Containing a star on earth: the promise of fusion energy

Walter Guttenfelder Princeton Plasma Physics Laboratory (PPPL)

Portland State University, Physics Dept. seminar Nov. 5, 2018

OUTLINE

- Nuclear fusion for energy (what & why)
- Plasmas
- Magnetic confinement of fusion plasma
- Achievements in fusion energy research
- Challenges and opportunities

Many quality-of-life metrics correlated with energy use

- Similar trends for
 - UN human development index
 - Income, average wage
 - Literacy, years in school
 - Reduced child mortality

Free material from www.gapminder.org

Many quality-of-life metrics correlated with energy use

- Similar trends for
 - UN human development index
 - Income, average wage
 - Literacy, years in school
 - Reduced child mortality

 Increased energy consumption in the industrial era has increased CO2 emissions

Increased CO2 emissions \rightarrow increased CO2 concentration \rightarrow elevating global temperatures

Global warming relative to 1850-1900 (°C)

Source: IPCC Special Report on Global Warming of 1.5°C (Oct. 6, 2018)

 Climate concerns & growing global energy demand drives pursuit of a portfolio of alternative / renewable, non-carbon energy sources:
– solar, wind, nuclear fission, hydroelectric, geothermal ... and nuclear

fusion (this talk)

Nuclear Fusion: Energy release occurs due to fusing two small nuclei

Nuclear Fusion: Energy release occurs due to fusing two small nuclei

Opposite of <u>nuclear fission</u> that powers today's "nuclear" reactors

• Splitting large atoms also leads to energy release

Energetics governed by binding energies / strong nuclear force

Energetics governed by binding energies / strong nuclear force

• Gain for fusion can be much larger than fission (both are far larger than chemical reactions)

Fusion with deuterium & tritium (D-T) is easiest

Potential Candidates:

- D + D \rightarrow ³He + n + 3.27 MeV (50%)
- $D + D \rightarrow T + p + 4.03 \text{ MeV} (50\%)$
- $D + T \rightarrow {}^{4}He + n + 17.59 \text{ MeV}$
- $D + {}^{3}He \rightarrow {}^{4}He + p + 18.3MeV$

- Optimal temperature for D-T "thermonuclear" fusion ~ 150 M °C (15 keV)
- ~10 × hotter than the center of the sun!

Deuterium is abundant in seawater, but tritium half-life ~12.3 years (only ~50 kg on the planet) \rightarrow breed tritium from lithium

$$^{7}Li + n \rightarrow He + T + n - \text{energy}$$

 $^{6}Li + n \rightarrow He + T + \text{energy}$

- Reserves in South America
- Potential abundant source of Li also in seawater (via desalination / dialysis)

D + T → ⁴He + n + 17.6 MeV + Li + n → ⁴He + T + 2.3 MeV \approx D + Li → 2 ⁴He + 20.0 MeV

Why study fusion energy research?

- No carbon emission
- Fuel is abundant (~thousands of years)

Why study fusion energy research?

- No carbon emission
- Fuel is abundant (~thousands of years)
- Inherently safe only grams (<minute) of fuel in the device

no melt down/runaway concerns

- Very little (and short lived, low-level) radioactive material compared to nuclear fission
- Compared to non-carbon renewables (solar, wind) fusion is compact and continuous (not intermittent)
- Disadvantages: Hard to do!

Must overcome repulsive electrostatic force to fuse atomic nuclei

Force between two charged particles increases as they get closer

Temperatures must be ~150 million degrees Celsius \rightarrow no longer a gas, but a <u>plasma</u> (Core of the sun ~15 million C)

What is plasma?

Plasma: a gas of charged particles (the fourth state of matter)

• Plasma behaves qualitatively different than neutral gas due to collective (Coulomb) interactions & interactions with electric (E) & magnetic (B) fields $\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$

99% of (known) matter in universe is plasma

 Sun, stars, interstellar and intergalactic medium account for most mass and are largely plasma

Ionized gas in the Milky Way

Numerous examples of plasmas on or near earth

neon signs

tv

satellite plasma thrusters

semiconductor processing

aurora

Plasmas exist over broad range of density and temperature → wide range of physics phenomenon!

How do we create and contain a hot plasma on earth?

Recipe to create a fusion plasma

- 1. Establish an appropriate magnetic field
- 2. Inject appropriate gases (in a container at vacuum pressure)
- 3. Heat the gases

Charged particles experience Lorentz force in a magnetic field → gyro-orbits

$$\vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

Magnetic force acts perpendicular to direction of particle
Particles follow circular gyro-orbits

Magnetic field confines particles away from boundaries

For a 5 Tesla magnetic field, 100 million C plasma

ion radius ~ 3 mm 1-2 meter electron radius ~ 0.05 mm device size

No magnetic field

Magnetic field confines particles away from boundaries

Solution: bend the field into a donut-shaped torus

But toroidicity leads to vertical drifts from ∇B & curvature

 $\tau_{loss} \sim 5$ ms from vertical drifts (B~5 T, R~5 m, T~15 keV)

Even worse, charge separation leads to faster E×B drifts out to the walls

 $\tau_{\text{loss}} \sim \mu s$ from E×B drifts (due to charge separation from vertical drifts)

Solution: need a helical magnetic field for confined particle orbits

Helical B field carries plasma from "bad curvature" region to "good curvature" region

Similar to how honey dipper prevents honey from dripping

Equilibrium establishes closed, nested magnetic "flux surfaces"

Governed by magnetic hydrodynamic (MHD) force balance: $J \times B = \nabla P$

How do we create the helical magnetic field?

The Tokamak (Russion acronym ~ "toroidal chamber with magnetic coils")

 Toroidal field from external coils + poloidal field from plasma current → helical field

At Princeton Plasma Physics Lab (PPPL): National Spherical Torus Experiment-Upgrade (NSTX-U)

At PPPL:

National Spherical Torus Experiment-Upgrade (NSTX-U)

At PPPL: National Spherical Torus Experiment-Upgrade (NSTX-U)

Solenoid for inductive current drive

Toroidal field coils

Shaping coils

Vacuum vessel

Plasma current induced through solenoid via transformer action (Faraday's law of induction)

Plasma current induced through solenoid via transformer action (Faraday's law of induction)

Video of NSTX-U plasma

Evidence of helical field seen in visible images of edge instabilities

MAST tokamak (UK)

Plasma current induced through solenoid via transformer action (Faraday's law of induction)

Stellarator concept uses complex 3D coils to generate helical magnetic field without plasma current

W7-X stellarator (Germany)

Trading engineering complexity for inherent steady-state operation

More complicated BUT more degrees of freedom for performance optimization

We've created a magnetically confined plasma – how do we heat it?

Mini particle accelerators (<u>Neutral Beam</u> <u>Injectors</u>) are used to heat the plasma

Mini particle accelerators (<u>Neutral Beam</u> <u>Injectors</u>) are used to heat the plasma

Microwave heating is also used (works similar to microwave ovens)

RF antenna

Have achieved sufficient temperatures!

Tokamak Fusion Test Reactor (PPPL, 1982-1997)

NBI & RF also used to drive plasma current as part of 100% non-inductive scenarios

Total plasma current = self-driven bootstrap current + NB current drive + RF current drive

So what else do we need to make fusion <u>energy</u> a reality?

Power balance in a fusion reactor

Power balance in a fusion reactor

Typically requires a fusion gain Q >> 1 to account for thermal conversion, heating efficiency, cyro, plant, ...

Fusion gain depends on the "triple product" $nT\tau_E$

Fusion gain depends on the "triple product" $nT\tau_{\text{E}}$

Fusion gain depends on the "triple product" $nT\tau_E$

Confinement time is a measure of how well insulated the plasma is from the surrounding boundary

 $\tau_E = \frac{\text{stored energy}}{\text{rate of energy loss}}$

For ignition (a self-sustaining, "burning plasma") Q ~ $p \cdot \tau_F > 8$ atm·s (at ~150 million C)

p ~ 2-4 × atmospheric pressure $\tau_{\rm E}$ ~ 2-4 seconds

Have come very close to plasma "break-even" (Q=1)

TFTR (PPPL, 1994)

10.7 MW fusion power 46 MW heating power Q=0.23

JET (UK, 1997) 16.1 MW fusion power 22 MW heating power Q=0.7

Next step: ITER is being built to study "burning plasmas"

- Goal: 500 MW fusion power using 50 MW heating power
 - →large fusion gain Q = 10

<u>Seven partners</u> China, EU, India, Japan, Korea, Russia, US

Inside the tokamak pit (https://www.iter.org/album/construction)

One toroidal field coil

Not a bad place to visit!

Lavender of Senanque

Ocre cliffs of Rousillon

Les Beaux de Provence

Wine is good and not too expensive

ITER will address a number of reactor relevant issues in an integrated fashion

- Demonstrate 500 MW fusion power for 400 sec, with large fusion power gain (Q=10)
- Study "burning plasma" regime ($P_{\alpha} > P_{heat,ext}$) with selfheating via energetic particles (3.5 MeV α 's)
- Test tritium breeding
- Demonstrate safety characteristics of fusion device (has already obtained nuclear licensing)
- ... (and more)

ITER & next-step power plant projections are big (\$\$)

What can we do to improve on this?

Triple product (fusion gain) depends on stability, engineering and energy confinement

$$Q \sim nT\tau_E \sim \beta \cdot B^2 \cdot \tau_E$$

- Plasma beta β = nT/(B²/2µ₀) = plasma / magnetic pressure
 → limited to β~5-10% by macroscopic (MHD) stability constraints (e.g. need to avoid "disruptions")
- Magnetic field strength B limited by superconductor technology (B_{crit}, J_{crit}) & mechanical stress limits
- τ_E limited by energy loss \rightarrow dominated by turbulence

Turbulence in the plasma can (unfortunately) be very efficient at flushing out energy

Turbulence in the plasma can (unfortunately) be very efficient at flushing out energy

Why does turbulence develop in tokamaks?

Analogy for turbulence in tokamaks - density gradient in the presence of gravity

- Higher density on top of lower density, with gravity acting downwards (Rayleigh-Taylor instability)
- Any small perturbation becomes unstable
- Convection mixes regions of different density

gravity density/pressure

Inertial (centrifugal) force in toroidal field acts like an effective gravity

Inertial (centrifugal) force in toroidal field acts like an effective gravity

Fast parallel dynamics + helical field lines provides stability \rightarrow gradient must surpass a threshold for instability
DIII-D Shot 121717

GYRO Simulation Cray XIE, 256 MSPs

Onset of turbulence reduces the achieved temperature that would have been present due only to diffusion

Temperature gradient (T_{hot} - T_{cold})

Onset of turbulence reduces the achieved temperature that would have been present due only to diffusion

Temperature gradient (T_{hot} - T_{cold}) Analogous to convective transport when heating a fluid from below ... boiling water (before the boiling)

Rayleigh, Benard instability (early 1900's)

Numerous elements of US MFE research are actively addressing optimizing performance

$$Q \sim n T \tau_E \sim \beta \cdot B^2 \cdot \tau_E$$

- Refining operational scenarios to optimize beta, tau & steady-state (100% non-inductive) *simultaneously* DIII-D (General Atomics, San Diego)
- Pursuing very high beta (~30-40%) at low aspect ratio

 NSTX-U (PPPL) → low-A potentially useful as a compact volume neutron source for nuclear material qualification
- Pursing stronger magnetic fields: high temperature superconductors (HTS) enable larger B_{crit}, J_{crit}, T_{crit}
 - MIT & Commonwealth Fusion Systems (CFS one of many privately funded fusion ventures)

Challenges (& career opportunities) to help enable a future with fusion energy

- Steady state operation with good confinement → plasma physics
- Handling intense heat fluxes at plasma-material boundary → plasma, chemistry & materials science
- Managing materials in a neutron environment & tritium breeding → <u>nuclear engineering</u>
- Better electromagnets → <u>superconductor R&D</u>
- Never-ending need for diagnostic development (<u>spectroscopy</u>, ...), data analysis (<u>big data analysis</u>, <u>machine learning</u>, ...), and just all around <u>good scientists &</u> <u>engineers!</u>

Numerous tokamak, stellarator & other experiments are globally attacking these research topics

Lot's of fun places to visit / work (5)

DOE-funded undergraduate internships

- Summer Undergraduate Laboratory Internship (SULI): <u>https://science.energy.gov/wdts/suli/</u>
- Community College Internship (CCI): <u>https://science.energy.gov/wdts/cci/</u>
- Graduate Summer School at PPPL for grad students from non-fusion programs (<u>gss.pppl.gov</u>)

Summary

- Nuclear fusion offers a promising solution for clean energy, especially for growing global energy demands
- The progress in magnetic fusion energy research has been immense – ITER is the next evolution on-thehorizon!
- Numerous US and international institutions are focused on solving remaining challenges to bring fusion energy to the market – always looking for new, young talent!

www.pppl.gov science.energy.gov/wdts/suli/ science.energy.gov/wdts/cci/

BACKUP SLIDES

Progress in achieved fusion performance outpaces (outpaced) Moore's Law

Comparing fusion-relevant performance among different magnetic energy confinement configurations

Z. Hartwig (MIT)

Princeton Plasma Physics Laboratory (PPPL) Plainsboro, New Jersey

At PPPL, we try to understand many aspects of plasmas

For example...

Experiments to study astrophysical "reconnection" (solar flares)

MRX

Magnetic Reconnection Experiment

 Laboratory experiment to mimic interaction of solar flare impinging on earths magnetic field (relevant to telecommunications)

Onda d'urto Sole Vento solare Magnetopausa 🔩

Experiments to study plasma thrusters for satellites and deep space exploration

The success of NASA's Dawn mission to orbit two asteroids depended on plasma thrusters

HTX Hall Thruster Experiment

Additional plasma research at PPPL

- Astrophysics
- Plasma thrusters
- Basic plasma physics
- Nanotechnology
- Plasma-surface chemistry interaction
- Developing medical isotopes
- Plasma theory and simulation

Plasmas for nuclear fusion energy research

Characteristics length & time scales that govern instabilities span orders of magnitude

Magnetic Fusion Energy Sciences