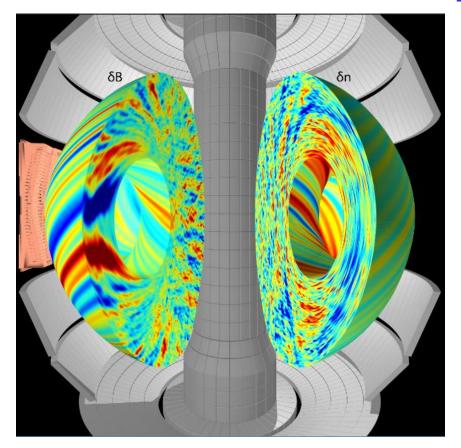
Toroidal magnetized plasma turbulence & transport



Walter Guttenfelder

Graduate Summer School 2020

Categorization of turbulence lectures this week

- 3D hydrodynamic turbulence (Lectures #1/2)
 - Neutral fluid, incompressible Euler equations (continuity + Navier-Stokes)
 - Nonlinear energy cascade in inertial range (between forcing and dissipation scales) → Kolmogorov spectrum
- 3D MHD turbulence (Lectures #2/4)
 - Alfven waves in presence of guiding B field → anisotropy, additional linear term
 - Derived in single-fluid MHD limit
 - Assumed uniform field and plasma (no background gradients ∇B , ∇n , ∇T)
- 2D drift wave turbulence (Lecture #3, today)
 - Strong anisotropy due to strong background magnetic field
 - − Driven by cross-field background thermal gradients ($\nabla_{\perp} F_{M} \rightarrow \nabla_{\perp} n$, $\nabla_{\perp} T$) \rightarrow additional linear term, source of instability turbulence to relax gradients
 - Inhomogeneous B gives rise to ∇B & curvature drifts and particle trapping → additional dynamics for instability
 - Derived in two-fluid (or two-species kinetic) limit

Concepts of turbulence to remember

- Turbulence is deterministic yet unpredictable (chaotic), appears random
 - Turbulence is not a property of the fluid / plasma, it's a feature of the flow
 - We often treat & diagnose statistically, but also rely on first-principles direct numerical simulation (DNS)
- Turbulence spans a wide range of spatial & temporal
 - Re >>> 1 for neutral fluids, $L_{\text{forcing}} / \ell_{\text{dissipation}} \sim (\text{Re})^{3/4}$
 - Or in the case of hot, low-collisionality plasma, a wide range of scales in 6D phase-space (x,v)
- Turbulence causes increased mixing, transport larger than collisional transport
 - **Transport** is the key application of why we care about turbulence (e.g. fusion gain $\sim nT\tau_E$, energy confinement time τ_E set by turbulence)
- It's cool! "Turbulence is the most important unsolved problem in classical physics" (~Feynman)

Turbulent transport is an advective process

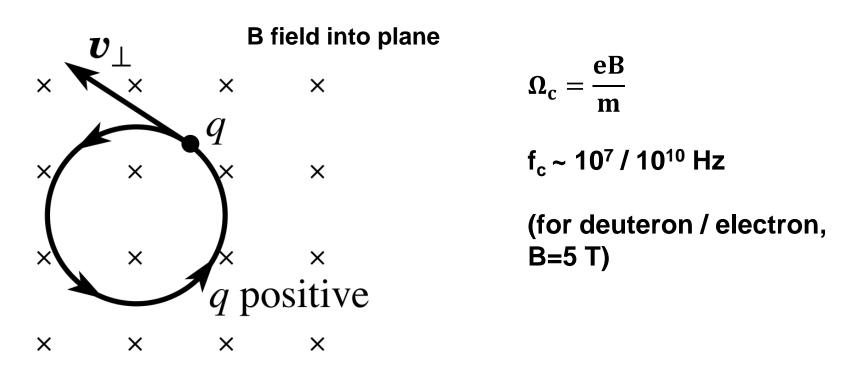
- Transport a result of finite average 2^{nd} order correlation between perturbed drift velocity (δv) and perturbed fluid moments (δn , δT , δv)
 - Particle flux, $\Gamma = \langle \delta v \delta n \rangle$
 - Heat flux, Q = $3/2n_0(\delta v \delta T) + 3/2T_0(\delta v \delta n)$
 - Momentum flux, $\Pi \sim \langle \delta v \delta v \rangle$ ("Reynolds stress")
- Electrostatic turbulence often most relevant in tokamaks → E×B drift from potential perturbations: δv_E=B×∇(δφ)/B² ~ k_θ(δφ)/B
- Can also have magnetic contributions at high beta, $\delta v_B \sim v_{||} (\delta B_r/B)$ (magnetic "flutter" transport)

Implications of a strong toroidal magnetic field

Charged particles experience Lorentz force in a magnetic field → gyro-orbits

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

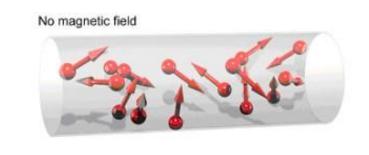
- Magnetic force acts perpendicular to direction of particle
- →Particles follow circular gyro-orbits

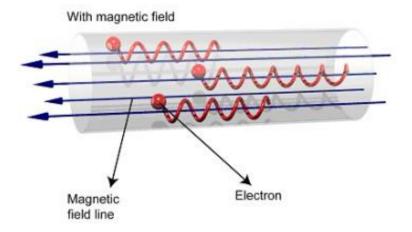


Magnetic field confines particles away from boundaries, leads to strong anisotropy

gyroradius:
$$\rho = \frac{v_T}{\Omega_c}$$
 $\beta \approx 5 \text{ T}$ $T \approx 10 \text{ keV}$

$$\rho_i \sim 3 \text{ mm}$$
 << 1-2 meter device size





Low collision frequency $v\sim n/T^{3/2}$ $\lambda_{MFP}\sim km's >> device size$ $\lambda_{MFP}/\rho_i \sim 10^6$ $\chi_{II}/\chi_{\perp} \sim (\lambda_{mfp}/\rho)^2 \sim 10^{12} \rightarrow strong\ anisotropy$

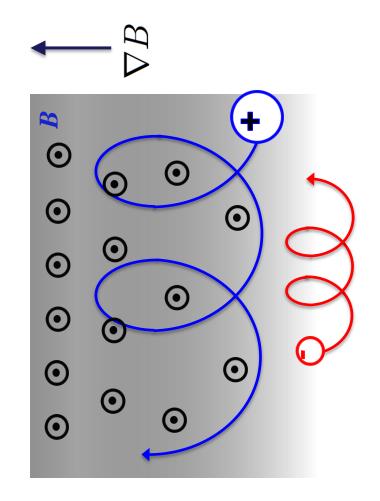
Particles easily lost from ends → bend into a torus

But toroidicity leads to vertical drifts from ∇B & curvature

$$\mathbf{F} = \mathbf{q}\mathbf{v} \times \mathbf{B} \qquad \mathbf{B} \sim \frac{1}{\mathbf{R}}$$

$$v_{\nabla B} \approx \left(\frac{\rho}{R}\right) v_{T} \approx \frac{T}{qBR}$$

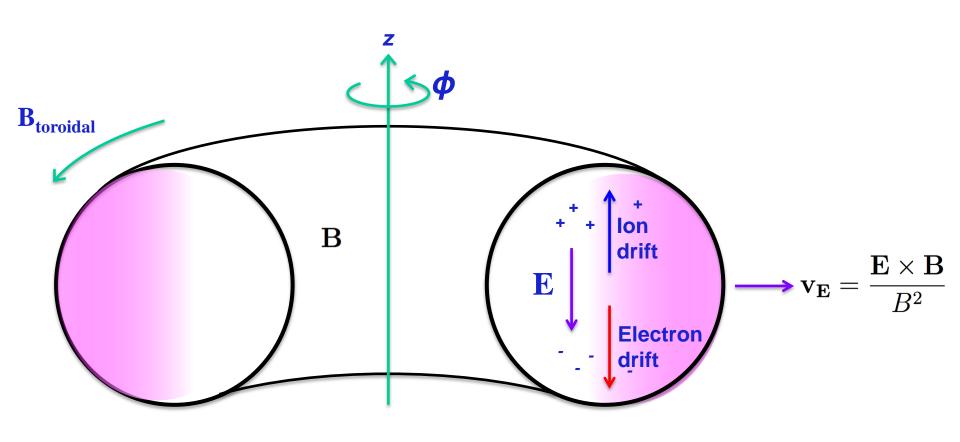
 τ_{loss} ~ 5 ms from vertical drifts (B~5 T, R~5 m, T~15 keV)



$$\rho_* = \frac{\rho}{R}$$

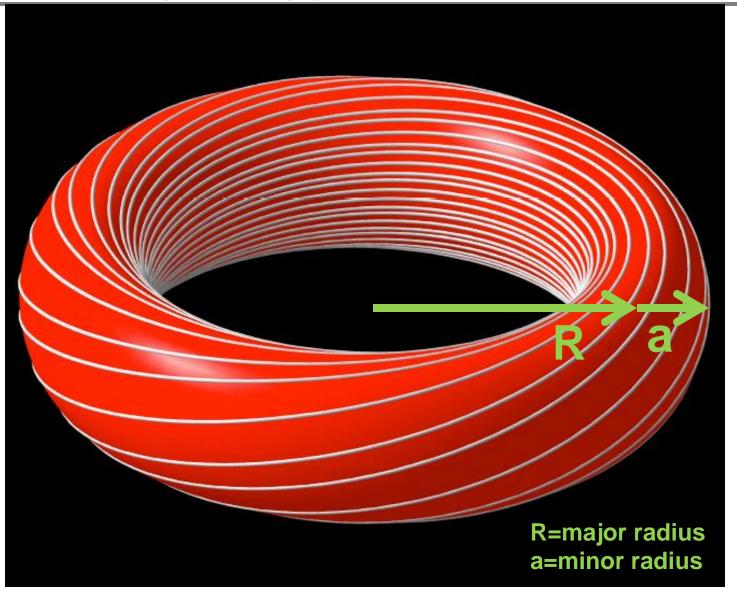
Key parameter in magnetized confinement

Even worse, charge separation leads to faster E×B drifts out to the walls

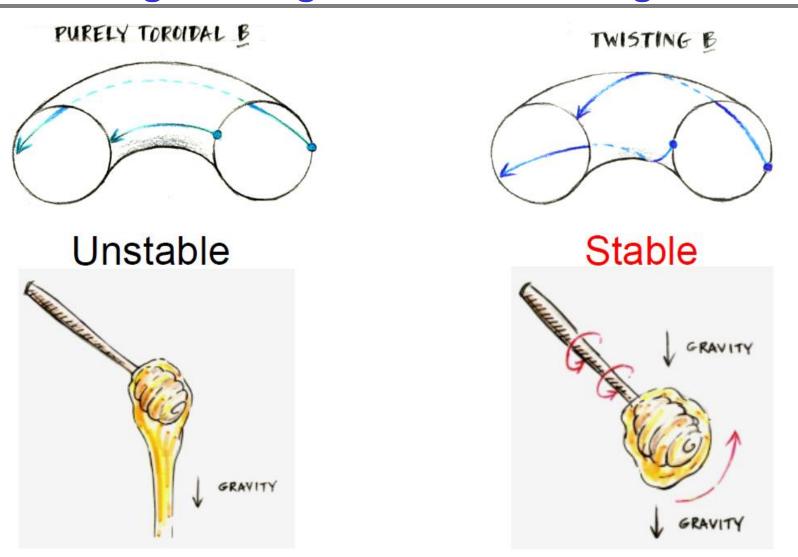


 $τ_{loss}$ ~ μs from E×B drifts (due to charge separation from vertical drifts)

Solution: need a helical magnetic field for confined (closed) particle orbits



Helical B field carries plasma from "bad curvature" region to "good curvature" region

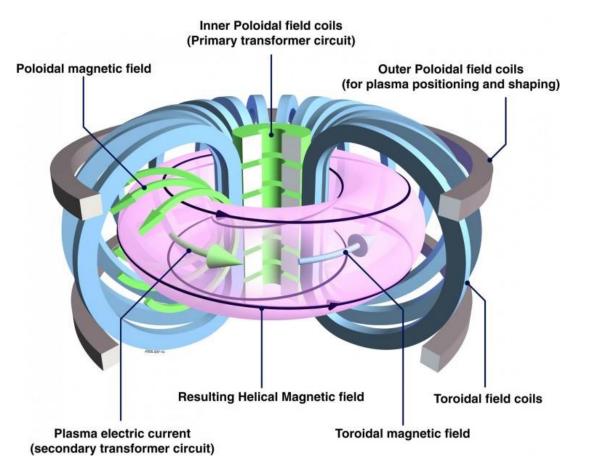


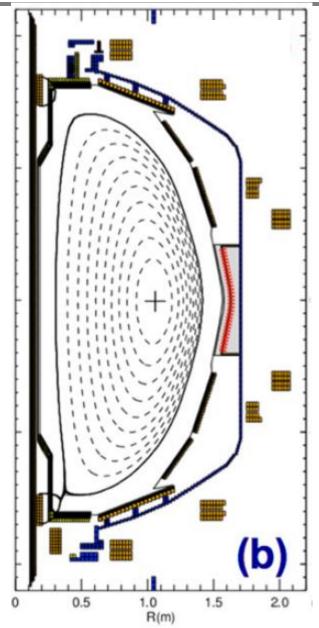
Similar to how honey dipper prevents honey from dripping

Tokamaks

NSTX

- Toroidal, axisymmetric
- Helical field lines confine plasma
- Closed, nested flux surfaces in force balance:
 J × B = ∇p

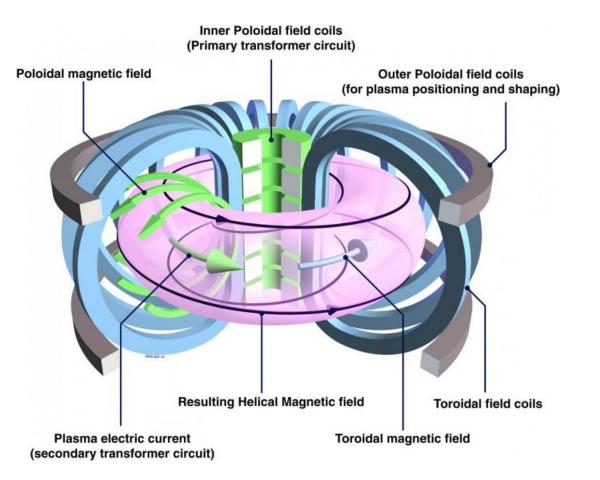


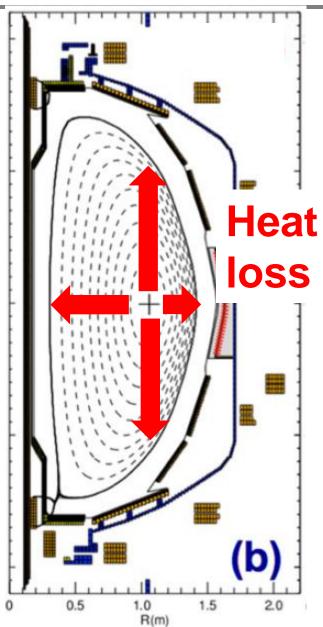


Tokamaks

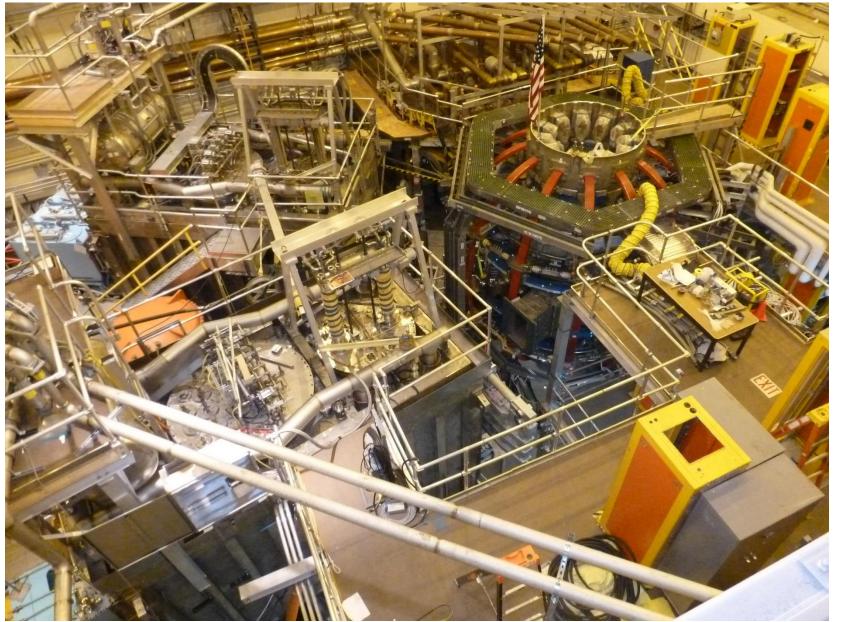
NSTX

- Toroidal, axisymmetric
- Helical field lines confine plasma
- Closed, nested flux surfaces in force balance:
 J × B = ∇p





At Princeton Plasma Physics Lab (PPPL): National Spherical Torus Experiment-Upgrade (NSTX-U)

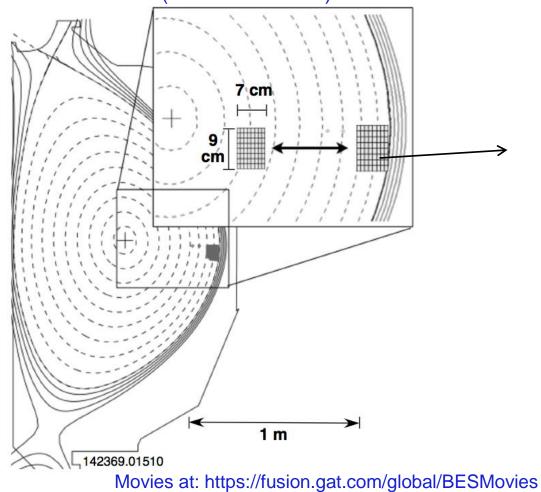


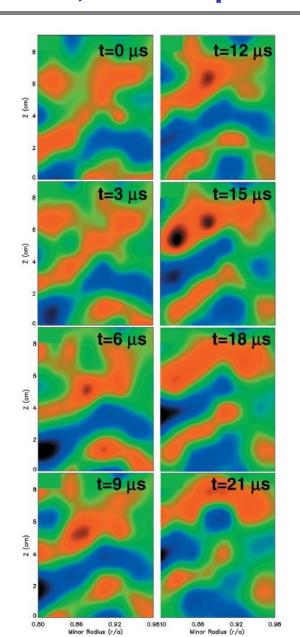
Turbulence characteristics in tokamaks

Spectroscopic imaging provides a 2D picture of turbulence in tokamaks: cm spatial scales, µs time scales, <1% amplitude

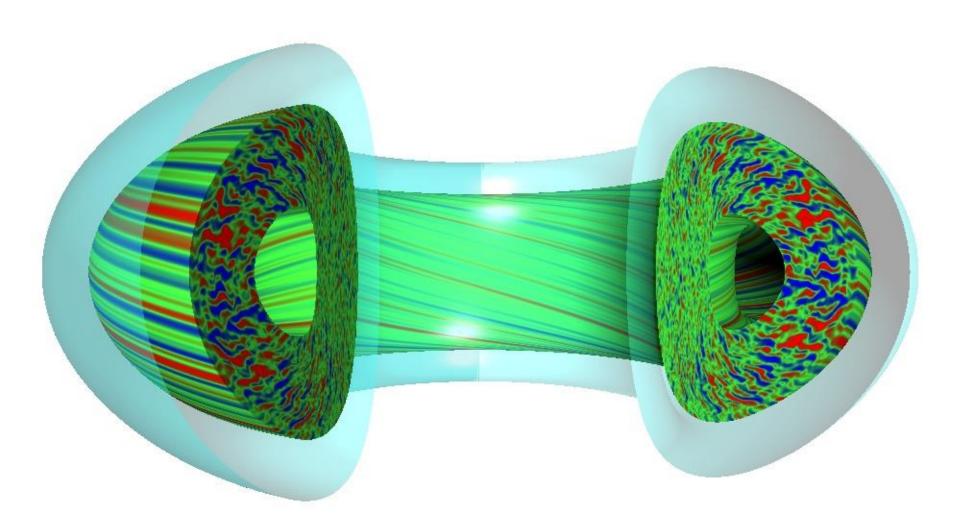
• Beam Emission Spectroscopy (UW-Madison) measures Doppler shifted D_{α} from neutral beam heating to infer plasma density

DIII-D tokamak (General Atomics)





Simulations provide detailed prediction of expected turbulence characteristics



Transport is of order the Gyrobohm diffusivity

• Although turbulence is advective, can estimate order of transport due to drift waves as a diffusive process, $\chi_{turb} \sim \langle \Delta x^2 \rangle / \langle \Delta t \rangle \sim (L_{\perp,corr})^2 / \tau_{corr}$

$$\begin{array}{lll} \text{L}_{\perp,\text{corr}} & \sim \text{ few } \rho_s \text{ (\sim cm's)} & & & & \\ \tau_{\text{corr}}^{-1} & \sim c_s / R & (\sim 10^5 \text{ 1/s)} & & & c_s = \sqrt{T_e / m_d} \end{array}$$

gyroBohm diffusivity

$$\chi_{\text{turb}} \sim \chi_{\text{GB}} = \frac{L_{\perp}^2}{\tau_{corr}} = \frac{\rho_s^2 c_s}{R} = \frac{\rho_s}{R} \rho_s c_s = \frac{\rho_s}{R} \frac{T_e}{B}$$

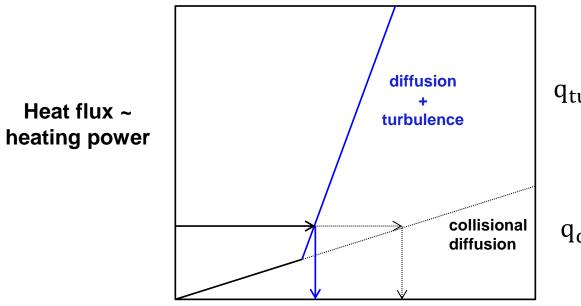
$$\rho_*$$

Bohm diffusivity $\approx \frac{1}{16} \frac{T_e}{B}$

$$\tau_E \sim \frac{a^2}{\chi} \sim \frac{R^3 B^2}{T^{3/2}} \qquad \qquad \tau_E \sim \text{(0.1) sec for current devices} \\ \tau_E \sim \text{(1+) sec for fusion gain (ITER)}$$

• τ_F improves with field strength (B) and machine size (R)

Tokamak turbulence has a threshold gradient for onset, transport tied to linear stability and nonlinear saturation

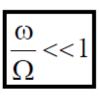


$$q_{\rm turb} = -n\chi_{GB}[\nabla T - \nabla T_{\rm crit}]F(\cdots)$$

$$q_{col} = -n\chi_{col}\nabla T$$

- **Temperature gradient (-∇T)**
- GyroBohm scaling important, but liner threshold and scaling also matters
- ⇒ We must discuss linear drift wave and micro-stability in tokamaks as part of the turbulent transport problem (enter gyrokinetic theory)

Gyrokinetics in brief – evolving 5D gyro-averaged distribution function

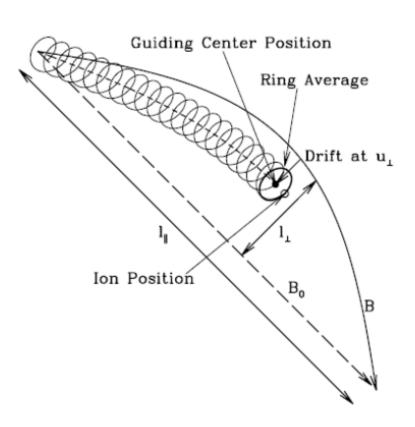


$$f(\vec{x}, \vec{v}, t) \xrightarrow{gyroaverage} f(\vec{R}, v_{\parallel}, v_{\perp}, t)$$

$$\sim\!\frac{10^5}{10^7}\;\text{for ions}$$

 Average over fast gyro-motion → evolve a distribution of gyro-rings

(for each species)



Gyrokinetics in brief – evolving 5D gyro-averaged distribution function

$$\frac{\omega}{\Omega}, \frac{\rho}{l}, \frac{\delta f}{f_0}, \frac{k_{||}}{k_{\perp}} << 1 \qquad \qquad f(\vec{x}, \vec{v}, t) \xrightarrow{\quad \text{gyroaverage} \quad} f(\vec{R}, v_{\|}, v_{\perp}, t) \qquad f = F_{\text{M}} + \delta f \\ \frac{\partial(\delta f)}{\partial t} + v_{\|} \hat{b} \cdot \nabla \delta f + \vec{v}_{d} \cdot \nabla \delta f + \delta \vec{v} \cdot \nabla F_{M} + \vec{v}_{E0}(r) \cdot \nabla \delta f + \delta \vec{v} \cdot \nabla \delta f = C(\delta f) \\ Fast parallel \\ motion \qquad \qquad Perpendicular \\ roon-linearity \qquad Perpendicular \\ v_{\kappa} = m v_{||}^{2} \frac{\hat{b} \times \vec{\kappa}}{qB} \qquad \text{Slow perpendicular } \\ \vec{v}_{\nabla_{B}} = \frac{m v_{\perp}^{2}}{2} \frac{\hat{b} \times \nabla B/B}{qB} \qquad \delta v_{a} \doteq \frac{c}{B} \mathbf{b} \times \nabla \Psi_{a}$$

• Must also solve gyrokinetic Maxwell equations self-consistently to obtain $\delta \varphi$, δB

 $\Psi_a(\mathbf{R}) \doteq \left\langle \delta\phi(\mathbf{R} + \boldsymbol{\rho}) - \frac{1}{c}(\mathbf{V}_0 + \mathbf{v}) \cdot \delta\mathbf{A}(\mathbf{R} + \boldsymbol{\rho}) \right\rangle_{\mathbf{R}}$

Drift waves

40+ years of theory predicts turbulence in magnetized plasma should often be drift wave in nature

General predicted drift wave characteristics:

- Finite-frequency drifting waves, $\omega(k_{\theta})\sim\omega_{\star}\sim k_{\theta}V_{\star}\sim (k_{\theta}\rho)v_{T}/L_{n}$
 - Driven by ∇n , $\nabla T (1/L_n = -1/n \cdot \nabla n)$
- Quasi-2D, elongated along the field lines ($L_{||}>>L_{\perp}$, $k_{||}<< k_{\perp}$)
 - Particles can rapidly move along field lines to smooth out perturbations
 - Perpendicular sizes linked to local gyroradius, $L_{\perp} \sim \rho_{i,e}$ or $k_{\perp} \rho_{i,e} \sim 1$
- In a tokamak expected to be "ballooning", i.e. stronger on outboard side
 - Due to "bad curvature"/"effective gravity" pointing outwards from symmetry axis
- Transport has gyrobohm scaling, $\chi_{GB} = \rho_i^2 v_{Ti}/R$
 - But other factors important like threshold and stiffness: $\chi_{turb} \sim \chi_{GB} \cdot F(\cdots) \cdot [R/L_T R/L_{T,crit}]$

Can identify key terms in "gyrofluid" equations responsible for drift wave dynamics

- Start with toroidal GK equation in the δf limit ($\delta f/F_M << 1$)
- Take fluid moments $(\int d^3v \, \delta f \, [1, v, \frac{1}{2}v^2])$
- Apply clever closures that "best" reproduce linear toroidal gyrokinetics (Hammett, Perkins, Beer, Dorland, Waltz, ...), e.g.:

ion continuity and energy (M. Beer thesis, 1995):

$$\frac{\partial \tilde{n}}{\partial t} + \mathbf{v}_E \cdot \nabla n_0 + \mathbf{v}_E \cdot \nabla \tilde{n} + n_0 \nabla \cdot \mathbf{v}_E + \frac{2}{m\Omega B^2} \mathbf{B} \times \nabla B \cdot \nabla \tilde{p} = 0. \tag{1.5}$$

$$\frac{\partial \tilde{p}}{\partial t} + \mathbf{v}_{E} \cdot \nabla p_{0} + \mathbf{v}_{E} \cdot \nabla \tilde{p} + p_{0} \nabla \cdot \mathbf{v}_{E} + p_{0} B \mathbf{v}_{E} \cdot \nabla \frac{1}{B} + \frac{p_{0}}{n_{0} m \Omega B^{2}} \mathbf{B} \times \nabla B \cdot \nabla (6\tilde{p} - 3\tilde{n}T_{0}) = 0.$$
(1.12)

• Perturbed E×B drift + background gradients ($\delta v_E \cdot \nabla n_0$, $\delta v_E \cdot \nabla T_0$) are fundamental to drift wave dynamics

Simple classic electron drift wave in a magnetic slab $(B=B_7)$

• Assume cool ions $(v_{Ti} << \omega/k_{||})$, isothermal electrons, no temperature gradients, no toroidicity, electrostatic $(\beta \rightarrow 0)$, no nonlinear term

$$\frac{\partial}{\partial t} \delta n_i + \delta v_E \cdot \nabla n_0(x) = 0 \quad ion \ continuity$$

$$\delta v_{E} = \frac{\hat{b} \times \nabla \delta \phi}{B} = \frac{-ik_{y}\delta \phi}{B} \widehat{e_{x}}$$

$$\delta\varphi{\sim}exp\big(i\vec{k}\cdot\vec{x}-i\omega t\big)$$

$$\delta v_E \cdot \nabla n_0(x) = \frac{-ik_y \delta \varphi}{B} \frac{dn_0}{dx} = in_0 \frac{k_y \delta \varphi}{BL_n}$$

$$\frac{dn_0}{dx} = -\frac{n_0}{L_n}$$

Gradient scale length (L_n)

$$\delta v_{E} \cdot \nabla n_{0}(x) = in_{0}k_{y} \frac{T_{e}}{BL_{n}} \frac{\delta \Phi}{T_{e}}$$

With some algebra we obtain a diamagnetic drift velocity & frequency

$$\delta v_{E} \cdot \nabla n_{0}(x) = in_{0}k_{y} \frac{T_{e}}{BL_{n}} \frac{\delta \varphi}{T_{e}}$$

$$\frac{T_{e}}{B} = \rho_{s}c_{s}$$

$$\delta v_{E} \cdot \nabla n_{0}(x) = in_{0}k_{y}\frac{\rho_{s}}{L_{n}}c_{s}\frac{\delta \varphi}{T_{e}} = in_{0}\omega_{*e}\frac{\delta \varphi}{T_{e}}$$

$$\omega_{*e} = k_y V_{*e} \qquad V_{*e} = \frac{\rho_s}{L_n} c_s$$

Electron diamagnetic drift velocity & frequency (a fluid drift, not a particle drift)

ρ_{*} like parameter

Simplified ion continuity equation

$$\frac{\partial}{\partial t} \delta n_i + \delta v_E \cdot \nabla n_0(x) = 0$$

$$-i\omega \frac{\delta n_i}{n_0} + i\omega_{*e} \frac{\delta \varphi}{T_e} = 0$$

• Expect characteristic frequency ~ ω_{e} ~ $(k_v \rho_s) \cdot c_s / L_n$

Dynamics Must Satisfy Quasi-neutrality; Rapid parallel electron motion gives Boltzmann distribution

Quasi-neutrality (Poisson equation, k_⊥²λ_D²<<1) requires

$$\begin{split} -\nabla^2 \widetilde{\phi} &= \frac{1}{\epsilon_0} \sum_s e Z_s \int d^3 v f_s \\ \left(k_\perp^2 \lambda_D^2\right) &\frac{\widetilde{\phi}}{T} &= \frac{\widetilde{n}_i - \widetilde{n}_e}{n_0} \end{split}$$

 For characteristic drift wave frequency, parallel electron motion is very rapid -- from parallel electron momentum eq, assuming isothermal T_e:

$$\omega < k_{||} v_{Te} \rightarrow 0 = -T_e V_{||} \tilde{n}_e + n_e e V_{||} \tilde{\phi}$$

⇒ Electrons (approximately) maintain a Boltzmann distribution

$$(n_0 + \widetilde{n}_e) = n_0 \exp(e\widetilde{\varphi}/T_e)$$

$$\tilde{\mathsf{n}}_{\mathsf{e}} \approx \mathsf{n}_{\mathsf{0}} \mathsf{e} \tilde{\varphi} / \mathsf{T}_{\mathsf{e}} \Rightarrow \underline{\tilde{\mathsf{n}}_{\mathsf{e}}} \approx \tilde{\varphi}$$

lon continuity + quasi-neutrality + Boltzmann electron = electron drift wave (linear, slab, cold ions)

$$-i\omega\frac{\delta n_i}{n_0} + i\omega_{*e}\frac{\delta\varphi}{T_e} = 0$$

$$\frac{\delta n_i}{n_0} = \frac{\delta n_e}{n_0} = \; \frac{\delta \varphi}{T_e}$$

$$\omega = \omega_{*e} = k_y V_{*e}$$

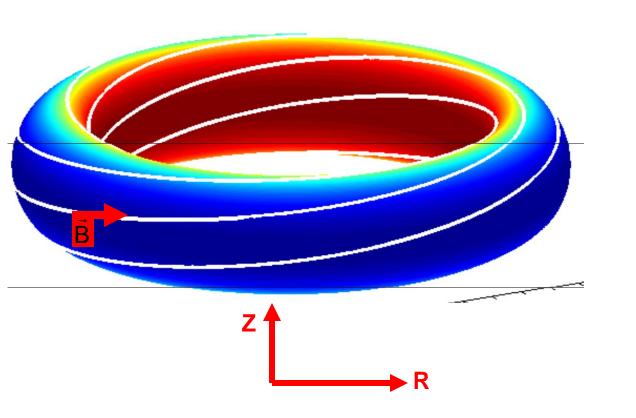
- Density and potential wave perturbations propagating perpendicular to B_Z and ∇n_0
 - $-\delta v_E \cdot \nabla n_0$ gives δn 90° out-of-phase with initial δn perturbation
- Simple linear dispersion relation (will change with polarization drift / finite Larmor radius effects, toroidicity, other gradients)
- No mechanism to drive instability (collisions, temperature gradient, toroidicity / trapped particles, ...)

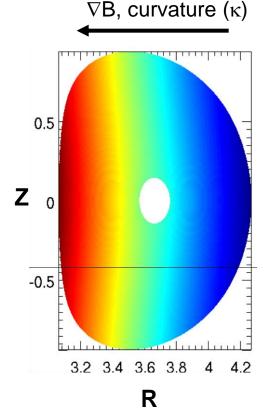
Linear stability analysis of toroidal lon Temperature Gradient (ITG) micro-instability (expected to dominate in ITER)

Toroidicity Leads To Inhomogeneity in |B|, gives ∇B and curvature (κ) drifts

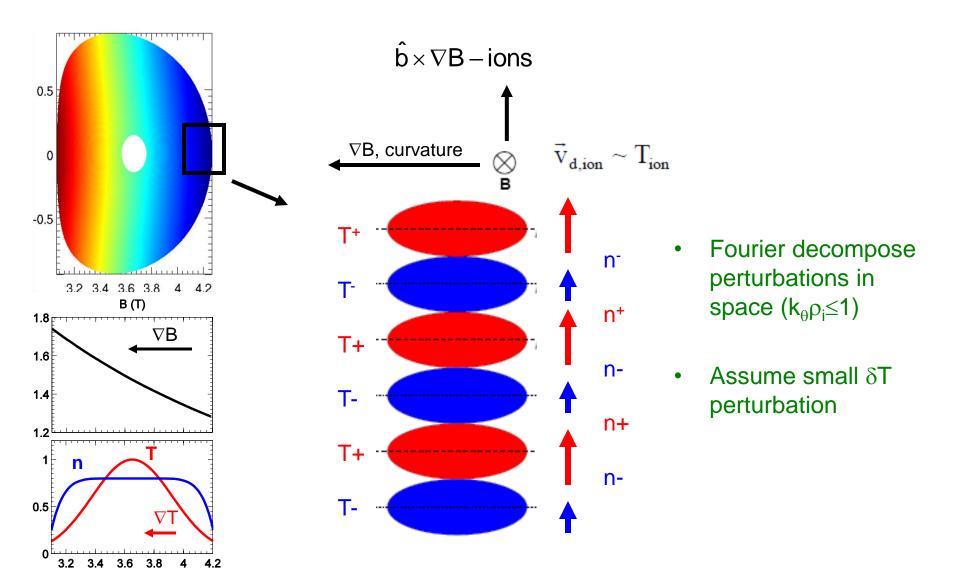
$$\begin{split} \vec{v}_{\kappa} &= m v_{\parallel}^2 \frac{\hat{b} \times \vec{\kappa}}{qB} \sim T_{\parallel} \\ \vec{v}_{\nabla B} &= \frac{m v_{\perp}^2}{2} \frac{\hat{b} \times \nabla B / B}{qB} \sim T_{\perp} \end{split}$$

• What happens when there are small perturbations in $T_{||}$, T_{\perp} ? \Rightarrow Linear stability analysis...





Temperature perturbation (δT) leads to compression ($\nabla \cdot v_{di}$), density perturbation – 90° out-of-phase with δT



Dynamics Must Satisfy Quasi-neutrality; Rapid parallel electron motion gives Boltzmann distribution

Quasi-neutrality (Poisson equation, k_⊥²λ_D²<<1) requires

$$\begin{split} -\nabla^2 \widetilde{\phi} &= \frac{1}{\epsilon_0} \sum_s e Z_s \int d^3 v f_s \\ \left(k_\perp^2 \lambda_D^2\right) &\frac{\widetilde{\phi}}{T} &= \frac{\widetilde{n}_i - \widetilde{n}_e}{n_0} \end{split}$$

 For characteristic drift wave frequency, parallel electron motion is very rapid (from parallel electron momentum eq, assuming isothermal T_e:)

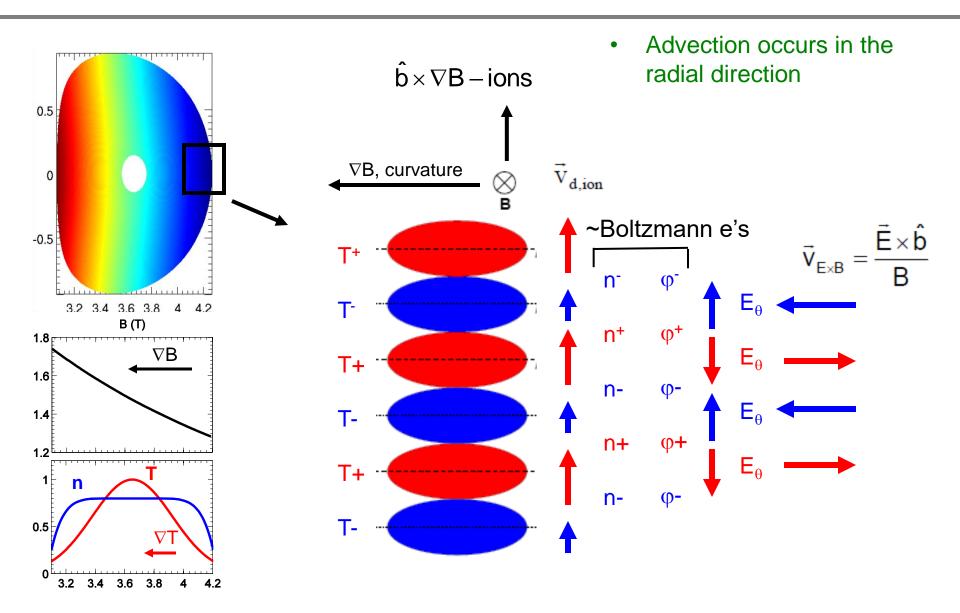
$$\omega < \mathbf{k}_{||} \mathbf{v}_{Te} \rightarrow 0 = -T_e \nabla_{||} \tilde{\mathbf{n}}_e + \mathbf{n}_e e \nabla_{||} \tilde{\mathbf{\phi}}$$

⇒ Electrons (approximately) maintain a Boltzmann distribution

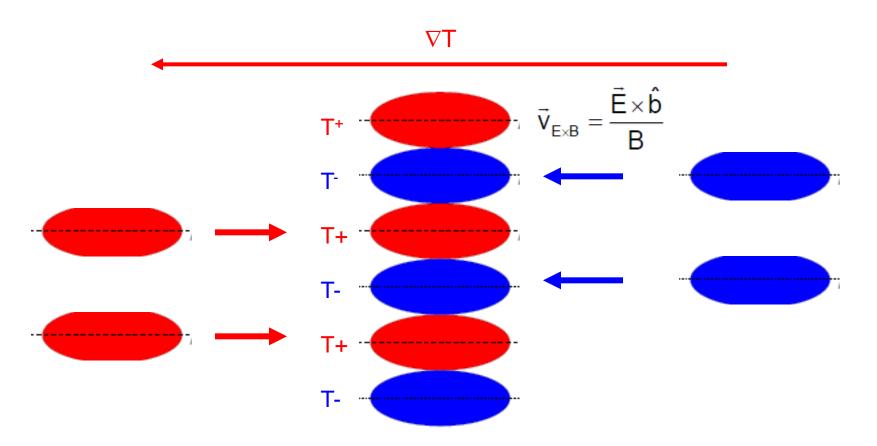
$$(n_0 + \widetilde{n}_e) = n_0 \exp(e\widetilde{\varphi}/T_e)$$

$$\tilde{\mathsf{n}}_{\mathsf{e}} \approx \mathsf{n}_{\mathsf{0}} \mathsf{e} \tilde{\varphi} / \mathsf{T}_{\mathsf{e}} \Rightarrow \underline{\tilde{\mathsf{n}}_{\mathsf{e}}} \approx \tilde{\varphi}$$

Perturbed Potential Creates ExB Advection



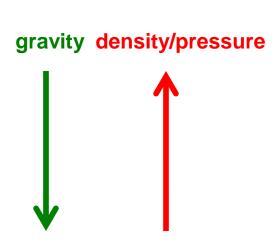
Background Temperature Gradient Reinforces Perturbation ⇒ Instability



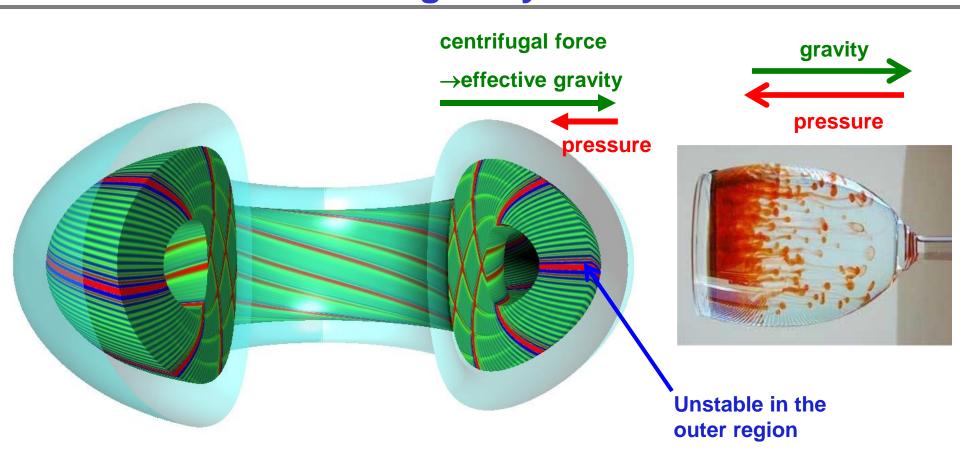
This simple cartoon gives a purely growing "interchange" like mode (coarse derivation in backup slides). The complete derivation (all drifts, gradients) will give a real frequency dispersion, i.e. $\omega_r = \omega_r(k_\theta)$

Analogy for turbulence in tokamaks – Rayleigh-Taylor instability

 Higher density on top of lower density, with gravity acting downwards



Inertial force in toroidal field acts like an effective gravity



GYRO code https://fusion.gat.com/theory/Gyro

Same Dynamics Occur On Inboard Side But Now **Temperature Gradient Is Stabilizing**

Advection with ∇T counteracts perturbations on inboard side – "good" curvature region 0.5 "good" curvature "bad" curvature B (T) $\nabla \mathsf{B}$ 1.6 T-T-1.4 T+ T+ T-T-T+ T+

3.2

3.6

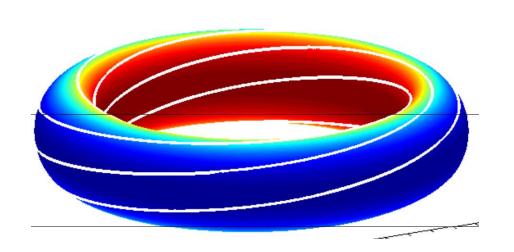
3.8

Fast Parallel Motion Along Helical Field Line **Connects Good & Bad Curvature Regions**

Approximate growth rate on outboard side effective gravity: $g_{eff} = v_{th}^2/R$ gradient scale length: $1/L_T = -1/T \cdot \nabla T$

$$\gamma_{instability} \sim \left(\frac{g_{eff}}{L}\right)^{1/2} \sim \frac{v_{th}}{\sqrt{RL_T}}$$

Parallel transit time along helical field line with "safety factor" q



$$q = \frac{\text{# toroidal transits}}{\text{# poloidal transits}}$$

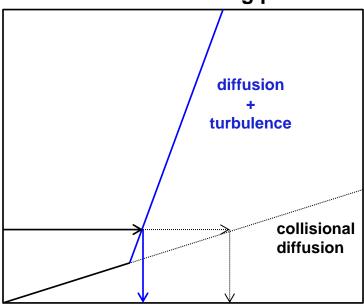
$$\gamma_{\text{parallel}} \sim \frac{v_{\text{th}}}{qR}$$

Expect instability if $\gamma_{\text{instability}} > \gamma_{\text{parallel}}$, or $\left(\frac{R}{L_{\tau}}\right) \approx \frac{1}{\sigma^2}$

$$\left(\frac{R}{L_T}\right)_{\text{threshold}} \approx \frac{1}{q^2}$$

Threshold-like behavior analogous to Rayleigh-Benard instability

Heat flux ~ heating power



Temperature gradient (T_{hot} - T_{cold})

Analogous to convective transport when heating a fluid from below ... boiling water (before the boiling)

Rayleigh, Benard, early 1900's

Critical gradient for ITG determined from theory + linear gyrokinetic simulations

$$\left(\frac{R}{L_T}\right)_{crit}^{ITG} = Max \left[\left(1 + \frac{T_i}{T_e}\right) \left(1.3 + 1.9 \frac{s}{q}\right) (...) \right]$$

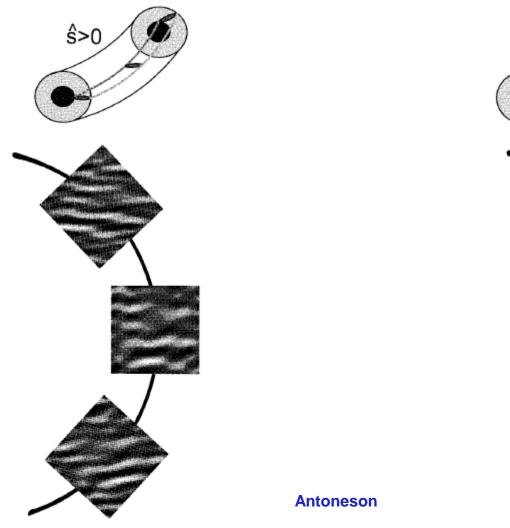
Jenko (2001) Hahm (1989) Romanelli (1989)

- $R/L_T = -R/T \cdot \nabla T$ is the normalized temperature gradient
- Natural way to normalize gradients for toroidal drift waves, i.e. ratio of diamagnetic-to-toroidal drift frequencies:

$$\begin{split} \omega_{^*T} &= k_y(B \textbf{x} \nabla p) \ / \ nqB^2 & \rightarrow (k_\theta \rho_i) v_T / L_T \\ \omega_D &= k_v(B \textbf{x} m v_\bot^2 \nabla B / 2B) \ / \ qB^2 \rightarrow (k_\theta \rho_i) v_T / R \end{split} \qquad \Rightarrow \omega_{^*T} / \omega_D = R / L_T$$

With physical understanding, can try to manipulate/optimize microstability

 E.g., magnetic shear influences stability by twisting radially-elongated instability to better align (or misalign) with bad curvature drive



How does magnetized turbulence saturate?

What sets spatial scales (drive vs. dissipation)?

Spectrum shape / distribution governed by nonlinear (2D perpendicular) three-wave interactions

- Linearly unstable modes grow: δφ(k)~ exp [ik · x + iω(k)t + γ(k)t]
- At large amplitude, interact via nonlinear advection, δv_E·∇δf
 i.e. "three-wave" coupling in (2D perpendicular) wavenumber space

$$\begin{split} &\frac{\partial}{\partial t}\delta f \sim \delta v_E \cdot \nabla \delta f \\ &\frac{\partial}{\partial t}\delta f_{k_{\perp 3}} \, \sim \, \sum_{k_{\perp 1},k_{\perp 2}} \, \left(b \times k_{\perp 1} \delta \varphi_{k_{\perp 1}} \right) \cdot k_{\perp 2} \delta f_{k_{\perp 2}} \end{split}$$

 Energy gets distributed across k space (& velocity space) until damped by stable modes (& collisions) → saturation

 $k_{12}=k_{11}+k_{12}$

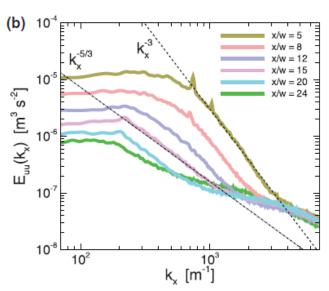
- Local (in k) 2D cascades
- Non-local (in k) interactions drive "zonal flows" that also mediate turbulence

Energy cascade in 2D turbulence is different than 3D

- Change in non-linear conservation properties → energy and vorticity is conserved
 - Inverse energy cascade E(k) ~ k^{-5/3}
 - Forward enstrophy $[\omega^2 \sim (\nabla \times \mathbf{v})^2]$ cascade $E(\mathbf{k}) \sim \mathbf{k}^{-3}$
 - Non-local wavenumber interactions can couple over larger range in k-space (e.g. to zonal flows)

Quasi-2D turbulence exists in many places

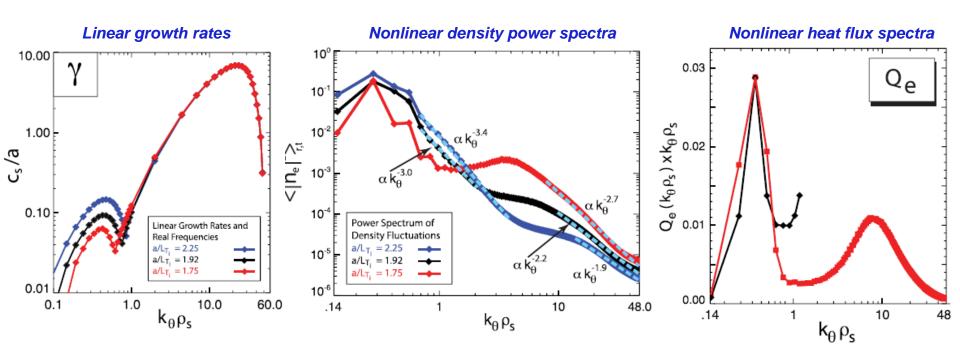
- Geophysical flows like ocean currents, tropical cyclones, polar vortex, chemical mixing in polar stratosphere (→ ozone hole)
- Soap films →



Liu et al., PRL (2016)

Energy drive can occur across large range of scales, but turbulent spectra still exhibit decay

- 2D energy & enstrophy cascades remain important → nonlinear spectra often downshifted in k_θ (w.r.t. linear growth rates)
- Both drive and damping can overlap over wide range of k_{\perp} (very distinct from neutral fluid turbulence)



Additional effects proposed to model turbulence saturation & dissipation

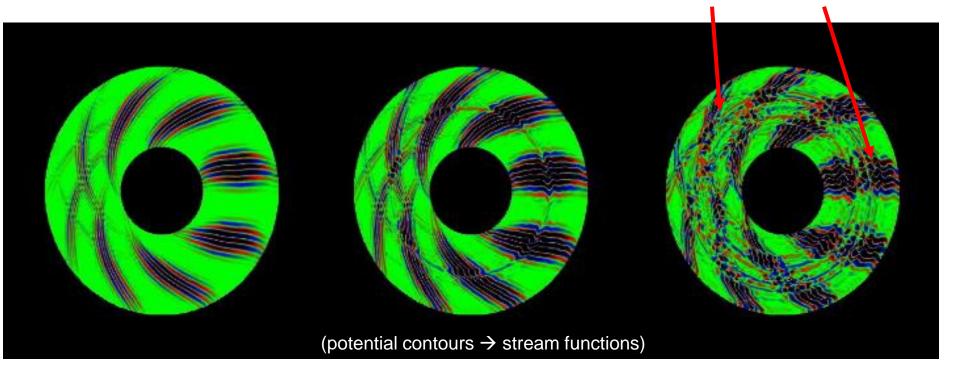
- Coupling to damped eigenmodes (that exist at all k_⊥ scales, with different cross-phases) can influence spectral saturation and partitioning of transport, e.g. Q_e vs. Q_i vs. Γ, ... (Terry, Hatch)
- Different routes to dissipation have been addressed theoretically:
- - − 2D perpendicular nonlinearity at different parallel locations creates fine parallel structure ($k_{||} \uparrow$) → through Landau damping generates fine $v_{||}$ structure → dissipation through collisions
 - Can happen at all k₁ scales
 - Simple scaling argument reproduces transport scaling
- Nonlinear phase mixing (Hammett, Dorland, Schekochihin, Tatsuno):
 - − At sufficient amplitude, gyroaveraged nonlinear term $\langle \delta v_E \rangle \cdot \nabla \delta f \sim J_0 \left(\frac{k_\perp v_\perp}{\Omega}\right) \delta v_E \cdot \nabla \delta f$ generates structure in $\mu \sim v_\perp^2$ → dissipation through collisions

Nonlinearly-generated "zonal flows" also impact saturation

- Potential perturbations uniform on flux surfaces (k_y=0) → marginally stable, do not cause transport
- Turbulence can condense to system size → ZF driven largely by non-local (in k)
 NL interactions (k >> k_{ZF})

Linear instability stage demonstrates structure of fastest growing modes Large flow shear from instability cause perpendicular "zonal flows"

Zonal flows help moderate the turbulence



Code: GYRO

Authors: Jeff Candy and Ron Waltz

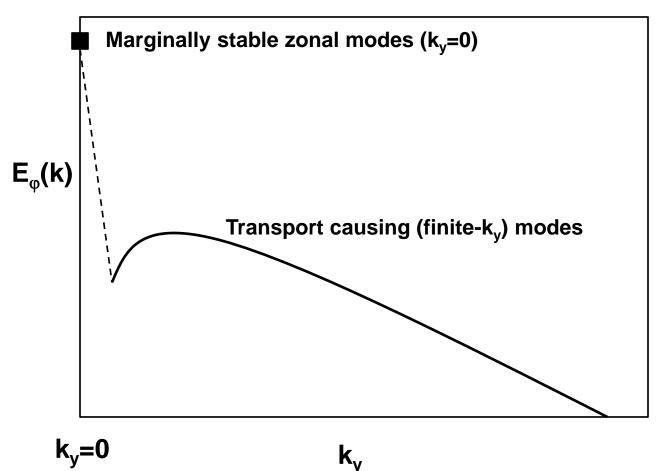
Generation of zonal flows in tokamaks similar to "Kelvin-Helmotz" instability found throughout nature

Variation of flows in one direction...

leads to instability, flows in another direction

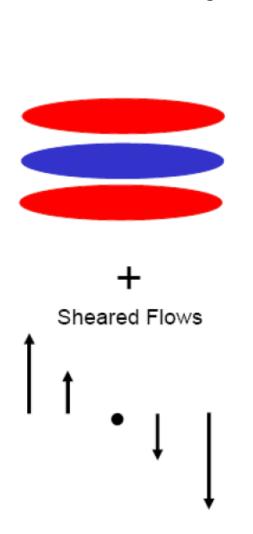
Zonal flows can saturate at relatively large amplitude for toroidal ITG turbulence

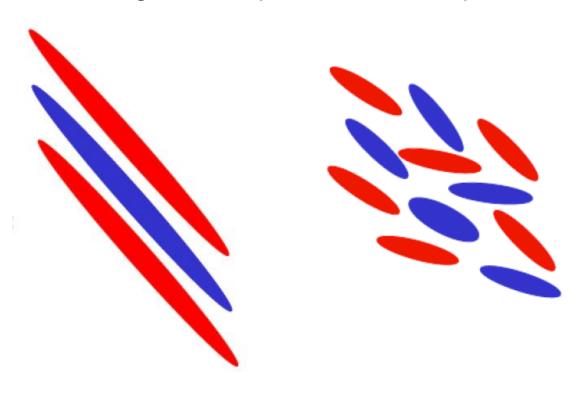
- Regulates saturation via (i) shear decorrelation of eddies, (ii) energy sink into marginal (non-transport-causing) modes
- Typically have distinct k_x spectra (overall 2D spectra anisotropic in k_x,k_y)



Large scale equilibrium sheared flows also influence saturation

 Large scale background flow shear distorts eddies → reduces radial correlation length, fluctuation strength, cross-phases and transport





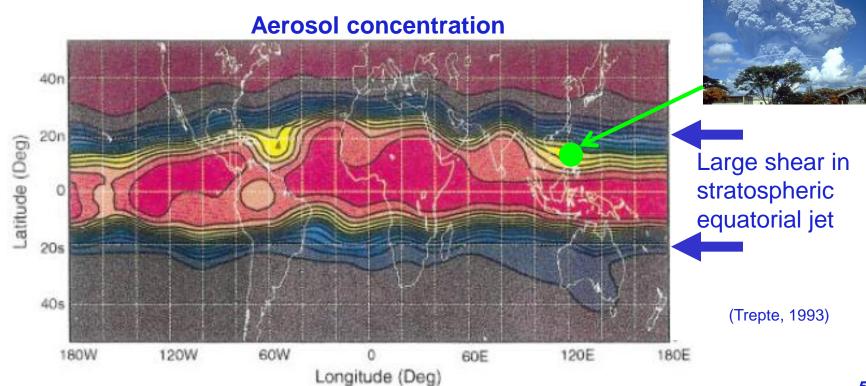
Turbulent transport expected to be reduced as the mean flow shear rate ($\omega_s \sim dU_0/dy$) approaches the turbulence decorrelation rate ($\Delta\omega_D$)

In neutral fluids, sheared flows are often a source of free energy to drive turbulence

 Thin (quasi-2D) atmosphere in axisymmetric geometry of rotating planets similar to tokamak plasma turbulence → can also suppress transport

Stratospheric ash from Mt. Pinatubo eruption (1991) spread rapidly around

equator, but confined in latitude by flow shear



Beyond general characteristics, there are many theoretical "flavors" of drift waves possible in tokamak core & edge

- Usually think of drift waves as gradient driven $(\nabla T_i, \nabla T_e, \nabla n)$
 - Often exhibit threshold in one or more of these parameters
- Different theoretical "flavors" exhibit different parametric dependencies, predicted in various limits, depending on gradients, T_e/T_i , ν , β , geometry, location in plasma...
 - Electrostatic, ion scale $(k_{\theta} \rho_i \le 1)$
 - Ion temperature gradient (ITG) driven by ∇T_i , weakened by ∇n
 - Trapped electron mode (TEM) driven by ∇T_e & ∇n_e , weakened by v_e
 - Parallel velocity gradient (PVG) driven by $R\nabla\Omega$ (like Kelvin-Helmholtz)
 - Electrostatic, electron scale $(k_{\theta}\rho_{e} \le 1)$
 - Electron temperature gradient (ETG) driven by ∇T_e , weakened by ∇n
 - Electromagnetic, ion scale $(k_{\theta}\rho_i \le 1)$
 - Kinetic ballooning mode (KBM) driven by $\nabla \beta_{\text{pol}} \sim \alpha_{\text{MHD}}$
 - Microtearing mode (MTM) driven by ∇T_e, at sufficient β_e

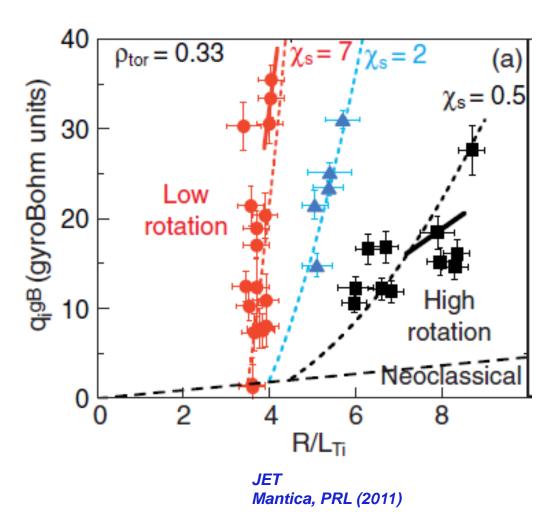
Some additional sources & references

- Greg Hammett has a lot of great introductory material to fusion, tokamaks, drift waves, ITG turbulence, gyrokinetics, etc... (<u>w3.pppl.gov/~hammett</u>)
- See the following for broader reviews and thousands of useful references
- Transport & Turbulence reviews:
 - Liewer, Nuclear Fusion (1985)
 - Wootton, Phys. Fluids B (1990)
 - Carreras, IEEE Trans. Plasma Science (1997)
 - Wolf, PPCF (2003)
 - Tynan, PPCF (2009)
 - ITER Physics Basis (IPB), Nuclear Fusion (1999)
 - Progress in ITER Physics Basis (PIPB), Nuclear Fusion (2007)
- Drift wave reviews:
 - Horton, Rev. Modern Physics (1999)
 - Tang, Nuclear Fusion (1978)
- Gyrokinetic simulation review:
 - Garbet, Nuclear Fusion (2010)
- Zonal flow/GAM reviews:
 - Diamond et al., PPCF (2005)
 - Fujisawa, Nuclear Fusion (2009)
- Measurement techniques:
 - Bretz, RSI (1997)

THE END

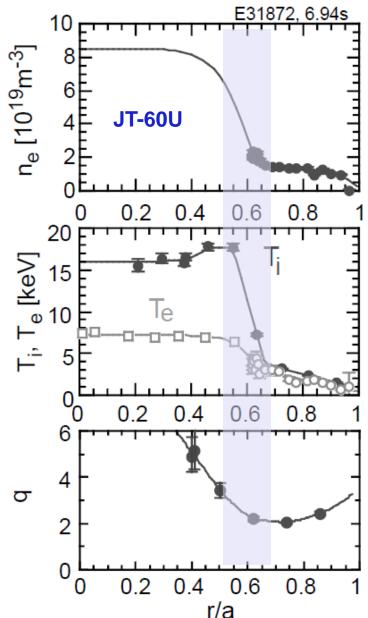
Threshold-like behavior observed experimentally

- Experimentally inferred threshold varies with equilibrium, plasma rotation, ...
- Stiffness (~dQ/d∇T above threshold) also varies
- $\chi = -Q/n\nabla T$ highly nonlinear (also use perturbative experiments to probe stiffness)



Reverse magnetic shear can lead to internal transport barriers (ITBs)

- ITBs established on numerous devices
- Used to achieve "equivalent" Q_{DT,eq}~1.25 in JT-60U (in D-D plasma)
- $\chi_{i} \sim \chi_{i,NC}$ in ITB region (complete suppression of ion scale turbulence)



2 slide summary of some turbulent transport concepts in magnetized fusion plasmas (1)

- For fusion gain Q~nT τ_E (& 100% non-inductive tokamak operation) we need excellent energy confinement, τ_E
- Energy confinement depends on turbulence (τ_E~a²/χ_{turb})
 - As does particle, impurity & momentum transport
- Core turbulence generally accepted to be drift wave in nature
 - Quasi-2D ($L_{\perp} \sim \rho_i$, $\rho_e \ll L_{\parallel} \sim qR$)
 - Driven by ∇ T & ∇ n
 - Frequencies ~ diamagnetic drift frequency ($\omega \sim \omega_* \sim k_\theta \rho_i \cdot c_s/L_{n,T}$)
 - Drift wave transport generally follows gyroBohm scaling $\chi_{turb} \sim \chi_{GB} \sim \rho_i^2 v_{Ti}/a$, however...
 - − Thresholds and stiffness are critical, i.e. $\chi_{turb} \sim \chi_{GB} \cdot F(...) \cdot (\nabla T \nabla T_{crit})$
- Toroidal ion temperature gradient (ITG) drift wave is a key instability for controlling confinement in current tokamaks
 - Unstable due to interchange-like toroidal drifts, analogous to Rayleigh-Taylor instability
 - Threshold influenced by magnetic equilibrium (q, s) and other parameters
 - Nonlinear saturated transport depends on zonal flows & perpendicular ExB sheared flow

2 slide summary of some turbulent transport concepts in magnetized fusion plasmas (2)

- Reduced models are constructed by quasi-linear calculations + "mixing-length" estimates for nonlinear saturation
 - We rely heavily on direct numerical simulation using gyrokinetic codes to guide model development
 - Reasonably predict confinement scaling and core profiles
- Many other flavors of turbulence exist (TEM, ETG, PVG, MTM, KBM)
 - ρ_i or ρ_e scale
 - Electrostatic or electromagnetic (at increasing beta)
 - Different physical drives, parametric dependencies, & influence on transport channels (Γ vs. Q vs. Π)
- Things get more complicated for edge / boundary turbulence
 - Changing topology (closed flux surfaces → X-point (poloidal field null) → open field lines
 & sheaths at physical boundary)
 - − Larger gyroradius / banana widths, $\rho_{banana}/\Delta_{ped}$ ~1 → orbit losses & non-local effects
 - − Large amplitude fluctuations, $\delta n/n_0$ ~1 (delta-f → full-F simulations)
 - Neutral particles, radiation, other atomic physics...

Very simple growth rate derivation of previous toroidal ITG cartoon picture

Can identify key terms in "gyrofluid" equations responsible for toroidal ITG instability

- Start with toroidal GK equation in the δf limit ($\delta f/F_M << 1$)
- Take fluid moments
- Apply clever closures that "best" reproduce linear toroidal gyrokinetics (Hammett, Perkins, Beer, Dorland, Waltz, ...)

Ion continuity and energy (M. Beer thesis, 1995):

$$\frac{\partial \tilde{n}}{\partial t} + \mathbf{v}_E \cdot \nabla n_0 + \mathbf{v}_E \cdot \nabla \tilde{n} + n_0 \nabla \cdot \mathbf{v}_E + \frac{2}{m\Omega B^2} \mathbf{B} \times \nabla B \cdot \nabla \tilde{p} = 0.$$
 (1.5)

$$\frac{\partial \tilde{p}}{\partial t} + \mathbf{v}_{E} \cdot \nabla p_{0} + \mathbf{v}_{E} \cdot \nabla \tilde{p} + p_{0} \nabla \cdot \mathbf{v}_{E} + p_{0} B \mathbf{v}_{E} \cdot \nabla \frac{1}{B} + \frac{p_{0}}{n_{0} m \Omega B^{2}} \mathbf{B} \times \nabla B \cdot \nabla (6\tilde{p} - 3\tilde{n}T_{0}) = 0.$$
(1.12)

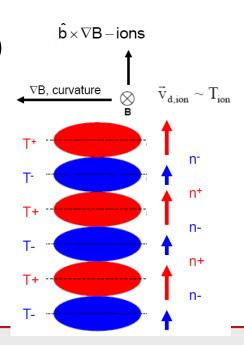
Temperature perturbation (δT) leads to compression ($\nabla \cdot v_{di}$), density perturbation – 90° out-of-phase with δT

$$dn/dt + \nabla \cdot (nv) = 0$$

 $-i\omega\delta n \ from \ -n_0 \nabla \cdot \delta v_d \sim -n_0 \nabla \cdot (\delta T_\perp b \times \nabla B/B)/B \sim -n_0 \ ik_v \delta T / BR$

$$-i\omega(\delta n/n_0) \sim -ik_y(\delta T/T_0) \; T/BR \sim -i(k_y V_D) \; (\delta T/T_0) \sim -i\omega_D \; (\delta T/T_0)$$

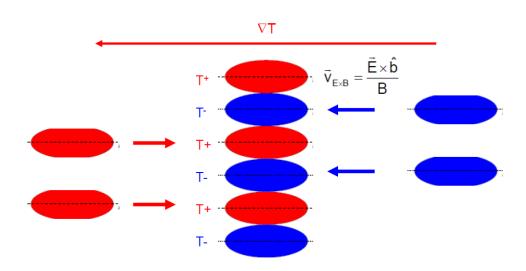
$$-i(\omega_r + i\gamma)(\delta n/n_0) = -i\omega_D (\delta T/T_0)$$



Background Temperature Gradient Reinforces Perturbation ⇒ Instability

$$-i\omega\delta T \ from \ -\delta v_{\text{E}}\cdot\nabla T_0 \sim -(b\times\nabla\delta\phi/B)\nabla T_0 \sim ik_y\delta\phi/B\cdot\nabla T_0 \sim ik_y\delta\phi(T/B)/L_T$$

$$-i(\omega_r + i\gamma)(\delta T/T) = i\omega_{*T}(\delta \varphi/T)$$



Simplest dispersion from these 3 terms

(1) Compression from toroidal drifts

$$\omega(\delta n_i/n_0) = \omega_{Di} (\delta T_i/T_{i0})$$

(2) Quasi-neutrality + Boltzmann electron response

$$(\delta n_i/n_0) = (\delta n_e/n_0) = (\delta \phi/T_{e0}) = (\delta \phi/T_{i0})(T_i/T_e)$$

(3) E×B advection of background gradient

$$-\omega(\delta T_i/T_{i0}) = \omega_{*T}(\delta \phi/T_i)$$

(1)+(2):
$$\omega(T_i/T_e)(\delta\phi/T_{i0}) = \omega_{Di} (\delta T_i/T_{i0})$$

(+3): $\omega(T_i/T_e) = -\omega_{Di} \omega_{*T} / \omega$
 $\omega^2 = -(k_y \rho_i)^2 v_{Ti}^2 / RL_T \text{ (assume } T_e = T_i)$
 $\omega = +/- i (k_v \rho_i) v_{Ti} / (RL_T)^{1/2}$

Finite gyroradius effects limit characteristic size to ion-gyroradius (k₁ρ_i~1)

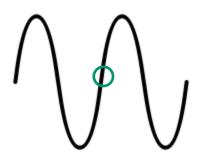
Drift velocity increases with smaller wavelength (larger k_iρ_i)

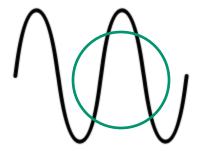
$$\vec{v}_E = \frac{\hat{b} \times \nabla \varphi}{B} = -ik_{\perp} \frac{\varphi}{B} = -ik_{\perp} \left(\frac{\varphi}{T_i}\right) \left(\frac{T_i}{B}\right) = -i(k_{\perp}\rho_i) \left(\frac{\varphi}{T_i}\right) v_{Ti}$$

 If wavelength approaches ion gyroradius (k_⊥ρ_i)≥1, average electric field experienced over fast ion-gyromotion is reduced:

$$\langle \nabla \phi \rangle_{\text{qyro-average}} \sim \nabla \phi$$

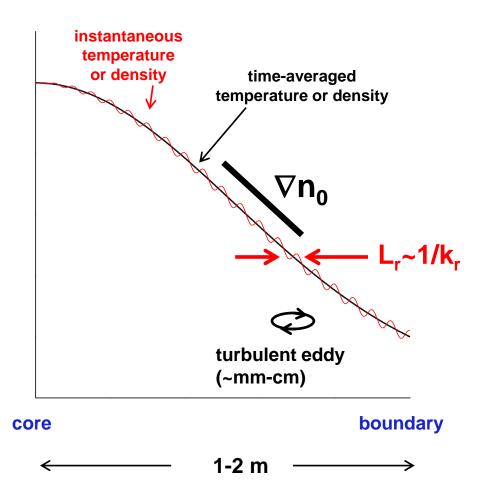
$$\langle \nabla \varphi \rangle_{\text{gyro-average}} \sim \nabla \varphi [1 - (\mathbf{k}_{\perp} \rho_{i})^{2}]$$



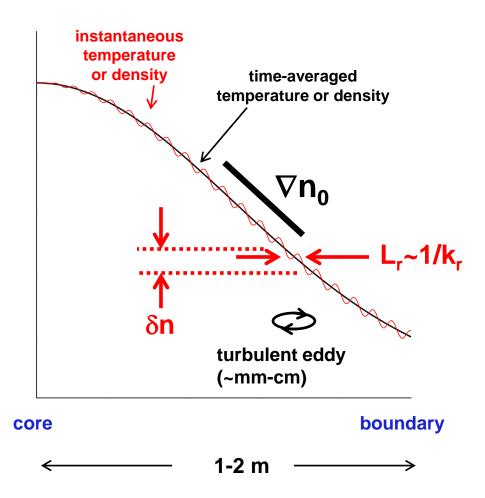


⇒ Maximum growth rates (and typical turbulence scale sizes) occur for (k₁ρ_i) ≤ 1

In the presence of an equilibrium gradient, ∇n₀, turbulence with radial correlation L_r will mix regions of high and low density

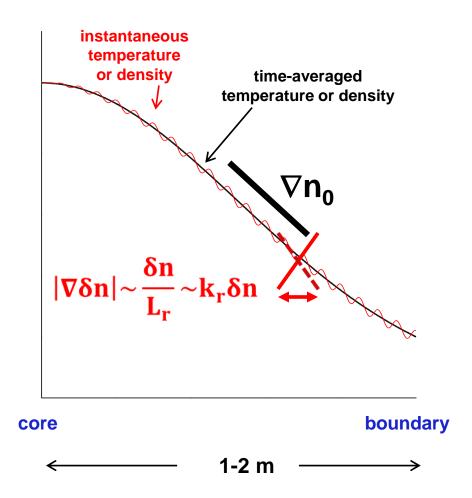


- In the presence of an equilibrium gradient, ∇n₀, turbulence with radial correlation L_r will mix regions of high and low density
- Leads to fluctuation δn.



- In the presence of an equilibrium gradient, ∇n₀, turbulence with radial correlation L_r will mix regions of high and low density
- Leads to fluctuation δn

 Another interpretation: local, instantaneous gradient limited to equilibrium gradient



$$\delta \mathbf{n} \approx \nabla \mathbf{n}_0 \cdot \mathbf{L}_{\mathbf{r}}$$

$$\frac{\delta n}{n_0} \approx \frac{\nabla n_0}{n_0} \cdot L_r \approx \frac{L_r}{L_n} \quad \left(1/L_n = \nabla n_0 / n_0 \right)$$

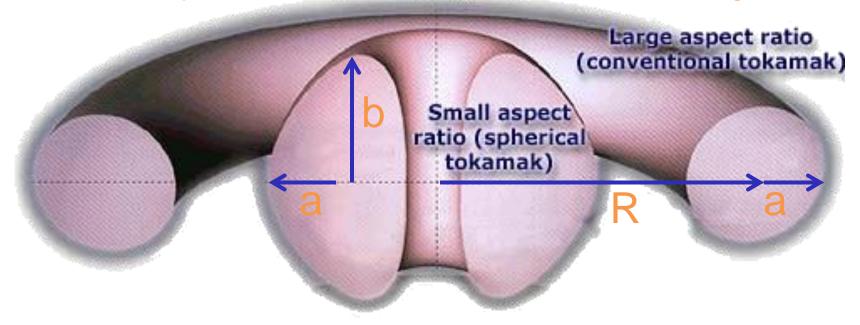
$$\frac{\delta n}{n_0} \sim \frac{1}{k_{\perp} L_n} \sim \frac{\rho_s}{L_n}$$
 $\left(k_{\perp}^{-1} \sim L_r; k_{\perp} \rho_s \sim cons tan t\right)$

Low aspect ratio equilibrium can stabilize electrostatic drift waves, minimize transport (i.e. one motivation for NSTX-U at PPPL)

Aspect ratio is an important free parameter, can try to make more compact devices (i.e. hopefully cheaper)

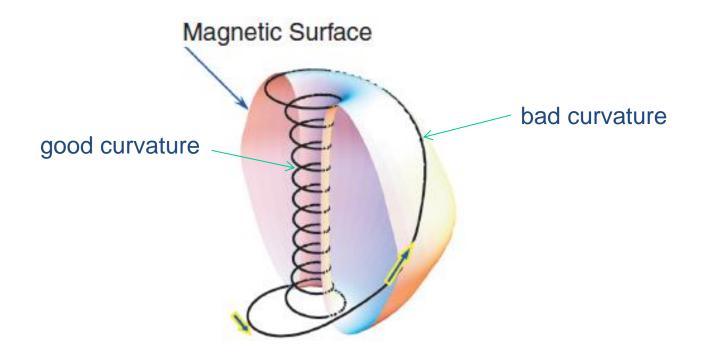
Aspect ratio A = R / aElongation $\kappa = b / a$

R = major radius, a = minor radius, b = vertical ½ height

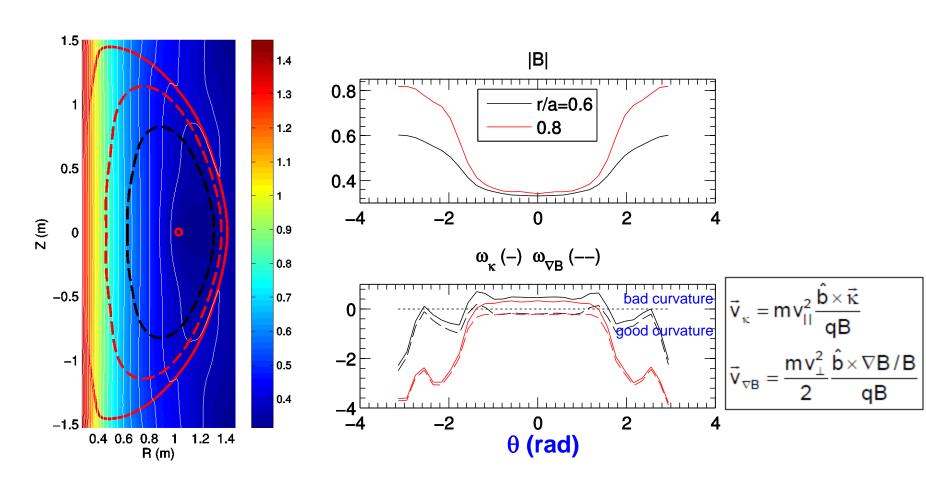


But smaller R = larger curvature, ∇B (~1/R) -- isn't this terrible for "bad curvature" driven instabilities?!?!?!

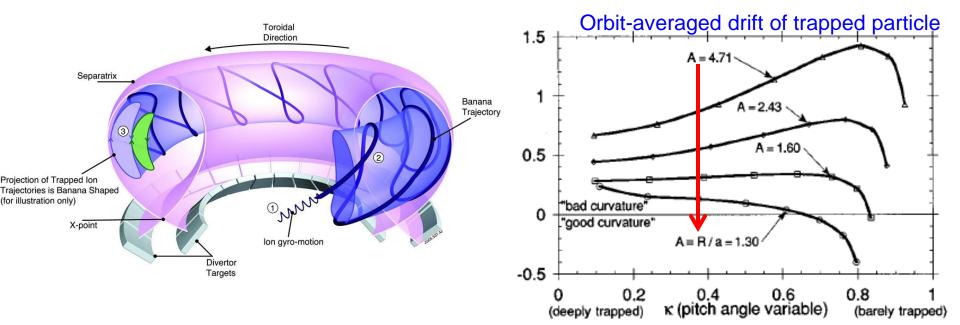
Short connection length → smaller average bad curvature



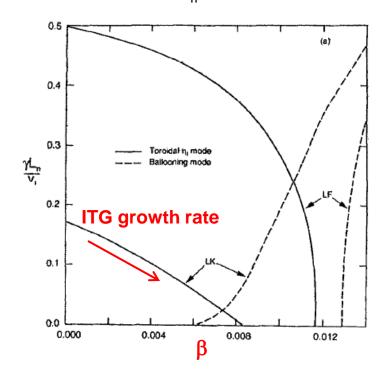
- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high β → grad-B drifts stabilizing [Peng & Strickler, NF 1986]



- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \to \text{grad-B drifts stabilizing [Peng & Strickler, NF 1986]}$
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]

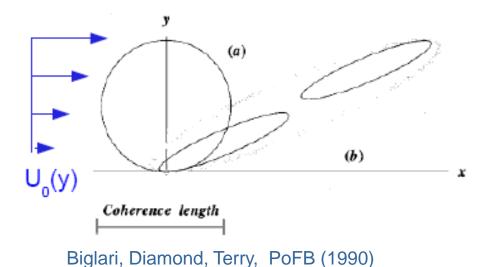


- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high β → grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG



Kim, Horton, Dong, PoFB (1993)

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \to \text{grad-B drifts stabilizing [Peng & Strickler, NF 1986]}$
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nmR²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv/dr)



- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high β → grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nmR²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv₁/dr)
- ⇒ Not expecting strong ES ITG/TEM instability (much higher thresholds)
- BUT
- High beta drives EM instabilities: microtearing modes (MTM) ~ $\beta_e \cdot \nabla T_e$, kinetic ballooning modes (KBM) ~ α_{MHD} ~ $q^2 \nabla P/B^2$
- Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability ~dv_{||}/dr