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Categorization of turbulence lectures this week 

• 3D hydrodynamic turbulence (Lectures #1/2) 

– Neutral fluid, incompressible Euler equations (continuity + Navier-Stokes) 

– Nonlinear energy cascade in inertial range (between forcing and dissipation 

scales)  Kolmogorov spectrum 
 

• 3D MHD turbulence (Lectures #2/4) 

– Alfven waves in presence of guiding B field  anisotropy, additional linear 

term 

– Derived in single-fluid MHD limit 

– Assumed uniform field and plasma (no background gradients B, n, T) 
 

• 2D drift wave turbulence (Lecture #3, today) 

– Strong anisotropy due to strong background magnetic field 

– Driven by cross-field background thermal gradients (FM  n, T)  

additional linear term, source of instability turbulence to relax gradients 

– Inhomogeneous B gives rise to B & curvature drifts and particle trapping  

additional dynamics for instability 

– Derived in two-fluid (or two-species kinetic) limit 
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Concepts of turbulence to remember 

• Turbulence is deterministic yet unpredictable (chaotic), appears random 

– Turbulence is not a property of the fluid / plasma, it’s a feature of the flow 

– We often treat & diagnose statistically, but also rely on first-principles direct 

numerical simulation (DNS) 
 

• Turbulence spans a wide range of spatial & temporal 

– Re >>> 1 for neutral fluids, Lforcing / ldissipation ~ (Re)3/4 

– Or in the case of hot, low-collisionality plasma, a wide range of scales in 6D 

phase-space (x,v) 
 

• Turbulence causes increased mixing, transport larger than collisional 

transport 

– Transport is the key application of why we care about turbulence (e.g. fusion 

gain ~ nTtE, energy confinement time tE set by turbulence) 
 

• It’s cool! “Turbulence is the most important unsolved problem in classical 

physics” (~Feynman) 
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• Transport a result of finite average 2nd order correlation between 

perturbed drift velocity (dv) and perturbed fluid moments (dn, dT, dv) 

– Particle flux, G = dvdn 

– Heat flux, Q = 3/2n0dvdT + 3/2T0dvdn 

– Momentum flux, P ~ dvdv (“Reynolds stress”) 

 

• Electrostatic turbulence often most relevant in tokamaks  EB drift from 

potential perturbations: dvE=B(dj)/B2 ~ kq(dj)/B 

 

• Can also have magnetic contributions at high beta, dvB~v||(dBr/B) 

(magnetic “flutter” transport) 

Turbulent transport is an advective process 
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Implications of a strong 

toroidal magnetic field 
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Charged particles experience Lorentz force in a 

magnetic field  gyro-orbits 

• Magnetic force acts perpendicular to direction of particle 

Particles follow circular gyro-orbits 

𝛀𝐜 =
𝐞𝐁

𝐦
 

 

fc ~ 107 / 1010 Hz 

  

(for deuteron / electron, 

B=5 T) 

B field into plane 
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Magnetic field confines particles away from boundaries, 

leads to strong anisotropy 

B  5 T 

T  10 keV 

1-2 meter 

 device size 

ri ~ 3 mm 

re ~ 0.05 mm 
<< 

Low collision frequency n~n/T3/2 

lMFP~ km’s >> device size 

lMFP / ri ~ 106 

c||/c ~ (lmfp/r)2 ~ 1012  strong anisotropy 

gyroradius:  𝛒 =
𝐯𝐓

𝛀𝐜
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Particles easily lost from ends  bend into a torus 
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But toroidicity leads to vertical drifts from B & 

curvature 

tloss ~ 5 ms from vertical drifts (B~5 

T, R~5 m, T~15 keV) 

- 

B
 

𝐅 = q𝐯 × 𝐁 B~
1

R
 

v𝛻B
ρ

R
vT

T

qBR
 

ρ∗ =
ρ

R
 Key parameter in magnetized confinement 
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Even worse, charge separation leads to faster EB 

drifts out to the walls 

tloss ~ ms from EB drifts (due to charge separation from vertical drifts) 

Ion  

drift 

Electron 

drift 

E 

+ 
+ + 

- 
- 

- 

+ 

- 

Btoroidal 

z 

ɸ 
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Solution: need a helical magnetic field for confined 

(closed) particle orbits 

 

R a 

R=major radius 

a=minor radius 
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Helical B field carries plasma from “bad curvature” 

region to “good curvature” region  

Similar to how honey dipper prevents honey from dripping 
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Tokamaks 

• Toroidal, axisymmetric 

• Helical field lines confine plasma 

• Closed, nested flux surfaces in force balance: 

J × B = 𝛻p 

NSTX 
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Tokamaks 

• Toroidal, axisymmetric 

• Helical field lines confine plasma 

• Closed, nested flux surfaces in force balance: 

J × B = 𝛻p 

NSTX 

Heat 

loss 

        



At Princeton Plasma Physics Lab (PPPL): 

National Spherical Torus Experiment-Upgrade (NSTX-U) 
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Turbulence characteristics in 

tokamaks 
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Spectroscopic imaging provides a 2D picture of turbulence in 

tokamaks: cm spatial scales, ms time scales, <1% amplitude 

• Beam Emission Spectroscopy (UW-Madison) measures 

Doppler shifted Da from neutral beam heating to infer 

plasma density 

DIII-D tokamak (General Atomics) 

Movies at: https://fusion.gat.com/global/BESMovies 
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Simulations provide detailed prediction of expected 

turbulence characteristics 

GYRO simulation (Candy, Waltz – General Atomics) 
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Transport is of order the Gyrobohm diffusivity 

• Although turbulence is advective, can estimate order of transport due to 

drift waves as a diffusive process, cturb ~ Dx2/Dt ~ (L,corr)
2

 / tcorr 

 

     L,corr   ~  few rs  (~ cm’s) 

      tcorr
-1  ~  cs/R     (~105 1/s) 

 

 

 

 

 

 

 

 

 

•  tE improves with field strength (B) and machine size (R) 
 

ρs = cs Ωci   

cs = Te md  

χturb ~ χGB =
L⊥
2

𝜏𝑐𝑜𝑟𝑟
=
ρs
2cs
R

=
ρs
R
ρscS =

ρs
R

Te
B
   

τE~
a2

χ
~
R3B2

T3/2
 

tE ~ (0.1) sec for current devices 

tE ~ (1+) sec for fusion gain (ITER) 

Bohm diffusivity ≈
1

16

𝑇𝑒

𝐵
 

r* 

gyroBohm diffusivity 
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Tokamak turbulence has a threshold gradient for onset, 

transport tied to linear stability and nonlinear saturation 

• GyroBohm scaling important, but liner threshold and scaling also matters 

 We must discuss linear drift wave and micro-stability in tokamaks as part 

of the turbulent transport problem (enter gyrokinetic theory) 

Temperature gradient (-T) 

Heat flux ~ 

heating power 

diffusion 

+ 

turbulence 

collisional 

diffusion 
qcol = −nχcol𝛻T 

qturb = −nχGB 𝛻T − 𝛻Tcrit F ⋅⋅⋅  
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(for each species) 

~
𝟏𝟎𝟓

𝟏𝟎𝟕
  for ions 



22 

 

to obtain dj, dB 
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Drift waves 
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40+ years of theory predicts turbulence in magnetized plasma 

should often be drift wave in nature 

General predicted drift wave characteristics: 

• Finite-frequency drifting waves, w(kq)~w*~kqV*~(kqr)vT/Ln 

– Driven by n, T (1/Ln = -1/nn) 

 

• Quasi-2D, elongated along the field lines (L||>>L, k|| << k ) 

– Particles can rapidly move along field lines to smooth out perturbations 

– Perpendicular sizes linked to local gyroradius, L~ri,e or kri,e~1 

 

• In a tokamak expected to be “ballooning”, i.e. stronger on outboard side 

– Due to “bad curvature”/”effective gravity” pointing outwards from symmetry 

axis 

 

• Transport has gyrobohm scaling, cGB=ri
2vTi/R 

– But other factors important like threshold and stiffness: cturb ~ cGBF()[R/LT-R/LT,crit] 
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Can identify key terms in “gyrofluid” equations 

responsible for drift wave dynamics 

• Start with toroidal GK equation in the df limit (df/FM << 1) 

• Take fluid moments ( 𝑑3𝑣 𝛿𝑓 [1, 𝑣,
1

2
𝑣2]) 

• Apply clever closures that “best” reproduce linear toroidal gyrokinetics 

(Hammett, Perkins, Beer, Dorland, Waltz, …), e.g.: 

 

ion continuity and energy (M. Beer thesis, 1995): 

 

 

 

 

 

 

• Perturbed EB drift + background gradients (dvEn0, dvET0) are 

fundamental to drift wave dynamics 
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Simple classic electron drift wave in a magnetic slab 

(B=BZ) 

• Assume cool ions (vTi << w/k||), isothermal electrons, no temperature 

gradients, no toroidicity, electrostatic (b0), no nonlinear term 

𝛛

𝛛𝐭
𝛅𝐧𝐢 + 𝛅𝐯𝐄 ⋅ 𝛁𝐧𝟎 𝐱 = 𝟎     ion continuity 

δvE =
b × 𝛻δϕ

B
=
−ikyδϕ

B
𝑒𝑥  

δvE ⋅ 𝛻n0 x =
−ikyδϕ

B

dn0
dx

= in0
kyδϕ

BLn
 

dn0
dx

= −
n0
Ln

 

Gradient scale length (Ln) 

δvE ⋅ 𝛻n0 x = in0ky
Te
BLn

δϕ

Te
 

δϕ~exp ik ⋅ x − iωt  
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With some algebra we obtain a diamagnetic drift 

velocity & frequency 

Te
B
= ρscs 

δvE ⋅ 𝛻n0 x = in0ky
ρs
Ln

cs
δϕ

Te
= in0𝜔∗𝑒

δϕ

Te
 

δvE ⋅ 𝛻n0 x = in0ky
Te
BLn

δϕ

Te
 

ω∗e = kyV∗e        V∗e =
ρs

Ln
cs Electron diamagnetic drift 

velocity & frequency (a fluid 

drift, not a particle drift) 

r* like parameter 
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Simplified ion continuity equation 

• Expect characteristic frequency ~ w*e ~ (kyrs)cs/Ln 

𝜕

𝜕t
δni + δvE ⋅ 𝛻n0 x = 0 

−iω
δni
n0

+ iω∗e

δϕ

Te
= 0 
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Dynamics Must Satisfy Quasi-neutrality; 

Rapid parallel electron motion gives Boltzmann distribution 

• Quasi-neutrality (Poisson equation, k
2lD

2<<1) requires 

 

 

 

 

• For characteristic drift wave frequency, parallel electron motion is very 

rapid -- from parallel electron momentum eq, assuming isothermal Te: 

 

 

 

 Electrons (approximately) maintain a Boltzmann distribution 

 

ei n~n~ 

jj ~n~T/~enn~ ee0e

( ) ( )e0e0 T/~eexpnn~n j

( )
0

ei2

D

2

s

s

3

s

0

2

n

n~n~

T

~
k

vfdeZ
1~




j
l


j



 

ω < k||vTe  →   0 = −Te𝛻||n e + nee𝛻||ϕ  
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Ion continuity + quasi-neutrality + Boltzmann 

electron = electron drift wave (linear, slab, cold ions) 

• Density and potential wave perturbations propagating perpendicular to BZ and 

n0 

–  dvEn0 gives dn 90° out-of-phase with initial dn perturbation 

• Simple linear dispersion relation (will change with polarization drift / finite 

Larmor radius effects, toroidicity, other gradients) 

• No mechanism to drive instability (collisions, temperature gradient, 

toroidicity / trapped particles, …) 

−iω
δni
n0

+ iω∗e

δϕ

Te
= 0 

δni
n0

=
δne
n0

=  
δϕ

Te
 

ω = ω∗e = kyV∗e 
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Linear stability analysis of toroidal Ion 

Temperature Gradient (ITG) micro-instability 

(expected to dominate in ITER) 
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Toroidicity Leads To Inhomogeneity in |B|, gives 

B and curvature (k) drifts 

• What happens when there are small perturbations 

in T||, T?  Linear stability analysis… 

B


B, curvature (k) 

R 

Z 

R 

Z 
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Temperature perturbation (dT) leads to compression (vdi), 

density perturbation – 90 out-of-phase with dT 

• Fourier decompose 

perturbations in 

space (kqri1) 

 

• Assume small dT 

perturbation 

 

B, curvature 

ionsBb̂ 

T+ 

 

T- 

 

T+ 

 

T- 

 

T+ 

 

T- 

n- 

 

n+ 

 

n- 

 

n+ 

 

n- 
n 

T 

B 

T 
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Dynamics Must Satisfy Quasi-neutrality; 

Rapid parallel electron motion gives Boltzmann distribution 

• Quasi-neutrality (Poisson equation, k
2lD

2<<1) requires 

 

 

 

 

• For characteristic drift wave frequency, parallel electron motion is very 

rapid (from parallel electron momentum eq, assuming isothermal Te:) 

 

 

 

 Electrons (approximately) maintain a Boltzmann distribution 

 

ei n~n~ 

jj ~n~T/~enn~ ee0e

( ) ( )e0e0 T/~eexpnn~n j

( )
0

ei2

D

2

s

s

3

s

0

2

n

n~n~

T

~
k

vfdeZ
1~




j
l


j



 

ω < k||vTe  →   0 = −Te𝛻||n e + nee𝛻||ϕ  
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Perturbed Potential Creates EB Advection 

• Advection occurs in the 

radial direction 

B, curvature 

ionsBb̂ 

T+ 

 

T- 

 

T+ 

 

T- 

 

T+ 

 

T- 

n- 

 

n+ 

 

n- 

 

n+ 

 

n- 

j- 

 

j+ 

 

j- 

 

j+ 

 

j- 

Eq 

 

Eq 

 

Eq 

 

Eq 
n 

T 

B 

T 

~Boltzmann e’s 
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Background Temperature Gradient Reinforces 

Perturbation  Instability 

T 

T+ 

 

T- 

 

T+ 

 

T- 

 

T+ 

 

T- 

 

This simple cartoon gives a purely growing “interchange” like mode (coarse derivation 

in backup slides). The complete derivation (all drifts, gradients) will give a real 

frequency dispersion, i.e. wr=wr(kq) 
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Analogy for turbulence in tokamaks – Rayleigh-

Taylor instability 

• Higher density on top of lower density, with gravity acting 

downwards 

gravity density/pressure 
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Inertial force in toroidal field acts like an effective 

gravity 

gravity 

pressure 

Unstable in the 

outer region 

pressure 

centrifugal force 

effective gravity 

GYRO code 

https://fusion.gat.com/theory/Gyro 
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Same Dynamics Occur On Inboard Side But Now 

Temperature Gradient Is Stabilizing 

• Advection with T counteracts perturbations on inboard side – “good” 

curvature region 

“bad” curvature “good” curvature 

n 
T 

B 

T T 

T 

T+ 

 

T- 

 

T+ 

 

T- 

 

T+ 

 

T- 

T 

T+ 

 

T- 

 

T+ 

 

T- 

 

T+ 

 

T- 
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Fast Parallel Motion Along Helical Field Line 

Connects Good & Bad Curvature Regions 

• Approximate growth rate on outboard side 

 effective gravity: geff = vth
2/R 

 gradient scale length: 1/LT = -1/TT 

 

• Parallel transit time along helical field line with “safety factor” q 

 

 

 

 

 

 

 

 

• Expect instability if ginstability > gparallel , or 

 

qR

v
~ th

parallelg

2

thresholdT q

1

L

R










γinstability~
geff
L

1/2

~
vth

RLT
 

q =
# toroidal transits

# poloidal transits
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Threshold-like behavior analogous to Rayleigh-

Benard instability 

Temperature gradient 

(Thot  - Tcold) 

Heat flux ~ heating power 

diffusion 

+ 

turbulence 

collisional 

diffusion 

Analogous to convective transport 

when heating a fluid from below … 

boiling water (before the boiling) 

Rayleigh, Benard, early 1900’s 
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Critical gradient for ITG determined from theory + 

linear gyrokinetic simulations 

• R/LT = -R/TT is the normalized temperature gradient 

• Natural way to normalize gradients for toroidal drift waves, i.e. ratio of 

diamagnetic-to-toroidal drift frequencies: 

w*T = ky(B×p) / nqB2             (kqri)vT/LT 

wD = ky(B×mv
2B/2B) / qB2  (kqri)vT/R 

 

 w*T/wD = R/LT 

R

LT crit

ITG

= 𝐌𝐚𝐱 𝟏 +
𝐓𝐢
𝐓𝐞

𝟏. 𝟑 + 𝟏. 𝟗
𝐬

𝐪
…  

Jenko (2001) 

Hahm (1989) 

Romanelli (1989) 
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With physical understanding, can try to 

manipulate/optimize microstability 
• E.g., magnetic shear influences stability by twisting radially-elongated 

instability to better align (or misalign) with bad curvature drive 

Antoneson 
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How does magnetized 

turbulence saturate? 

 

What sets spatial scales (drive 

vs. dissipation)? 



45 

Spectrum shape / distribution governed by nonlinear 

(2D perpendicular) three-wave interactions 

• Linearly unstable modes grow: 

 

• At large amplitude, interact via nonlinear advection, dvEdf 

     i.e. “three-wave” coupling in (2D perpendicular) wavenumber space 

 

 

 

 

 

 

 

• Energy gets distributed across k space (& velocity space) until damped 

by stable modes (& collisions)  saturation 

– Local (in k) 2D cascades 

– Non-local (in k) interactions drive “zonal flows” that also mediate turbulence 

δϕ k ~ exp ik ⋅ x + iω k t + γ k t  

𝜕

𝜕t
δf ~ δvE ⋅ 𝛻δf 

𝜕

𝜕t
δfk⊥3   ~  b × k⊥1δϕk⊥1 ⋅ k⊥2δfk⊥2

k⊥1,k⊥2
k⊥3=k⊥1+k⊥2
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Energy cascade in 2D turbulence is different than 3D 

• Change in non-linear conservation properties  energy and vorticity is 

conserved  

– Inverse energy cascade E(k) ~ k-5/3 

– Forward enstrophy [w2~(v)2] cascade E(k)~k-3 

– Non-local wavenumber interactions can couple over larger range in k-space (e.g. to 

zonal flows) 

 

Quasi-2D turbulence exists in many places 

• Geophysical flows like ocean currents, tropical cyclones, polar vortex, chemical 

mixing in polar stratosphere ( ozone hole) 

• Soap films  

Liu et al., PRL (2016) 
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Energy drive can occur across large range of scales, 

but turbulent spectra still exhibit decay 

• 2D energy & enstrophy cascades remain important  nonlinear spectra often 

downshifted in kq (w.r.t. linear growth rates) 

• Both drive and damping can overlap over wide range of k (very distinct from 

neutral fluid turbulence) 

Linear growth rates Nonlinear density power spectra Nonlinear heat flux spectra 

Howard, PoP & NF (2016) 
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Additional effects proposed to model turbulence 

saturation & dissipation 
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Nonlinearly-generated “zonal flows” also impact 

saturation 
• Potential perturbations uniform on flux surfaces (ky=0)  marginally stable, do not 

cause transport 

• Turbulence can condense to system size  ZF driven largely by non-local (in k) 

NL interactions (k >> kZF) 

Linear instability stage 

demonstrates structure of 

fastest growing modes 

Large flow shear from 

instability cause 

perpendicular “zonal flows” 

Zonal flows help moderate 

the turbulence 

Rayleigh-Taylor like instability driving Kelvin-Helmholtz-like instability 

(potential contours  stream functions) 
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Generation of zonal flows in tokamaks similar to 

“Kelvin-Helmotz” instability found throughout nature 

 

leads to instability, flows 

in another direction 

   

Variation of flows in 

one direction… 
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Zonal flows can saturate at relatively large amplitude 

for toroidal ITG turbulence 

• Regulates saturation via (i) shear decorrelation of eddies, (ii) energy sink 

into marginal (non-transport-causing) modes 

• Typically have distinct kx spectra (overall 2D spectra anisotropic in kx,ky) 

ky 

Ej(k) 

Transport causing (finite-ky) modes 

Marginally stable zonal modes (ky=0) 

ky=0 
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Large scale equilibrium sheared flows also influence 

saturation 

Turbulent transport expected to be reduced as the 

mean flow shear rate (ws~dU0/dy) approaches the 

turbulence decorrelation rate (DwD) 

Biglari, Diamond, Terry 1990 

• Large scale background flow shear distorts eddies  reduces radial 

correlation length, fluctuation strength, cross-phases and transport 
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In neutral fluids, sheared flows are often a source of 

free energy to drive turbulence 

• Thin (quasi-2D) atmosphere in axisymmetric geometry of rotating planets 
similar to tokamak plasma turbulence  can also suppress transport 

 

• Stratospheric ash from Mt. Pinatubo eruption (1991) spread rapidly around 
equator, but confined in latitude by flow shear 

   

 

 

 

 

 

 

 

 

 

 

     

Large shear in 

stratospheric 

equatorial jet 

Aerosol concentration 

(Trepte, 1993) 
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Beyond general characteristics, there are many theoretical 

“flavors” of drift waves possible in tokamak core & edge 

• Usually think of drift waves as gradient driven (Ti, Te, n) 

– Often exhibit threshold in one or more of these parameters 

 

• Different theoretical “flavors” exhibit different parametric dependencies, 

predicted in various limits, depending on gradients, Te/Ti, n, b, geometry, 

location in plasma… 

– Electrostatic, ion scale (kqri1) 

• Ion temperature gradient (ITG) – driven by Ti, weakened by n 

• Trapped electron mode (TEM) – driven by Te & ne, weakened by ne 

• Parallel velocity gradient (PVG) – driven by RW (like Kelvin-Helmholtz) 

– Electrostatic, electron scale (kqre1) 

• Electron temperature gradient (ETG) - driven by Te, weakened by n 

– Electromagnetic, ion scale (kqri1) 

• Kinetic ballooning mode (KBM) - driven by bpol ~ aMHD 

• Microtearing mode (MTM) – driven by Te, at sufficient be 
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Some additional sources & references 

• Greg Hammett has a lot of great introductory material to fusion, tokamaks, drift 
waves, ITG turbulence, gyrokinetics, etc… (w3.pppl.gov/~hammett) 

 

• See the following for broader reviews and thousands of useful references 

 
• Transport & Turbulence reviews: 

– Liewer, Nuclear Fusion (1985) 

– Wootton, Phys. Fluids B (1990) 

– Carreras, IEEE Trans. Plasma Science (1997) 

– Wolf, PPCF (2003) 

– Tynan, PPCF (2009) 

– ITER Physics Basis (IPB), Nuclear Fusion (1999) 

– Progress in ITER Physics Basis (PIPB), Nuclear Fusion (2007) 

• Drift wave reviews: 
– Horton, Rev. Modern Physics (1999) 

– Tang, Nuclear Fusion (1978) 

• Gyrokinetic simulation review: 
– Garbet, Nuclear Fusion (2010) 

• Zonal flow/GAM reviews: 
– Diamond et al., PPCF (2005) 

– Fujisawa, Nuclear Fusion (2009) 

• Measurement techniques: 
– Bretz, RSI (1997) 
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THE END 
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Threshold-like behavior observed experimentally 

• Experimentally inferred threshold varies with equilibrium, plasma rotation, ... 

• Stiffness (~dQ/dT above threshold) also varies 

•  c = -Q/nT highly nonlinear (also use perturbative experiments to probe stiffness) 

 

JET 

Mantica, PRL (2011) 
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Reverse magnetic shear can lead to internal 

transport barriers (ITBs) 

• ITBs established on numerous 

devices 

 

• Used to achieve “equivalent” 

QDT,eq~1.25 in JT-60U (in D-D 

plasma) 

 

•  ci~ci,NC in ITB region (complete 

suppression of ion scale 

turbulence) 

Ishida, NF (1999) 

JT-60U 
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2 slide summary of some turbulent transport 

concepts in magnetized fusion plasmas (1) 
• For fusion gain Q~nTtE (& 100% non-inductive tokamak operation) we need 

excellent energy confinement, tE 

• Energy confinement depends on turbulence (tE~a2/cturb) 

– As does particle, impurity & momentum transport 

• Core turbulence generally accepted to be drift wave in nature 

– Quasi-2D (L~ri, re << L||~qR) 

– Driven by T & n 

– Frequencies ~ diamagnetic drift frequency (w ~ w* ~ kqri  cs/Ln,T) 

– Drift wave transport generally follows gyroBohm scaling cturb ~ cGB ~ ri
2vTi/a, however… 

– Thresholds and stiffness are critical, i.e. cturb~cGBF(…)(T-Tcrit) 

• Toroidal ion temperature gradient (ITG) drift wave is a key instability for controlling 

confinement in current tokamaks 

– Unstable due to interchange-like toroidal drifts, analogous to Rayleigh-Taylor instability 

– Threshold influenced by magnetic equilibrium (q, s) and other parameters 

– Nonlinear saturated transport depends on zonal flows & perpendicular E×B sheared 

flow 
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2 slide summary of some turbulent transport 

concepts in magnetized fusion plasmas (2) 
• Reduced models are constructed by quasi-linear calculations + “mixing-length” 

estimates for nonlinear saturation 

– We rely heavily on direct numerical simulation using gyrokinetic codes to guide model 

development 

– Reasonably predict confinement scaling and core profiles 

• Many other flavors of turbulence exist (TEM, ETG, PVG, MTM, KBM) 

–  ri or re scale 

– Electrostatic or electromagnetic (at increasing beta) 

– Different physical drives, parametric dependencies, & influence on transport channels 

(G vs. Q vs. P) 

• Things get more complicated for edge / boundary turbulence 

– Changing topology (closed flux surfaces  X-point (poloidal field null)  open field lines 

& sheaths at physical boundary) 

– Larger gyroradius / banana widths, rbanana/Dped~1  orbit losses & non-local effects 

– Large amplitude fluctuations, dn/n0~1 (delta-f  full-F simulations) 

– Neutral particles, radiation, other atomic physics… 
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Very simple growth rate derivation of 

previous toroidal ITG cartoon picture 
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Can identify key terms in “gyrofluid” equations 

responsible for toroidal ITG instability 

• Start with toroidal GK equation in the df limit (df/FM << 1) 

• Take fluid moments 

• Apply clever closures that “best” reproduce linear toroidal gyrokinetics 

(Hammett, Perkins, Beer, Dorland, Waltz, …) 

 

Ion continuity and energy (M. Beer thesis, 1995): 

 



64 Guttenfelder, U. Washington Plasma Seminar (Feb. 7, 2017) 

 

Temperature perturbation (dT) leads to compression 
(vdi), density perturbation – 90 out-of-phase with dT 

dn/dt + (nv)=0 

 

-iwdn from -n0dvd ~ -n0(dT b×B/B)/B ~ -n0 ikydT / BR 

 

-iw(dn/n0) ~ -iky(dT/T0) T/BR ~ -i(kyVD) (dT/T0) ~ -iwD (dT/T0) 

 

-i(wr+ig)(dn/n0) = -iwD (dT/T0) 
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-iwdT from -dvET0 ~ -(b×dj/B)T0 ~ ikydj/BT0 ~ ikydj(T/B)/LT 

 

-iw(dT/T) ~ iky(dj/T)T/BLT ~ i(kyV*T)(dj/T) ~ iw*T(dj/T) 

 

-i(wr+ig)(dT/T) = iw*T(dj/T) 

Background Temperature Gradient Reinforces 
Perturbation  Instability 
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(1) Compression from toroidal drifts 

  w(dni/n0) = wDi (dTi/Ti0) 

(2) Quasi-neutrality + Boltzmann electron response 

  (dni/n0) = (dne/n0) = (dj/Te0) = (dj/Ti0)(Ti/Te) 

(3) E×B advection of background gradient 

  -w(dTi/Ti0) = w*T(dj/Ti) 

 

(1)+(2): w(Ti/Te)(dj/Ti0) = wDi (dTi/Ti0) 

    (+3): w(Ti/Te) = -wDi w*T / w 

  w2 = -(kyri)
2vTi

2 / RLT (assume Te=Ti) 

  w = +/- i (kyri)vTi / (RLT)1/2  

Simplest dispersion from these 3 terms 
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Finite gyroradius effects limit characteristic size to 

ion-gyroradius (kri~1) 

• Drift velocity increases with smaller wavelength (larger kri) 

 

 

 

• If wavelength approaches ion gyroradius (kri)1, average electric field 

experienced over fast ion-gyromotion is reduced: 

                jgyro-average ~ j                    jgyro-average ~ j[1-(kri)
2] 

 

 

 

 

 

 Maximum growth rates (and typical turbulence scale sizes) occur for 

(kri) ≤ 1 

𝑣 𝐸 =
𝑏 × 𝛻𝜑

𝐵
= −𝑖𝑘⊥

𝜑

𝐵
= −𝑖𝑘⊥

𝜑

𝑇𝑖

𝑇𝑖
𝐵

= −𝑖 𝑘⊥𝜌𝑖
𝜑

𝑇𝑖
𝑣𝑇𝑖 
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Mixing length estimate of fluctuation 

amplitude 
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Mixing length estimate for fluctuation amplitude 

• In the presence of an 

equilibrium gradient, n0, 

turbulence with radial 

correlation Lr will mix 

regions of high and low 

density 

 

 

 

core boundary 

time-averaged 

temperature or density 

instantaneous 

temperature 

or density 

1-2 m 

n0 

Lr~1/kr 

turbulent eddy 

(~mm-cm) 
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Mixing length estimate for fluctuation amplitude 

• In the presence of an 

equilibrium gradient, n0, 

turbulence with radial 

correlation Lr will mix 

regions of high and low 

density 

• Leads to fluctuation dn 

 

 

 

core boundary 

time-averaged 

temperature or density 

instantaneous 

temperature 

or density 

1-2 m 

n0 

Lr~1/kr 

dn 
turbulent eddy 

(~mm-cm) 
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Mixing length estimate for fluctuation amplitude 

• In the presence of an 

equilibrium gradient, n0, 

turbulence with radial 

correlation Lr will mix 

regions of high and low 

density 

• Leads to fluctuation dn 

 

 

• Another interpretation: 

local, instantaneous 

gradient limited to 

equilibrium gradient 
core boundary 

time-averaged 

temperature or density 

instantaneous 

temperature 

or density 

1-2 m 

n0 
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Mixing length estimate for fluctuation amplitude 
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Low aspect ratio equilibrium can 

stabilize electrostatic drift waves, 

minimize transport 

(i.e. one motivation for NSTX-U at 

PPPL)  
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Aspect ratio is an important free parameter, can try to 

make more compact devices (i.e. hopefully cheaper) 

But smaller R = larger curvature, B (~1/R) -- isn’t this 

terrible for “bad curvature” driven instabilities?!?!?! 

Aspect ratio A = R / a 

Elongation k = b / a  

a R 

R = major radius,  a = minor radius,  b = vertical ½ height 

a 

b 
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• Short connection length  smaller average bad curvature 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

bad curvature 

good curvature 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

q (rad) 

bad curvature 

good curvature 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Orbit-averaged drift of trapped particle 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Kim, Horton, Dong, PoFB (1993) 
ITG growth rate 

b 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal 

flow & flow shear  EB shear stabilization (dv/dr) 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Biglari, Diamond, Terry,  PoFB (1990) 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal 

flow & flow shear  EB shear stabilization (dv/dr) 

 Not expecting strong ES ITG/TEM instability (much higher thresholds) 

 

• BUT 

• High beta drives EM instabilities: microtearing modes (MTM) ~ beTe, 

kinetic ballooning modes (KBM) ~ aMHD~q2P/B2 

• Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability 

~dv||/dr 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 


