (work in progress)

 Non-linear threshold ~40% bigger than linear threshold -- possible influence from limited numerical resolution

Nonlinear microtearing transport sensitive to $\gamma_{\rm E}/\gamma_{\rm lin}$

- Transport reduced when increasing γ_E to local experimental value ($\gamma_{E,exp} \sim \gamma_{lin,max} \sim 0.17 c_s/a$)
- Transport partially recovered with increase in ∇T_e

- Higher ionic charge (Z_{eff}>1, through adiabatic response) and improved resolution (binormal and radial) could increase transport
- Profile (non-local) effects could also matter $\rho_s/a \approx 1/100$ & edge more strongly driven

What hope is there to experimentally identify microtearing modes?

() NSTX

APS-DPP 2011 Salt Lake City (Guttenfelder)

BES for density fluctuations

- BES suitable for long poloidal scale (U-Wisconsin, Smith et al., RSI 2010)
- May average over narrow radial scale – requires synthetic diagnostic and instrument function (D. Smith, BO4.2)

Polarimetry for magnetic field fluctuations

(III) NSTX

APS-DPP 2011 Salt Lake City (Guttenfelder)

Summary

- Microtearing modes found to be unstable in experimental v_* scans
 - Scaling of linear growth rates $\gamma_{lin} \sim v_e$ potential candidate to explain experimental confinement trend
 - Linear thresholds exist in a/L_{Te} & β_e
 - Ionic charge (Z_{eff}) can enhance instability (opposite to ETG expectations)
- First non-linear microtearing simulations in NSTX
 - Require relatively fine radial resolution ($\Delta x \approx 0.2 \rho_s$, nx=400) to capture physics
 - Transport dominated by electromagnetic contribution ($\delta A_{||}$) \rightarrow stochastic field lines
 - Predicted $\chi_{e,sim} \sim v_e^{1.1}$ close to experimental scaling
 - "Stiff" with ∇T_e but suppressible by experimental levels of E×B shear

Acknowledgements

NERSC, OLCF, and support from DOE Contract No's: DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG03-95ER54309, DE-AC52-07NA27344, DE-FG02-99ER54527

