Testing predictions of electron scale ETG pedestal turbulence in DIII-D ELMy H-modes

W. Guttenfelder¹, R.J. Groebner², B. Grierson¹, J.M. Canik³, E. Belli², J. Candy², A. Ashourvan¹

¹PPPL, ²General Atomics, ³ORNL

MIT PSFC seminar May 3, 2019

> <u>Acknowledgements:</u> NERSC resources, DOE funding A. Diallo, F. Laggner, P.B. Snyder D.R. Hatch, M. Kotschenreuther

Overview / Summary

- Linear gyrokinetic analysis (CGYRO) suggests electron scale ETG turbulent transport may limit η_e ~ ∇T_e/∇n_e in some DIII-D ELMy H-mode pedestals
- Numerous nonlinear gyrokinetic simulations run to predict ETG transport, used to develop ETG pedestal transport model for use in predictive simulations
- > ETG contributes to $\chi_{e,ped}$, but unlikely to be the only transport mechanism

> Neoclassical D_e plays non-negligible role in setting density profile

High confinement H-mode characterized by steep gradients in the edge "pedestal" region

High confinement H-mode characterized by steep gradients in the edge "pedestal" region

 MHD stability [peeling-ballooning stability + KBM ∇p transport limit] provides valuable predictive model for pedestal pressure limit in <u>ELMy</u> H-modes

<u>Motivation</u>: Understand what sets pedestal density & temperature structure to develop predictive capability

- [MHD peeling-ballooning stability] + [KBM ∇p transport limit] provides valuable predictive model for pedestal pressure limit in ELMy H-modes [Snyder, NF 2011]
 - Requires density as input
 - Can not predict n vs T inter-ELM dynamics (i.e. doesn't "know" about source strengths)
 - KBM predicts D/ χ ~ 1, whereas experiment often infers D/ χ << 1
 - Does not capture ELM-free scenarios or low aspect ratio NSTX scenarios

<u>Motivation</u>: Understand what sets pedestal density & temperature structure to develop predictive capability

- [MHD peeling-ballooning stability] + [KBM ⊽p transport limit] provides valuable predictive model for pedestal pressure limit in ELMy H-modes [Snyder, NF 2011]
 - Requi
 - Can r - KBM r Still need a transport model
 - Does not capture ELM-free scenarios or low aspect ratio NSTX scenarios
- KBM has a ∇p threshold, expected to be extremely stiff (~ large d[Q]/d[∇T])
- There are other instabilities that also have thresholds (typically ∇T and/or ∇n), with varying degrees of stiffness and varying D/ χ

An aside: The zoology of microinstabilities (& acronyms)

<u>lon scales</u> ($k_{\perp} \rho_i \leq \sim 1$)

- (ITG) Ion temperature gradient mode ($\sim \nabla T_i$)
- (TEM) Trapped electron mode (~ ∇T_e , ∇n_e)
- (PVG) Parallel velocity gradient mode (~ $R\nabla\Omega$)
- (MTM) Microtearing modes (~ $\nabla T_e, \underline{\beta}_e$)
- (KBM) Kinetic ballooning mode (~ α ~ $\nabla P_{tot}/B_{\theta}^2$)

<u>Electron scales</u> ($k_{\perp}\rho_i \gg 1, k_{\perp}\rho_e \sim 1$)

- (ETG) Electron temperature gradient mode (~ ∇T_e)
- Each theoretical instability is distinguished by:
 - Scaling with parameters (a/L_T, a/L_n, β , ν , α , s, q, ...)
 - Mode frequency (ion, electron diamagnetic direction)
 - Spatial structure (ballooning, tearing; ES, EM)
 - Partition of transport (Γ , Π , Q \rightarrow D/ χ , χ_{ϕ}/χ) ["transport fingerprint", UT-Austin]

Electrostatic mode

<u>Motivation</u>: Understand what sets pedestal density & temperature structure to develop predictive capability

- [MHD peeling-ballooning stability] + [KBM ∇p transport limit] provides valuable predictive model for pedestal pressure limit in ELMy H-modes [Snyder, NF 2011]
 - Requi
 - Can r - KBM r Still need a transport model
 - Does not capture ELM-free scenarios or low aspect ratio NSTX scenarios
- KBM has a ∇p threshold, expected to be extremely stiff (~ large d[Q]/d[∇T])
- There are other instabilities that also have thresholds (typically ∇T and/or ∇n), with varying degrees of stiffness and varying D/ χ
- <u>Hypothesis</u>: A more complete transport model accounting for all instabilities and their thresholds / stiffness, coupled with MHD P-B, could provide a unified understanding for all H-mode/I-mode pedestal structures

<u>Motivation</u>: Understand what sets pedestal density & temperature structure to develop predictive capability

- [MHD peeling-ballooning stability] + [KBM ∇p transport limit] provides valuable predictive model for pedestal pressure limit in ELMy H-modes [Snyder, NF 2011]
 - Requi
 - Can r - KBM r Still need a transport model
 - Does not capture ELM-free scenarios or low aspect ratio NSTX scenarios
- KBM has a ∇p threshold, expected to be extremely stiff (~ large d[Q]/d[∇T])
- There are other instabilities that also have thresholds (typically ∇T and/or ∇n), with varying degrees of stiffness and varying D/ χ
- <u>Hypothesis</u>: A more complete transport model accounting for all instabilities and their thresholds / stiffness, coupled with MHD P-B, could provide a unified understanding for all H-mode/I-mode pedestal structures
- <u>This talk:</u> Use gyrokinetics (CGYRO) to predict theoretical microinstabilities and transport in DIII-D ELMy H-mode; compare with experimental interpretation using SOLPS-ITER → Begin developing ETG pedestal transport model as one component of a predictive model

Investigating pedestal transport in two similar discharges with different edge particle source (baffling / cryopumping)

 $I_{P} = 1.4 \text{ MA} \\ B_{T} = (\pm) 2.1 \text{ T} \\ P_{NBI} = 3 \text{ MW} \\ \beta_{N} = 2 \\ q_{95} = 3.7-4$

LSN – strike point on lower shelf (→open divertor) USN – strike point in front of cryo baffle (→closed divertor)

Flipped B_T to maintain consistent ∇B divertor drifts

Very low/no gas fueling beyond recycling

USN closed divertor configuration leads to lower n_{e,ped} due to lower source, higher T_{e,ped} (Leonard IAEA 2016) → what role does transport play?

Kinetic EFIT generated using high resolution edge profiles (ensemble from 80-99% of ELM cycle)

Using spectral, multiscale CGYRO code [Candy, JCP 2016] for scoping linear ion & electron scale instabilities

MODEL CHOICES

- Uses rigorously derived low-ρ_{*} drift ordering of Sugama (1998, ...)
- Numerical equilibrium using kEFIT (513×513) + 24 harmonic Fourier representation of flux surfaces [Candy, 2009]
- 3 kinetic species (D,C,e)
- Sugama GK collision operator for all species [Candy, 2016; Belli, 2017]
 - Pseudo-spectral in velocity space (v, ξ)
 - Well-suited for pedestal $v_e \cdot a/c_s \ge 1$
- Fully electromagnetic (ϕ , $A_{||}$, $B_{||}$)
 - EM effects important at high α/α_{KBM} in pedestal [Snyder, 2000; ...]
- Including finite u & u' (mach & γ_P ; γ_E =0) in the low flow limit ~ O(M)
 - Have also tested sonic O(M²) flow effects [Belli, 2018], possibly important for particle flux [Angioni; Buchholz, 2015]
- Have tested numerical resolution requirements at each radius
 - Large parallel resolution (n_{θ}) required for large gradients ($R/L_{T,n}$ >>1)

Very strong normalized gradients (n, T and Ω) with large variation across pedestal

Validity of ion scale simulations in low- ρ_* ordering is questionable across steep gradient region

 $\begin{array}{l} \underline{Across \ pedestal \ \psi_N} > 0.96 \\ \rho_{*i} = \rho_i / a \leq 1/300 \\ \rho_i / \Delta_{ped} \approx 1/10 \\ L_{c,r} / \Delta_{ped} \sim 0.5 \ [assuming \ typical \ turbulence \\ correlation \ length \ L_{c,r} \sim 5 \ \rho_i] \end{array}$

- Profile shearing (~n", T") may be important for ion-scales
 - Can be tested spectrally in CGYRO, consistent within the framework of low- $\rho_*=\rho/L$ ordering
- Thermal ion banana widths are comparable to pedestal width, orbit losses not captured

Validity of ion scale simulations in low- ρ_* ordering is questionable across steep gradient region

 $\begin{array}{l} \underline{Across \ pedestal \ \psi_N} > 0.96 \\ \rho_{*i} = \rho_i / a \leq 1/300 \\ \rho_i / \Delta_{ped} \approx 1/10 \\ L_{c,r} / \Delta_{ped} \sim 0.5 \ [assuming \ typical \ turbulence \\ & \ correlation \ length \ L_{c,r} \sim 5 \ \rho_i] \end{array}$

- Profile shearing (~n", T") may be important for ion-scales
 - Can be tested spectrally in CGYRO, consistent within the framework of low- $\rho_*=\rho/L$ ordering
- Thermal ion banana widths are comparable to pedestal width, orbit losses not captured
- \rightarrow Local, δ f analysis sufficient for electron scale micro-stability / turbulence analysis ($\rho_e/a \le 1/6000$)

Inside pedestal top region (ψ_N =0.90-0.97), strong rotation shear leads to broad spectrum of ITG-PVG instabilities with $\gamma_{ion} > \gamma_E$

- Traditional spectra of ITG-ETG found when not including rotation shear
- Large rotation shear ($u' = -R^2 \nabla \Omega / c_s = R/a \cdot \gamma_P$) significantly enhances growth rates

 $\mathbf{R}\nabla \mathbf{F}_{\mathsf{M}} \rightarrow [\mathbf{R}/\mathbf{L}_{\mathsf{n}} + \mathbf{R}/\mathbf{L}_{\mathsf{T}} \cdot (\mathbf{v}^2/\mathbf{v}_{\mathsf{T}}^2 \cdot 3/2) + (\mathbf{R}\mathbf{B}_{\mathsf{T}}/\mathbf{R}_{\mathsf{0}}\mathbf{B}) \cdot (\mathbf{v}_{||}/\mathbf{v}_{\mathsf{T}}) \cdot \mathbf{u}'] \cdot \mathbf{F}_{\mathsf{M}}$

 Leads to distinct Kelvin-Helmholtz / parallel velocity gradient (PVG) instability [D'Angelo, 1965, Catto et al., 1973, ...]

Very similar result moving to pedestal top (ψ_N =0.96-0.97);

• <u>Pedestal top</u>: strong drive from u' with $\gamma_{ion} > \gamma_E$; modes transition from i-dia to e-dia ($a/L_{Te} > a/L_{Ti}$)

Guttenfelder - ETG pedestal transport modeling (MIT PSFC seminar, May 2019)

Very similar result moving to pedestal top (ψ_N =0.96-0.97); E×B shearing rate > $\gamma_{lin,ion}$ in sharp gradient region (ψ_N =0.98)

- <u>Pedestal top</u>: strong drive from u' with $\gamma_{ion} > \gamma_E$; modes transition from i-dia to e-dia ($a/L_{Te} > a/L_{Ti}$)
- <u>Sharp gradient region ($\psi_N \sim 0.98$)</u>: weak ion modes ($\gamma_{lin} < \gamma_E$), no enhancement from u' where R/L_n > u'; electromagnetic effects stabilizing; sign of low k_v ETG

Guttenfelder – ETG pedestal transport modeling (MIT PSFC seminar, May 2019)

In the sharp gradient region ($\psi_N \sim 0.98$): weak ion modes ($\gamma_{lin} < \gamma_E$), very broad spectrum of ETG

- ETG extends to both $k_{\theta}\rho_s < 1$ and $k_{\theta}\rho_s > 100$ for larger a/L_{Te} gradients ($\psi_N = 0.98$)
 - Predicted in AUG [Told, 2008; Hatch, 2015] and NSTX [Canik, 2013; Coury 2016]
- Large low- k_{θ} / high- k_{θ} gap at ψ_{N} =0.98 eliminated w/ marginal ∇T_{e} increase (1.2 × a/L_{Te})

∇T_e near ETG threshold in the sharp gradient region (ψ_N =0.98)

 a/L_{Te} sitting near ETG threshold for <u>broad</u> range of wavenumbers k_θρ_s=0.3-90 (n≈90-26,000)

- Large gradient drive excites fine parallel structure, high-order eigenfunction states (e.g. [H. Chen, L. Chen, 2018])
- Lower $k_{\theta}\rho_s$ modes peaking around X-points ($N_{int}*2\pi + /-0.6\pi$)
- Highest $k_{\theta}\rho_s$ ~120 follows more traditional ballooning shape

Linear summary

<u>Pedestal top (ψ_N=0.9-0.97)</u>

- ITG/TEM/PVG modes with growth rates larger than E×B shearing rate $(\gamma_{lin,ion} > \gamma_E) \rightarrow$ expected to dominate transport

Linear summary

<u>Pedestal top (ψ_N=0.9-0.97)</u>

- ITG/TEM/PVG modes with growth rates larger than E×B shearing rate $(\gamma_{\text{lin,ion}} > \gamma_{\text{E}}) \rightarrow \text{expected to dominate transport}$

<u>Sharp gradient region (ψ_N = 0.96-0.98)</u>

- Ion modes become weak, expect to be suppressed by E×B shearing $(\gamma_E > \gamma_{lin,ion})$ + non-local profile-shearing $(\rho_i/L_T \sim 0.5)$
- ∇T_{e} follows ETG threshold, η_{e} = (a/L_{Te}) / (a/L_{ne}) ~1.2-1.5
- Expected for larger R/L_n (e.g. Jenko, 2001, 2009):

$$\left(\frac{R}{L_{Te}}\right)_{ETG}^{crit} = Max \begin{bmatrix} (1 + Z_{eff}T_e/T_i)(1.3 + 1.9 s/q)(\cdots) \\ C \cdot R/L_n \end{bmatrix}$$

Some experimental evidence for the relevance (or not) of η_e in contributing to pedestal structure

η_e~1.5-2 (ELMy H-mode)

- η_e~1-2 (EDA H-mode)
- η_e~2-4 (ELMy H-mode)
- Even larger for I-mode

 η_e varying with divertor closure / fueling / detachment (ELMy H-mode)

Linear summary

<u>Pedestal top (ψ_N=0.9-0.97)</u>

- ITG/TEM/PVG modes with growth rates larger than E×B shearing rate $(\gamma_{lin,ion} > \gamma_E) \rightarrow$ expected to dominate transport

• Sharp gradient region ($\psi_N = 0.96 - 0.98$)

- Ion modes become weak, expect to be suppressed by E×B shearing $(\gamma_E > \gamma_{lin,ion})$ + non-local profile-shearing $(\rho_i/L_T \sim 0.5)$
- ∇T_{e} follows ETG threshold, η_{e} = (a/L_{Te}) / (a/L_{ne}) ~1.2-1.5
- Expected for larger R/L_n (e.g. Jenko, 2001):

$$\left(\frac{R}{L_{Te}}\right)_{ETG}^{crit} = Max \begin{bmatrix} (1 + Z_{eff}T_e/T_i)(1.3 + 1.9 s/q)(\cdots) \\ C \cdot R/L_n \end{bmatrix}$$

 Can ETG transport alone account for pedestal structure and changes as source changes? → <u>Lets test single-scale nonlinear</u> <u>ETG theory where drift-ordered GK is valid</u>

Nonlinear ETG simulations saturate with spectral peak at $k_{\theta}\rho_s \sim 50$; turbulence peaks near outboard mid-plane (not X-point)

- Peak at $k_{\mu}\rho_s$ ~50 much larger than typical core ETG simulations ($k_{\theta}\rho_{s peak} \sim 10-15$)
 - Converged with perpendicular grid parameters
- Fluctuations peak near outboard mid-plane (not X-point) \rightarrow (k_{θ} ρ_s)_{peak, $\theta=0$} ~ 10 (similar to core)
 - $(k_{\theta})_{\theta=0} / k_{\theta} = [(d\nu/d\theta) / \kappa] = 0.2$ for field-aligned ($\alpha = \phi$ av) flux coordinates
- Features similar to those predicted in pedestal of AUG [Hatch, NF 2015] and NSTX [Canik, TTF 2016]

Nonlinear ETG simulations predict $Q_e \sim 0.2$ -1.0 MW using 20% scaled gradients

Q_{e,ETG} < 0.1 MW (base gradients) Q_{eETG} = 0.2-1 MW (20% scaling in ∇n & ∇T) Q_{i,NEO} = 0.7 MW Q_{e+i,TRANSP} = 2.8 MW

 Q_{ETG} + Q_{NEO} accounts for 30-60% of experimental Q_{e+i} (using scaled ∇n_e, ∇T_e)

ETG (scaled gradients) + NEO recovers some, not all, of electron particle and thermal transport inferred from SOLPS-ITER

- Γ_e and Q_e agreement closer for closed divertor case
- Neoclassical Γ_{e} >> ETG Γ_{e}
- ETG + NC does not appear to account for all $\Gamma_{\rm e}$ & $Q_{\rm e}$
- $(D_e/\chi_e)_{SOLPS} \sim 0.05-0.1$

Let's invert the problem \rightarrow predict profiles for given target fluxes, but we need transport model...

Additional simulations run to identify key dependencies with a/L_{Te} and a/L_{ne}

Guttenfelder – ETG pedestal transport modeling (MIT PSFC seminar, May 2019)

• $\sim O(1) \rho_e^2 v_{Te}/L_{Te}$ indicative of slab ETG transport, smaller than $\sim O(10)$ found for toroidal ETG [Jenko, Dorland 2000, 2002]

• $\sim O(1) \rho_e^2 v_{Te}/L_{Te}$ indicative of slab ETG transport, smaller than $\sim O(10)$ found for toroidal ETG [Jenko, Dorland 2000, 2002]

Eddies closer to isotropic than "streamers" ($L_x \sim 6 \rho_e < 15 \rho_e$ typical for core "streamers")

Strongly titled from large γ_{E} and s

- $\sim O(1) \rho_e^2 v_{Te}/L_{Te}$ indicative of slab ETG transport, smaller than $\sim O(10)$ found for toroidal ETG [Jenko, Dorland 2000, 2002]
- Slab saturation explained by "Cowley secondary" instability [Cowley 1991] → zonal flow driven by primary instability modes
 - Cowley secondary + high R/L \rightarrow large k₁₁, demands high parallel resolution (n₀=[48,144,192] for ψ_N =[0.97,0.98,0.99])

- $\sim O(1) \rho_e^2 v_{Te}/L_{Te}$ indicative of slab ETG transport, smaller than $\sim O(10)$ found for toroidal ETG [Jenko, Dorland 2000, 2002]
- Slab saturation explained by "Cowley secondary" instability [Cowley 1991] → zonal flow driven by primary instability modes
 - Cowley secondary + high R/L \rightarrow large k₁₁, demands high parallel resolution (n₀=[48,144,192] for ψ_N =[0.97,0.98,0.99])
- Can infer a very simple reduced slab-ETG pedestal transport model

Regime of applicability: R/L_{ne} >> 1

$$\chi_{e,ETG} = 1.5 \cdot [\eta_e - 1.4] \cdot \left(\frac{a/L_{Te}}{60}\right) \cdot \left(\frac{\rho_s^2 c_s}{a}\right)$$

Similar to GENE sims for AUG H-mode (Jenko, 2009)

- $\sim O(1) \rho_e^2 v_{Te}/L_{Te}$ indicative of slab ETG transport, smaller than $\sim O(10)$ found for toroidal ETG [Jenko, Dorland 2000, 2002]
- Slab saturation explained by "Cowley secondary" instability [Cowley 1991] → zonal flow driven by primary instability modes
 - Cowley secondary + high R/L \rightarrow large k₁₁, demands high parallel resolution (n₀=[48,144,192] for ψ_N =[0.97,0.98,0.99])
- Can infer a very simple reduced slab-ETG pedestal transport model

Regime of applicability: R/L_{ne} >> 1

$$\chi_{e,ETG} = 1.5 \cdot [\eta_e - 1.4] \cdot \left(\frac{a/L_{Te}}{60}\right) \cdot \left(\frac{\rho_s^2 c_s}{a}\right)$$
$$D_{e,ETG} = 0.02 \cdot \chi_{e,ETG}$$

ETG transport model slightly over-predicts T_e (for fixed n_e); captures increase in T_e with lower n_e

- Captures increase in T_e and η_e with lower n_e (but mostly because T_{e.BC} larger)
- Slight over-prediction of T_e; gets worse if we move boundary out to $\psi_{N,BC}$ =0.99
 - Difficult to overcome falling gyrobohm coefficient $Q_{GB} \sim T_e^{5/2}$

 Want to predict n_e & T_e simultaneously to see if sensitivities of transport with gradients improves / degrades agreement

To predict n_e, need to include neoclassical particle transport (larger than ETG contribution)

In the following $n_e + T_e$ predictions, we use:

- > SOLPS-ITER Γ_{e} & Q_{e} for target fluxes
- Assumed constant D_{e,NC}=0.05·D_{GB}

n_e & T_e predictions for closed divertor discharge similar to T_e only prediction

- $n_{e,pred} \sim n_{e,exp}$ (dominated by neoclassical Γ_e)
- Similar T_e over-prediction, gets worse as BC moved outward

162940 (closed divertor)

Much larger over-prediction for open divertor discharge (larger edge particle source)

• $\Gamma_{e,open-divertor}$ ~double the closed divertor case \rightarrow gives much larger $n_{e,pred}$ and corresponding $T_{e,pred}$

Much larger over-prediction for open divertor discharge (larger edge particle source)

- $\Gamma_{e,open-divertor}$ ~double the closed divertor case \rightarrow gives much larger $n_{e,pred}$ and corresponding $T_{e,pred}$
- Improved agreement if we use $\Gamma_{e,closed-divertor}$

Plenty of uncertainties to investigate

- Sensitivity to T_i (e.g T_d < T_c as in some main ion CX measurements [Haskey, 2018])
 - − Slab ETG not very sensitive: reducing T_i/T_e =[1.47,2.45]→1 for ψ_N =[0.98,0.99] reduces $Q_{e,ETG} \sim 20\%$
 - Lower $T_{i,sep}$ / larger $\nabla T_{i,ped}$ increases neoclassical ion heat flux ($Q_{i,NEO}$ doubles for $T_d=T_e$)
 - Expect some impact on collisional coupling (Q_e / Q_i partition)
- SOLPS-ITER analysis needs further validation and sensitivity tests to boundary conditions (may change inferred sources / fluxes)
- Need to self-consistently evaluate NEO and collisional exchange in the profile predictions
 - ETG-model has been added to TGYRO, will test soon
- More careful accounting for inter-ELM time-dependence in analysis and modeling

Summary

- Linear gyrokinetic analysis (CGYRO) suggests electron scale ETG turbulent transport may limit $\eta_e \sim \nabla T_e / \nabla n_e$ in some DIII-D ELMy H-mode pedestals
- Numerous nonlinear gyrokinetic simulations run to predict ETG transport, used to develop ETG pedestal transport model
 - This is one of a few necessary pieces of a pedestal transport model
- ETG contributes to $\chi_{e,ped}$, but unlikely to be the only transport mechanism
 - Ion-scale turbulence may contribute (simulations in progress)
 - Evidence for QCFs, recently interpreted as MTM [Diallo 2015, X. Liu, 2018 thesis]
 - Recent analysis suggests ion-scale turbulence becomes increasingly important for increasing pedestal widths w/p_i>10 [Kotschenreuther, 2017]) → Similar result found in wide-pedestal grassy-ELM regime analysis [A. Ashourvan]
- Neoclassical D_e plays non-negligible role in setting density profile

Guttenfelder – ETG pedestal transport modeling (MIT PSFC seminar, May 2019)

Electromagnetic effects stabilizing at ψ_N =0.98

- EM effects are stabilizing to ion scales modes in sharp gradient region
- β_e scans show ψ_N =0.97-0.98 is 15-20% below KBM threshold
 - 2nd stable if one varies $\beta'_{eq} \sim \beta_e$
 - Consistent with ideal infinite-n MHD ballooning simulations (next slide)

Small region in lower half of pedestal is sitting near ideal MHD infinite-n ballooning threshold

- Ideal MHD calculations (via 'ball') indicate lower half of pedestal near infinite-n ballooning stability boundary
 - Only $\Delta \psi$ =0.005 surpasses threshold (out of $\Delta \psi_{ped}$ ~0.03)
 - Region of sharpest gradient (ψ_N =0.98) is 2nd stable

Finite-n effects can remove 2nd stability [Snyder ...]

Testing $T_d = T_c = T_e$ in CGYRO NL ETG simulations (162940)

- Don't expect T_e/T_i to strongly influence slab ETG (need to revisit old theory papers)
 - Reducing $T_i/T_e = [1.47, 2.45] \rightarrow 1$ for $\psi_N = [0.98, 0.99]$ reduces $Q_{e,ETG} \sim 20\%$
 - Also lowers $D_e/\chi_e \sim 50\%$ 162940 0.03 ψ_N=0.99 0.025 e 0.8 / ($ho_{\rm e}^2 {
 m v_{Te}}/{
 m L}$ -0.02 $\boldsymbol{\chi}_{\mathbf{e}}$ 0.6 exp 0.015 ወ 0.4 0.01 $\overset{\mathbf{0}}{\prec}$ 0.2 0.005 0 2 2 0 η_{e} $\eta_{\mathbf{p}}$
- Have also continued with resolution tests going to n_{θ} =384 (ψ_{N} =0.99) gives additional 30% increase \rightarrow
- > ~30% uncertainty in leading coefficient of transport model

_

Testing $T_d = T_c = T_e$ in NEO simulations (162940)

• $Q_{i,NC} \sim \text{doubles} (0.5-0.7 \text{ MW} \rightarrow 1-1.5 \text{ MW})$

NC alone accounts for core Q_i

- Predictions of T_i-only using NEO+TGYRO (within OMFIT)
- Using fixed T_e, ne, geometry ...
- Only $\chi_{i,NEO}$ (with dynamic energy exchange) gives $Q_{e,0.9}$ ~2.5 MW
 - Larger than the ~1.5 MW used in above SOLPS-ITER analysis
- Perhaps this is an underpowered discharge (3 MW /)

Using simple transport solver to predict profiles

- Fixed equilibrium, T_i (and n_e, in this example)
- Use Q_e from SOLPS-ITER as target flux
- Set $T_{e,BC}$ to match experimental T_e fit at ψ_N =0.98 (or 0.99)
- Evaluate:

$$Q_{e,target} = Q_{e,model}(T_e, \nabla T_e; n_e, \langle \nabla V \rangle, B_{unit}, a)$$

at cell center $(i + \frac{1}{2})$ to solve for T_e^{i+1} , e.g.

$$T_{e,mid} = \frac{(T_e^{i+1} + T_e^i)}{2}$$

$$a\nabla T_e = \frac{(T_e^{i+1} - T_e^i)}{d\left(\frac{r}{a}\right)}$$

• Not updating i \rightarrow e collisional energy exchange

