

Gyrokinetic predictions of momentum and impurity transport in NSTX

Coll of Wm & Mary Columbia U CompX

General Atomics FIU

INL

Johns Hopkins U

LANL

LLNL Lodestar

MIT

Lehigh U

Nova Photonics

Old Dominion

ORNL

PPPL

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD U Colorado

U Colorado

U Illinois U Maryland

U Rochester

U Tennessee

U Tulsa

U Washington

U Wisconsin

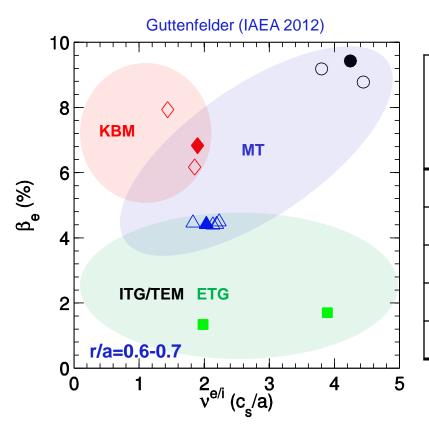
X Science LLC

Walter Guttenfelder¹

S.M. Kaye¹, Y. Ren¹, F. Scotti¹, W. Solomon¹, R.E. Bell¹, J. Candy², B.P. LeBlanc¹, H. Yuh³

¹PPPL, ²General Atomics, ³Nova Photonics Inc.

US-EU TTF Santa Rosa, CA April, 2013


Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA. Cadarache IPP, Jülich

IPP, Garching

ASCR, Czech Rep

Broad range of parameters in NSTX requires consideration of many micro-instabilities

- All of them of interest for electron thermal transport
- Only ion scale ballooning instabilities (ITG, TEM, KBM) expected to transport momentum and impurity
- ⇒ Investigate multiple transport channels to help constrain theory

	Transport channel affected			
Transport Mechanism	ion energy	electron energy	particle/ impurity	momentum
ITG	×	×	×	×
TEM	×	×	×	×
KBM	×	×	×	×
MT		×		
ETG		×		

Overview

Momentum transport

- Experimental motivation
- Quasilinear predictions of Pr=χ_φ/χ_i and RV_φ/χ_φ
 - L-modes unstable to ITG/TEM
 - H-modes unstable to microtearing and hybrid-KBM

Impurity (carbon) transport

- Experimental motivation
- Quasilinear prediction of carbon peaking (RV_c/D_c) in H-mode

Interpretation of toroidal angular momentum transport often assumes diffusive and convective components

• Transport equation:

$$\frac{\partial}{\partial t} (n_i m_i \langle R^2 \rangle \Omega) + \nabla \cdot \Pi_{\phi} = S_{\Omega} \to \sum_s (\cdots)$$

Assumed transport form:

$$\Pi_{\phi} = -nmR \chi_{\phi}(R\nabla\Omega) + nmV_{\phi}(R\Omega)$$

$$\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \left(\hat{u}' + \frac{RV_{\phi}}{\chi_{\phi}} \hat{u} \right)$$

$$\hat{\mathbf{u}}' = \frac{-R^2 \nabla \Omega}{c_s} \qquad \hat{\mathbf{u}} = \frac{R\Omega}{c_s}$$

- Can also have residual stress Π_{RS} contributions (from up-down asymmetric flux surfaces, finite ρ_∗ profile effects) leading to intrinsic torque → intrinsic rotation when u'=u=0
 - Perhaps less important in core with large beam torque (co-NBI in NSTX)

Interpretation of toroidal angular momentum transport often assumes diffusive and convective components

Transport equation:

$$\frac{\partial}{\partial t} (n_i m_i \langle R^2 \rangle \Omega) + \nabla \cdot \Pi_{\varphi} = S_{\Omega} \to \sum_s (\cdots)$$

Assumed transport form:

$$\Pi_{\phi} = -nmR \, \chi_{\phi}(R\nabla\Omega) + nmV_{\phi}(R\Omega)$$

Prandtl number $Pr = \frac{\chi_{\phi}}{\chi_{i}}$

$$Pr = \frac{\chi_{\varphi}}{\chi_{i}}$$

Pinch parameter

$$\frac{RV_{\phi}}{\chi_{\phi}}$$

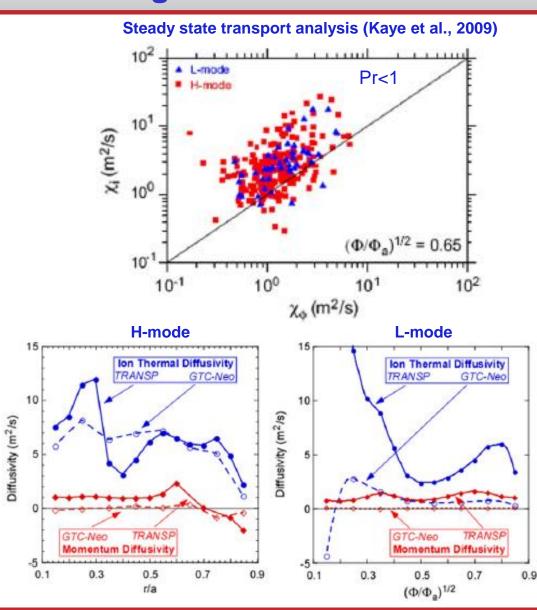
$$\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \left(\hat{u}' + \frac{RV_{\phi}}{\chi_{\phi}} \hat{u} \right)$$

$$\hat{\mathbf{u}}' = \frac{-R^2 \nabla \Omega}{c_s} \qquad \hat{\mathbf{u}} = \frac{R\Omega}{c_s}$$

- Can also have residual stress Π_{RS} contributions (from up-down asymmetric flux surfaces, finite ρ* profile effects) leading to intrinsic torque → intrinsic rotation when u'=u=0
 - Perhaps less important in core with large beam torque (co-NBI in NSTX)

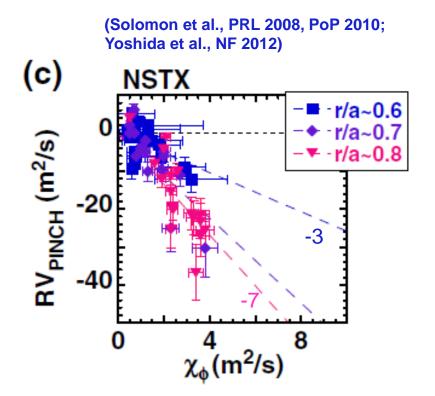
Steady state Prandtl numbers χ_{ϕ}/χ_{i} < 1 for NSTX L- mode and H-mode discharges

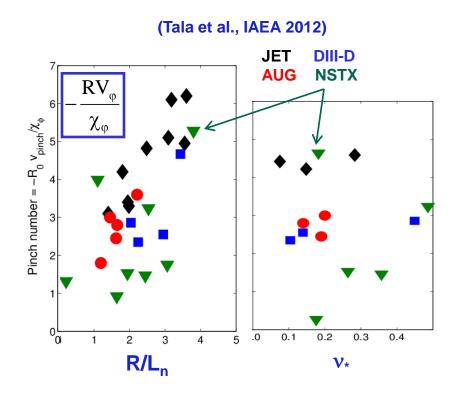
- $Pr=\chi_{\phi}/\chi_{i}\approx0.3-1.0$ over many radii and discharges (assumes $V_{\phi}=0$)
- $\chi_{\phi} > \chi_{\phi,NC}$ for both L and H In L-mode $\chi_{i} > \chi_{i,NC}$


$$Pr = \frac{\chi_{\phi}}{\chi_{i}} \approx \frac{\chi_{\phi,turb}}{\chi_{i,turb}}$$

In H-mode χ_i≈χ_{i,NC}

$$Pr = \frac{\chi_{\phi}}{\chi_{i}} = \frac{\chi_{\phi, turb}}{(\chi_{i, NC} + \chi_{i, turb})}$$


⇒ Pr ill-defined in H-mode?

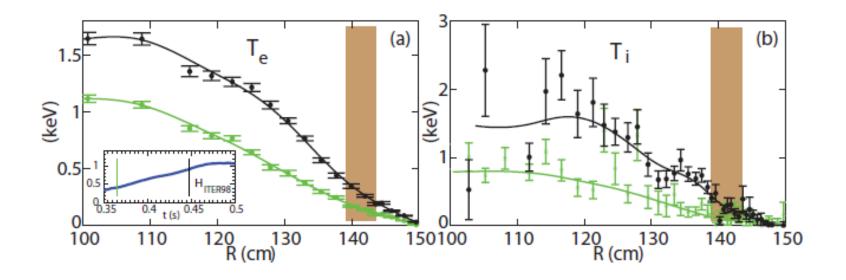

RV_ω/χ_ω less ambiguous

Perturbative H-mode experiments indicate existence of an inward momentum pinch

- $RV_{\omega}/\chi_{\omega} \approx$ -(1-7) for many NSTX discharges & radii
 - Pr~0.3-0.5, smaller than other machines (Pr~0.6-2.0) [Yoshida, NF 2012]
- Possible dependence on density gradient (R/L_n), less clear with collisionality (v^*), but a lot of scatter

Q: What are the relevant momentum transport mechanism(s) in NSTX?

Method for predicting quasi-linear Prandtl (χ_{ϕ}/χ_{i}) and Pinch numbers (RV $_{\phi}/\chi_{\phi}$)

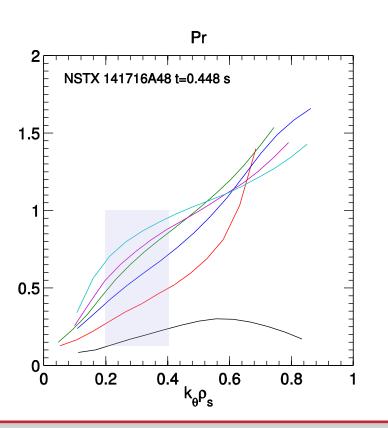

- Local linear GYRO simulations run between r/a=0.6-0.8 (ρ_{tor}≈0.5-0.7), with
 - deuterium, carbon, electrons
 - φ , $A_{||}$, $B_{||}$
 - numerical equilibrium (EFIT/LRDFIT)
 - n_e profiles from averaged inboard/outboard measurements (no centrifugal effects in GYRO)
- Pr and RV $_{\phi}/\chi_{\phi}$ determined using momentum flux from different combinations of u, u' $\hat{\Pi}_{\phi} = \hat{\chi}_{\phi}\hat{u}' + (\hat{R}\hat{V}_{\phi} + \hat{R}\hat{\Gamma}_{p})\hat{u} + \hat{\Pi}_{\phi,RS}$

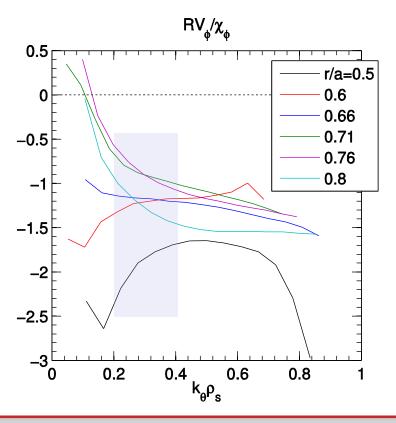
$$\begin{split} Pr &= \frac{\hat{\chi}_{\phi}}{\hat{\chi}_{i}} = \frac{\hat{\Pi}_{\phi}(0,u') - \hat{\Pi}_{\phi}(0,0)}{\hat{u}'} \cdot \frac{a / L_{Ti}}{\hat{Q}_{i}} \\ &\left(\frac{RV_{\phi}}{\chi_{\phi}}\right) = \begin{bmatrix} \hat{\Pi}_{\phi}(u,0) - \hat{\Pi}_{\phi}(0,0) \\ \hat{u} \end{bmatrix} - \underbrace{\hat{m}\hat{R}\hat{\Gamma}_{p}(u,0)} \cdot \frac{\hat{u}'}{\hat{\Pi}_{\phi}(0,u') - \hat{\Pi}_{\phi}(0,0)} \end{split}$$

Subtracting particle convection contribution

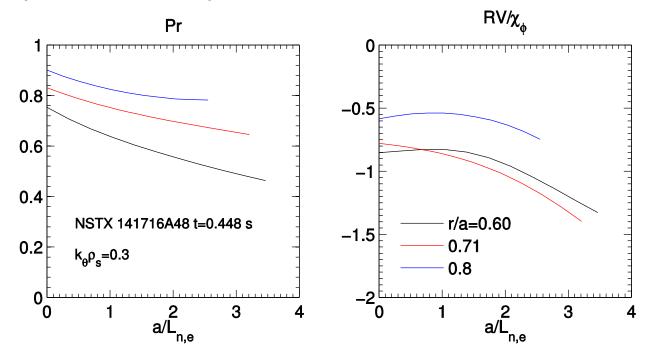
Example from NSTX L-mode (Ren, IAEA 2012, EX/P7-2)

- Low k_θ stability dominated by ITG/TEM
- No perturbative momentum experiments in this case, but it provides a basis for comparing to conventional tokamaks
- MAST perturbative L-mode experiments planned this year

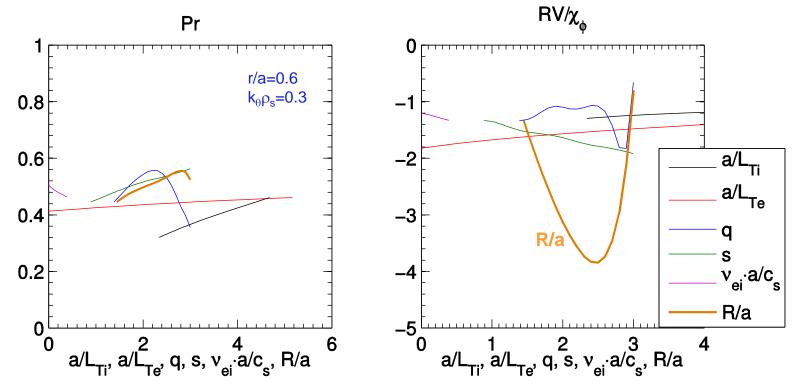



 $B_T = 0.55 \text{ T}, I_p = 0.9 \text{ MA}, P_{NBI} = 2 \text{ MW}, \langle n \rangle \approx 3 \times 10^{19} \text{ m}^{-3}$

Quasilinear Prandtl number increases with radius, relatively weak momentum pinch predicted

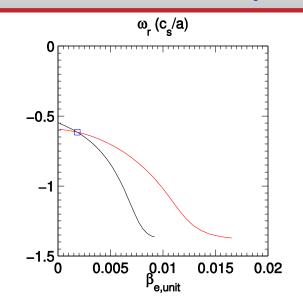

- Range of Pr~0.2-0.8 generally consistent with experiment (~0.5)
 - NL spectrum peak around $k_{\theta}\rho_{s}\sim0.3$
- Small inward pinch $RV_{\phi}/\chi_{\phi} \sim -(1-2)$
- ⇒ Investigate sensitivity to various parameters

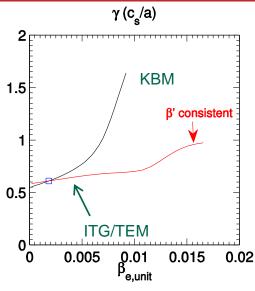
Pinch remains relatively small even for increased density gradient (a/ $L_n = -a\nabla n/n$)

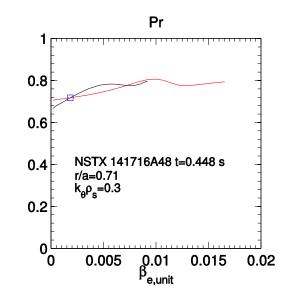

Weaker dependence than predicted for ITG in conventional tokamaks

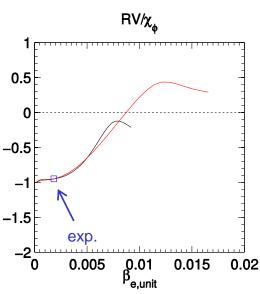
- Growth rates at r/a=0.6 increase with a/L_n
 - TEM-like at r/a=0.6
 - ITG-like at r/a=0.8
- ightarrow Weaker pinch consistent with smaller RV $_{\phi}/\chi_{\phi}$ reported for TEM conditions at higher aspect ratio [Kluy et al., 2009]

Pinch predicted to be weakly dependent on many parameters except aspect ratio (R/a)

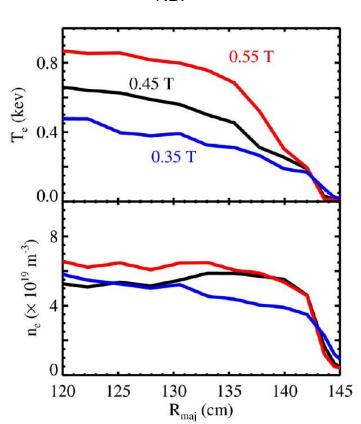

- Prandtl number remains constant ~0.4-0.6
- RV $_{\phi}/\chi_{\phi}$ relatively insensitive to a/L $_{Ti,e}$, q, s, ν_{ei}
- Becomes much larger (inward) for increased aspect ratio (R/a)

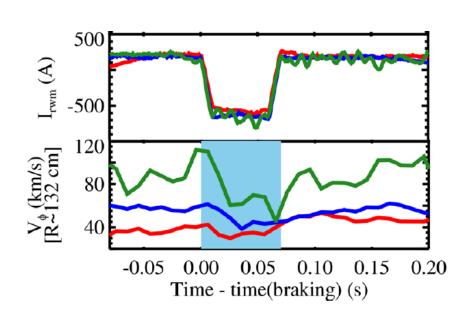



 q, s, R/a scans using local Miller equilibrium model ⇒ not consistent with any particular global equilibrium


Growth rates increase with beta, eventually transition to KBM (preview for H-modes)

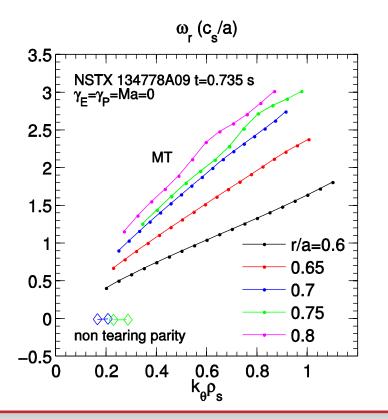
- ITG/TEM growth rates increase with β_e , opposite to traditional results (e.g. "cyclone base case")
- Eventually transitions to KBM (similar to hybrid ITG/KBM [Belli, Candy 2010])
 - Increasing β'_{eq} consistently is stabilizing [Bourdelle, 2003]
- Pr remains ~constant
- Pinch goes toward zero, even positive/outward (depending on β'_{eq})
 - similar to EM behavior predicted in conventional aspect ratio [Hein, 2010]

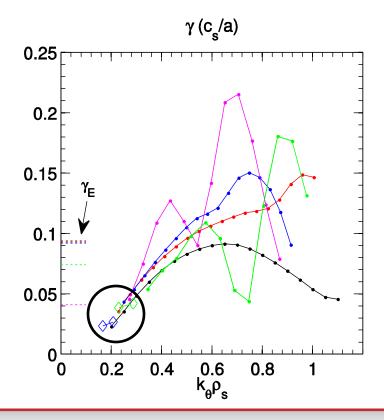




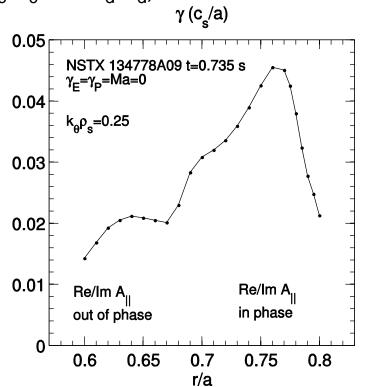
NSTX H-modes

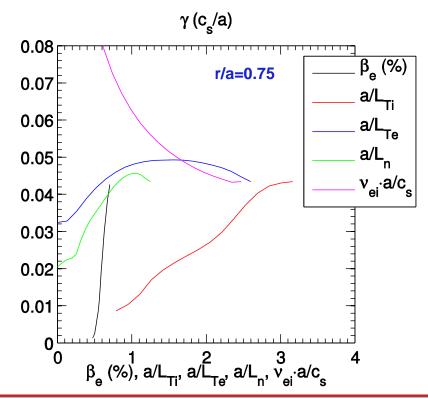
 Simulations run for 7 NBI H-modes with n=3 perturbations [Solomon, 2010]


$$\begin{array}{lll} B_{T}{=}0.35{\text -}0.55 \ T & I_{p}{=}0.7{\text -}1.1 MA \\ P_{NBI}{=}4{\text -}6 \ MW & \langle n \rangle {\approx} 4{\text -}6{\times}10^{19} \, m^{\text -}3 \end{array}$$

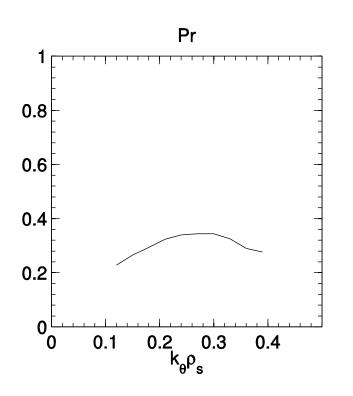


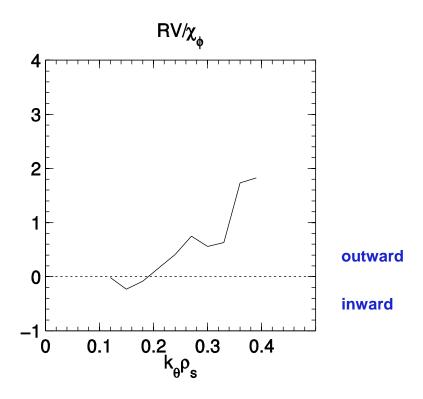
Most cases show broad spectra of microtearing modes


- Apparent in eigenfunctions (not shown) and near linear dispersion $\omega \approx \omega_{*e}$
 - Microtearing only transports electron energy
- Often see hints of subdominant ballooning modes (◊)
 - Unknown whether they survive nonlinearly
- E×B shearing rates comparable to γ_{lin} (γ_{lin}/γ_E ↑ as r/a ↑)

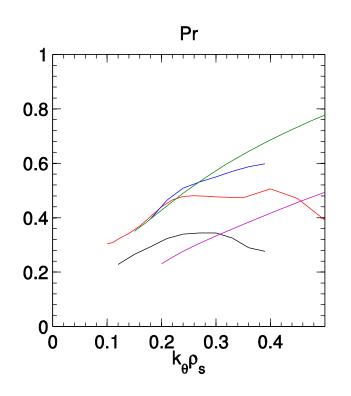


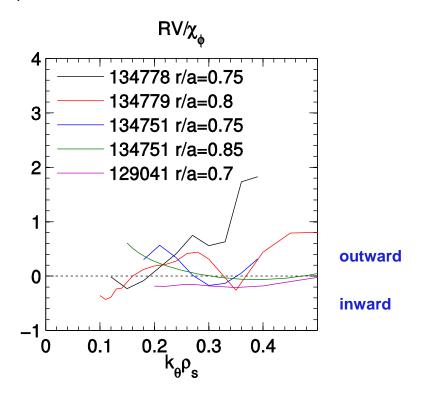
Ballooning modes exist over a r/a=0.6-0.8, exhibit KBM behavior


- Very sensitive to $\beta_e \rightarrow \text{KBM } (\alpha_{\text{MHD,unit}} > 0.6)$
 - Unstable from a/L_{Ti} similar to hybrid ITG/KBM behavior found by Belli, Candy [2010]
 - Similar hybrid-KBM modes often predicted in NSTX H-modes [Guttenfelder, IAEA 2012;
 Canik, IAEA 2012; TTF 2013]
- Transport contributions come from both φ and B_{||}; also D and C (Z_{eff}≈3, n_cm_c~0.7n_dm_d)

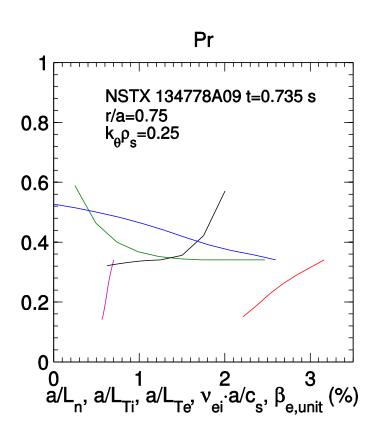


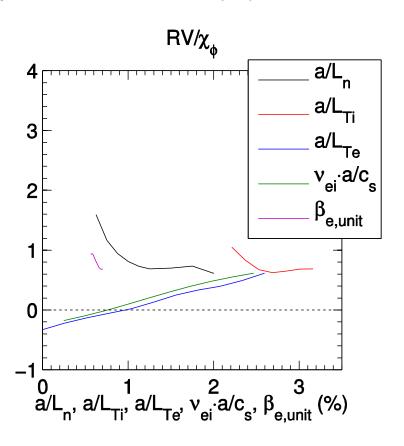
Small Prandtl numbers over KBM range of $k_{\theta}\rho_{s}$, small/outward Pinch parameter


- Interpreted Pr would be smaller for $\chi_{i,nc} > \chi_{i,turb}$
- Small/outward RV_φ/χ_φ
 - consistent with KBM predictions using conventional tokamak parameters [Hein, 2010]



Small Prandtl numbers over KBM range of $k_{\theta}\rho_{s}$, small/outward Pinch parameter


- Interpreted Pr would be smaller for $\chi_{i,nc} > \chi_{i,turb}$
- Small/outward RV_φ/χ_φ
 - consistent with KBM predictions using conventional tokamak parameters [Hein, 2010]
- Small/positive RV_{ϕ}/χ_{ϕ} predicted in multiple cases, never approaches larger inward experimental values (-7)



Pinch parameter shows minor changes with parameters, always remains near zero or outwards

Never approaches larger inward experimental values (-7)

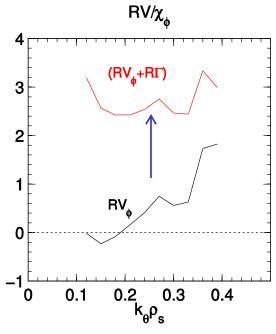
What else is missing?

Nonlinear transport possibly different from quasilinear (simulations beginning)

- Nonlinear transport possibly different from quasilinear (simulations beginning)
- Perpendicular (E×B) flow shear (Dominguez, Casson, Waltz)

$$\Pi_{\phi} = (\chi_{\phi} u' + \chi_{\phi \perp} \gamma_E) + (RV_{\phi} + R\Gamma_p) u + \Pi_{\phi, RS} \qquad \begin{array}{c} \text{purely toroidal flow} \\ \gamma_E \sim r/qR \cdot u' \end{array}$$

After factoring out reduced transport due to turbulence suppression, E×B shear can increase or decrease momentum flux, depending on magnetic shear [Casson, 2009]

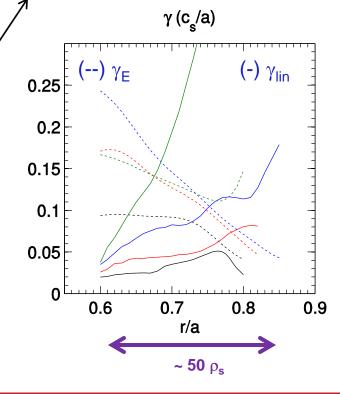

→ Nonlinear simulations

- Nonlinear transport possibly different from quasilinear (simulations beginning)
- Perpendicular (E×B) flow shear (Dominguez, Casson, Waltz)

$$\Pi_{\phi} = (\chi_{\phi} u' + \chi_{\phi \perp} \gamma_{E}) + (RV_{\phi} + R\Gamma_{p})u + \Pi_{\phi,RS}$$

Influence of particle flux

In all cases investigated this adds <u>outward</u> momentum flux



- Nonlinear transport possibly different from quasilinear (simulations beginning)
- Perpendicular (E×B) flow shear (Dominguez, Casson, Waltz)

$$\Pi_{\phi} = (\chi_{\phi} u' + \chi_{\phi \perp} \gamma_{E}) + (RV_{\phi} + R\Gamma_{p})u + \Pi_{\phi,RS}$$

- Influence of particle flux
- Finite ρ_* effects: profile shear, non-local effects, influence from pedestal

Possible that perturbations in profiles could indirectly lead to inferred inward momentum pinch \rightarrow global EM simulations (with A_{II} & B_{II})

- Nonlinear transport possibly different from quasilinear (simulations beginning)
- Perpendicular (E×B) flow shear (Dominguez, Casson, Waltz)

$$\Pi_{\phi} = (\chi_{\phi} \mathbf{u}' + \chi_{\phi \perp} \gamma_{E}) + (RV_{\phi} + R\Gamma_{p})\mathbf{u} + \Pi_{\phi, RS}$$

- Influence of particle flux
- Finite ρ* effects: profile shear, non-local effects, influence from pedestal
- Centrifugal effects on transport and stability

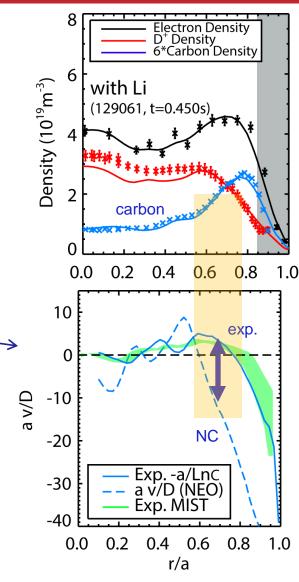
e.g. $M_c>1$ on Π_c or $R/L_n(\theta)$ on KBM vs. MT thresholds (GKW work in progress, R. Buchholtz, W. Hornsby)

- Nonlinear transport possibly different from quasilinear (simulations beginning)
- Perpendicular (E×B) flow shear (Dominguez, Casson, Waltz)

$$\Pi_{\phi} = (\chi_{\phi} u' + \chi_{\phi \perp} \gamma_{E}) + (RV_{\phi} + R\Gamma_{p})u + \Pi_{\phi,RS}$$

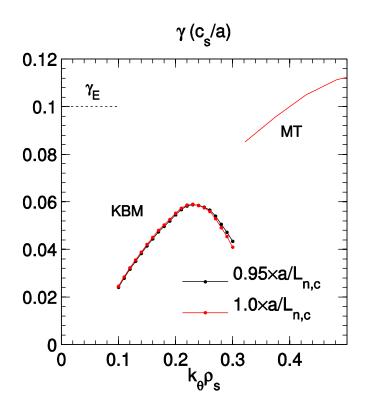
- Influence of particle flux
- Finite ρ_* effects: profile shear, non-local effects, influence from pedestal
- Centrifugal effects on transport and stability
- Some other unaccounted for mechanism (MHD, ...)
 - ⇒ Mechanism(s) for strong observed inward pinch remains unresolved

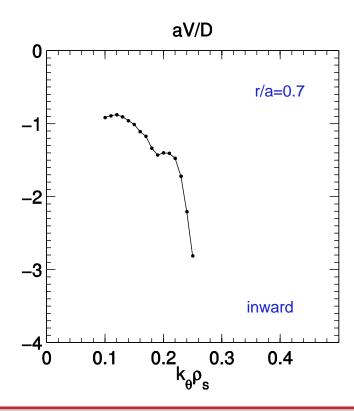
Impurity transport


Occasional evidence for non-neoclassical impurity transport in Lithium conditioned H-modes [Scotti, IAEA 2012]

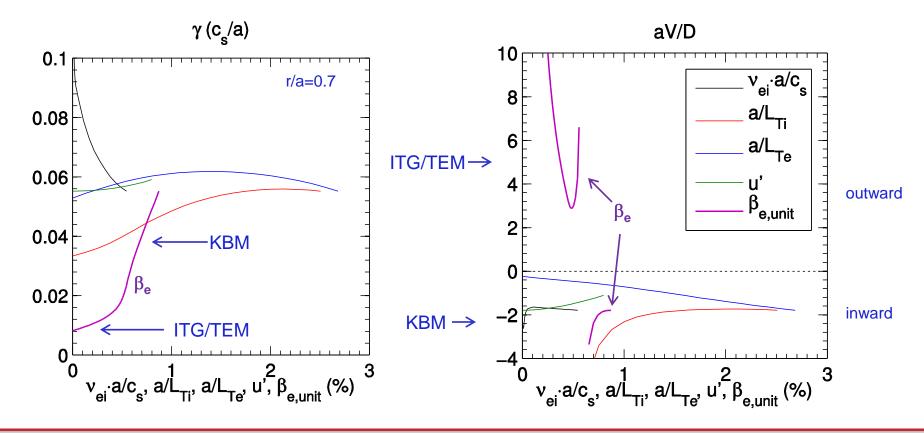
- Impurity transport often close to neoclassical levels in H-modes [Delgado-Aparicio, NF 2009, 2011; Clayton, PPCF 2012]
- With lithium wall conditioning, ELMs are suppressed and carbon accumulates
 - Lithium does NOT accumulate (better scrape-off layer screening + neoclassical D_{Li}>>D_c)

$$\Gamma_{\rm c} = -D_{\rm c} \nabla n_{\rm c} + V_{\rm c} n_{\rm c} \approx 0 \implies \boxed{\frac{aV_{\rm c}}{D_{\rm c}} = -\frac{a}{L_{\rm n,c}}}$$


 Profile shape can diverge significantly from neoclassical theory (don't have quantitative source in these cases)


Q: Can ballooning modes influence impurity transport in NSTX H-modes?

Microtearing modes dominate, sub-dominant KBM modes predict inward carbon pinch


- Microtearing dominates (no particle flux)
- Weaker hybrid-KBM $(\gamma_{KBM} < \gamma_F)$ unknown if this survives nonlinearly
- KBM predicts inward carbon pinch (r/a=0.6-0.7)
 - Opposite to experiment, similar to neoclassical

Inward carbon pinch predicted for KBM over a range of parameters

- Direction of carbon convection insensitive to vei, a/L_{Ti}, a/L_{Te}, and u'
- Outward carbon convection predicted as beta is reduced and mode transitions to ITG/TEM
- ⇒ Does not appear to reconcile non-neoclassical impurity profile

Summary

- NSTX L-modes governed by ITG/TEM, linear simulations predict:
 - Pr~0.2-0.8 generally consistent with experimental analysis (~0.5)
 - Relatively weak inward pinch (RV $_{o}/\chi_{o}\sim$ 1) insensitive to many parameters except R/a
- NSTX n=3 nRMP H-mode experiments dominated linearly by microtearing (r/a=0.6-0.8)
 - Sub-dominant ITG/KBM exist, Pr~0.3-0.6 but will be smaller depending on $\chi_i/\chi_{i,nc}$
 - RV $_{\phi}/\chi_{\phi}\sim$ -1 +2 small/outward compared to stronger inward experimental values, relatively insensitive to parameter variations
- In lithiated H-mode cases where impurity carbon transport appears to be anomalous:
 - KBM modes (sub-dominant to microtearing) predict inward carbon pinch opposite to experiment
- A big to-do: <u>Nonlinear</u> simulations of "mixed-modes" (ITG/KBM+MT)

Method for inferring quasi-linear Prandtl (χ_{ϕ}/χ_{i}) and Pinch numbers (RV_{\alpha}/\chi_\alpha)

Assuming momentum flux due to:

Convection (momentum pinch)
Particle convection

Residual stress (up-down asymmetry, finite ρ*, etc...) independent of u, u'

$$\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \hat{u}' + (\hat{R} \hat{V}_{\phi} + \hat{R} \hat{\Gamma}_{p}) \hat{u} + \hat{\Pi}_{\phi,RS}$$

⇒ Using u, u' perturbations, subtracting particle convection contribution

$$\begin{split} Pr &= \frac{\hat{\chi}_{\phi}}{\hat{\chi}_{i}} = \frac{\hat{\Pi}_{\phi}(0,u') - \hat{\Pi}_{\phi}(0,0)}{\hat{u}'} \cdot \frac{a / L_{Ti}}{\hat{Q}_{i}} \\ &\left(\frac{RV_{\phi}}{\chi_{\phi}}\right) = \begin{bmatrix} \hat{\Pi}_{\phi}(u,0) - \hat{\Pi}_{\phi}(0,0) \\ \hat{u} \end{bmatrix} - \underbrace{\hat{m}\hat{R}\hat{\Gamma}_{p}(u,0)} \cdot \frac{\hat{u}'}{\hat{\Pi}_{\phi}(0,u') - \hat{\Pi}_{\phi}(0,0)} \end{split}$$

Transport of toroidal angular momentum calculated from delta-f gyrokinetics (GYRO*)

 Transport calculated for toroidal momentum from correlation of perturbed distribution function and effective radial drifts from all EM fields

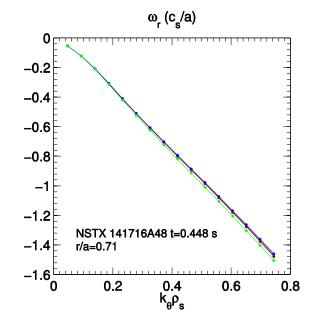
$$\delta f_{s}(\vec{x}) = -\frac{e\delta\phi(\vec{x})}{T_{s}}F_{s0} + H_{s}(\vec{R})$$
 (3.22)

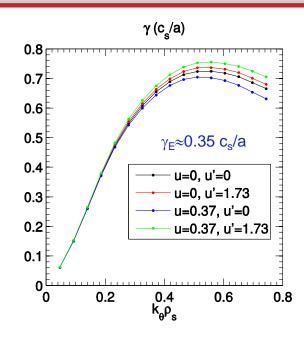
$$\Pi_{s} = \oint_{\substack{\text{flux} \\ \text{surface} \\ \text{average}}} \int \!\! d^{3}v H_{s}^{*}(\vec{R}) \! \left\langle \left[m_{s} R(\vec{V}_{0} + \vec{v}) \cdot \vec{e}_{\phi} \right] \frac{c}{B} \vec{b} \times \nabla \! \left[\delta \phi(\vec{x}) - \frac{1}{c} (\vec{V}_{0} + \vec{v}) \cdot \delta \vec{A}(\vec{x}) \right] \cdot \nabla r \right\rangle_{\substack{\text{gy ro} \\ \text{average}}}$$

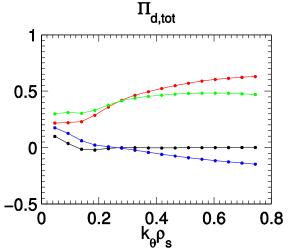
$$= \left(3.55 \right)$$

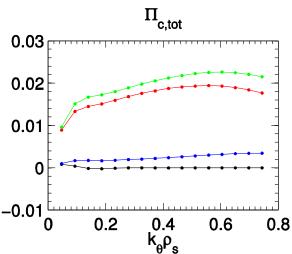
$$= \left(\frac{1}{c} (\vec{V}_{0} + \vec{v}) \cdot \delta \vec{A}(\vec{x}) \right) \cdot \left\langle \vec{V}_{0} + \vec{V}_{0} \cdot \vec{A}(\vec{x}) \right\rangle \cdot \left\langle \vec{V}_{0} + \vec$$

• EM contributions are important in NSTX H-modes

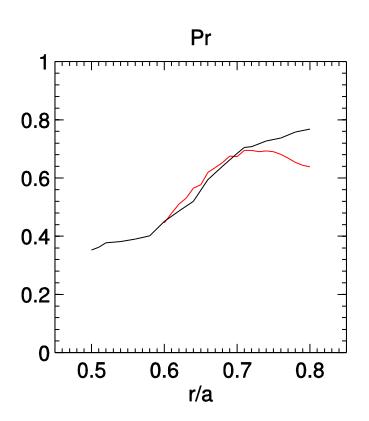

*Candy & Belli, GYRO Technical Guide, https://fusion.gat.com/theory/Gyro

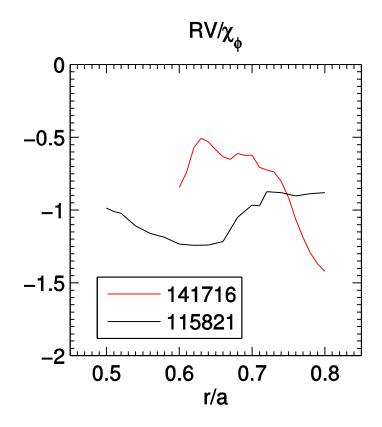



magnetic perturbations

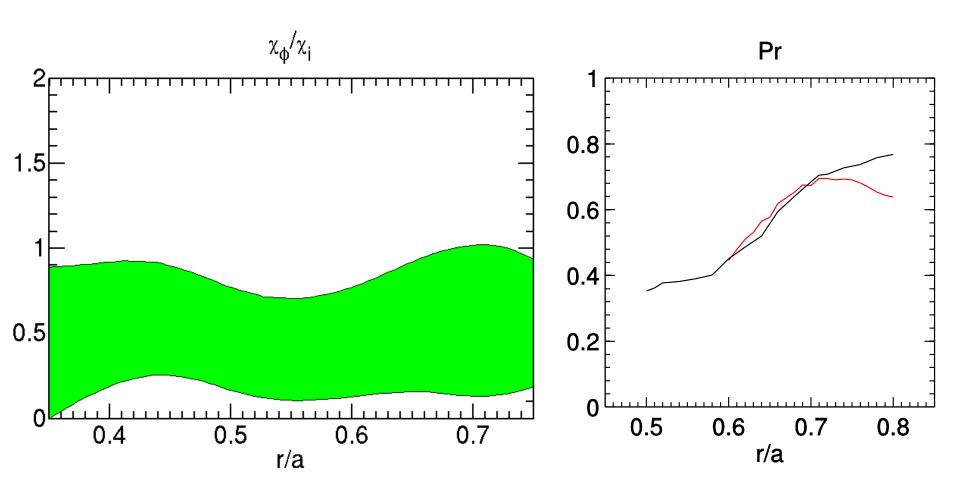

L-mode unstable to ITG/TEM, momentum fluxes vary with u, u'

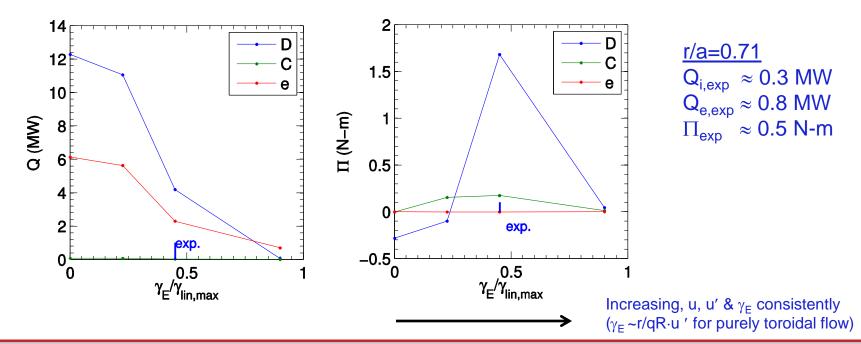
- Growth rates, change little with u, u'
 - u' can drive instability if large enough
- Momentum fluxes vary with u, u' as expected
 - All fluxes normalized by $k_{\theta}\rho_{s}|\phi|^{2}$
- Deuterium dominates carbon
 - Very little impurity in this L-mode, Z_{eff}~1.2, n_cm_c<<n_dm_d)

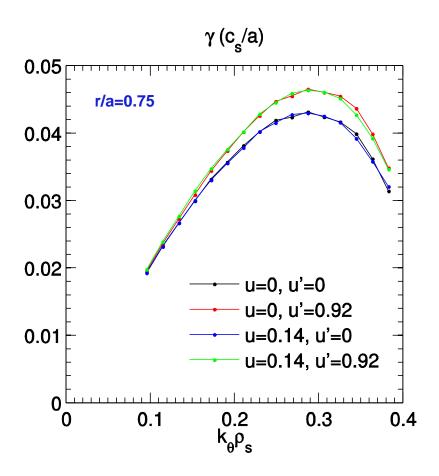




Predicted quasilinear Pr and RV/c very similar for additional L-mode case

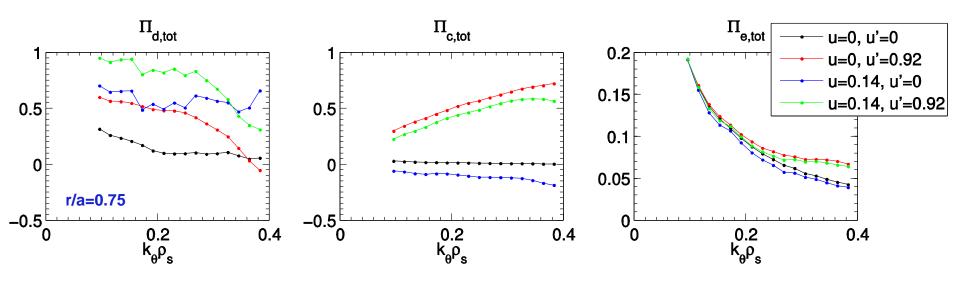

- 141716 from [Ren et al., IAEA, 2012]
- 115821 from [Kaye et al., NF 2009]


Experimental Pr profile for L-mode


Nonlinear simulations predict significant momentum flux

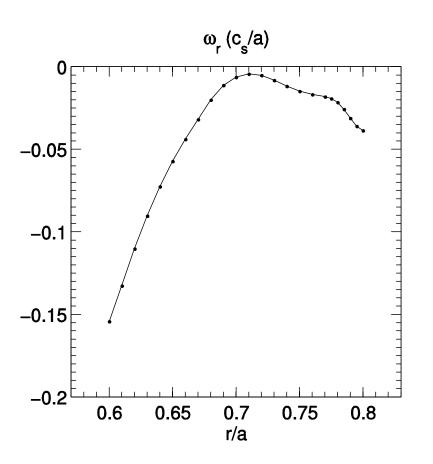
- At r/a=0.71 nonlinear simulation (with E×B shear) overpredicts heat fluxes [Ren, IAEA 2012]
- Predicted momentum flux also too large (using u, u' for purely toroidal rotation)
 - − "Effective" $Pr \approx 0.3$ → have yet to determine RV_{o}/χ_{o} from nonlinear simulations
- E×B shear driven momentum flux [Dominguez; Casson] and profile shearing (finite ρ_{*}) effects [Camenen] could also be important
 - Require global simulations

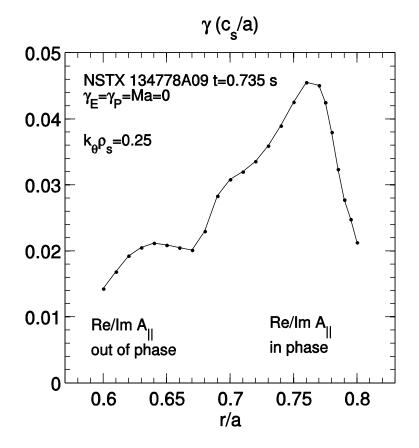
Little change in KBM linear growth rates when including toroidal flow and/or parallel flow shear


Small increase due to parallel velocity gradient

Change in quasi-linear momentum fluxes due to u & u'

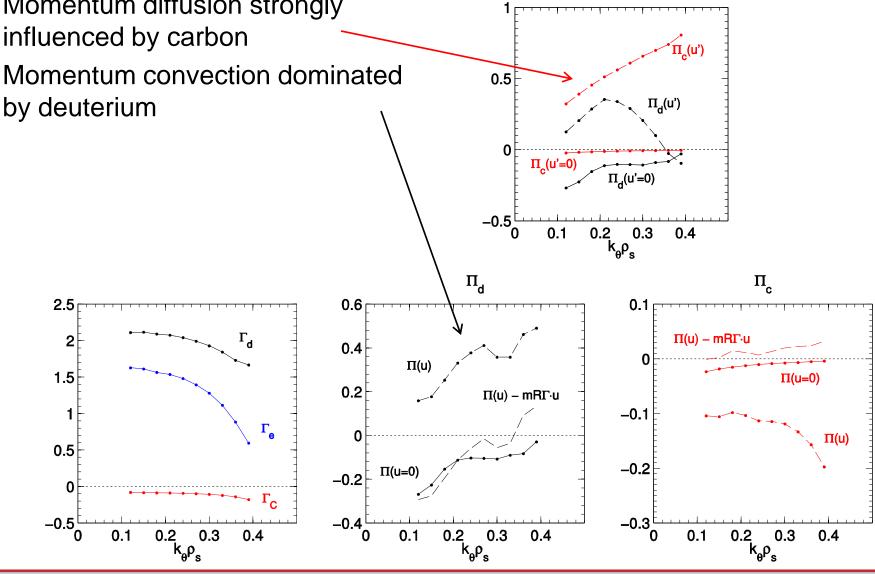
- Comparable momentum flux from D & C (Z_{eff}≈3, n_cm_c~0.7n_dm_d)
 - different u, u' dependencies
- Transport contributions come from both ϕ and $B_{||}$ for these KBM-like modes [Guttenfelder, IAEA TH/6-1]




Again, little change in growth rates with finite u, u'

Subdominant ballooning mode unstable across r/a=0.6-0.8

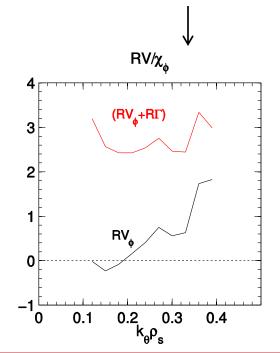
- Tracking ballooning root using eigenvalue solver [Belli, Candy 2010]
- γ_E =0.04-0.09 c_s/a over this range, always bigger than ballooning mode growth rates **don't yet know whether this survives nonlinearly**

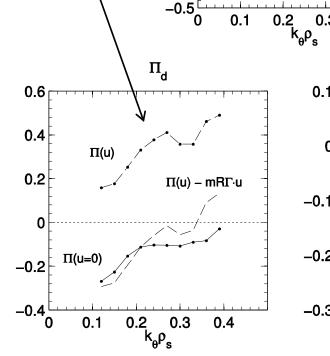


Contribution of particle convection to momentum flux

Momentum diffusion strongly influenced by carbon

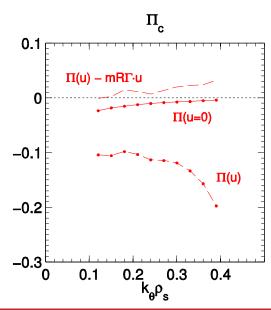
by deuterium




Contribution of particle convection to momentum flux

Momentum diffusion strongly influenced by carbon

Momentum convection dominated by deuterium


In this case, deuterium convection $(mR\Gamma \cdot u)$ predicted to dominate momentum (Coriolis) pinch

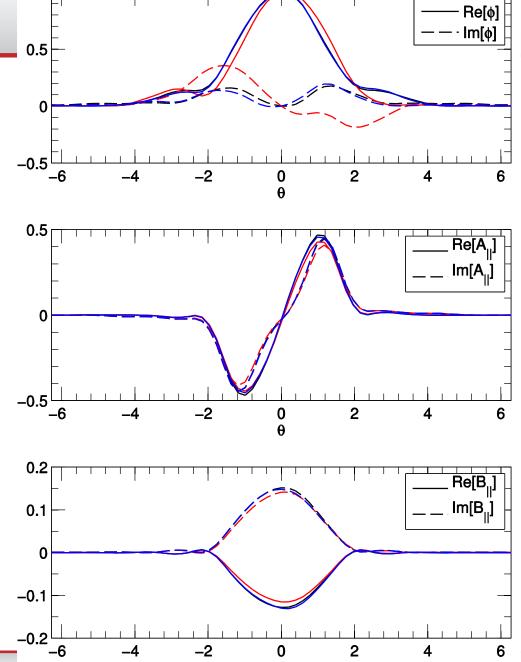
0.5

 $\Pi_{c}(u'=0)$

Π

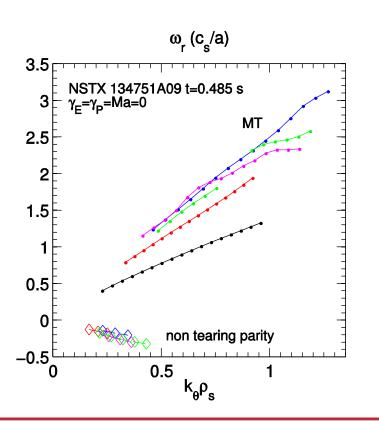
 $\Pi_{d}(u'=0)$

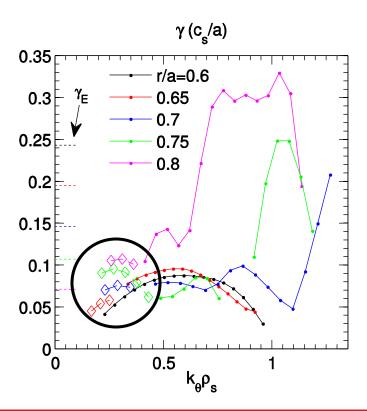
0.3


 $\Pi_{c}(u')$

0.4

 $\Pi_d(u')$


Eigenfunctions



n = 15

A couple cases show increased ballooning mode growth rates, but always weaker than microtearing

- Higher v_∗ dishcarge, all MT
- Lower v_∗ discharge, much less MT

