

Analysis and prediction of momentum pinch in spherical tokamaks

W. Guttenfelder¹, A. Field², I. Lupelli², J.-K. Park¹, T. Tala³, S.M. Kaye¹, M. Peters⁴, Y. Ren¹, W.M. Solomon¹ ¹PPPL, ²CCFE, ³VTT-Finland, ⁴Indiana University

MAST

OVERVIEW

- To predict rotation profile (important for macro- and microinstabilities) need to understand torques sources/sinks and momentum transport
- Momentum transport has well known diffusive and convective (pinch) contribution
- Here, investigating momentum pinch in low aspect ratio, high beta spherical tokamak plasmas (NSTX & MAST) as an additional constraint on theory (stems out of ITPA T&C activity)

Interpretation of toroidal angular momentum transport often assumes diffusive (- $\chi_{0}\nabla\Omega$) and convective (V₀ Ω) components

• Transport equation:

• Assumed transport form:

$$\frac{\partial}{\partial t} \left(n_{i} m_{i} \left\langle R^{2} \right\rangle \Omega \right) + \nabla \cdot \Pi_{\phi} = T$$

$$\int_{\phi} \prod_{\phi} = nmR^{2} \left(-\chi_{\phi} \nabla \Omega + V_{\phi} \Omega + C_{RS} \right)$$

Prandtl number $\Pr = \frac{\chi_{\phi}}{\chi_{i}}$ $\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \left(\hat{u}' + \frac{RV_{\phi}}{\chi_{\phi}} \hat{u} + \frac{C_{RS}}{\chi_{\phi}} \right)$ Pinch parameter $\frac{RV_{\phi}}{\chi_{\phi}}$ $\hat{u}' = \frac{-R^{2}\nabla\Omega}{c_{s}}$ $\hat{u} = \frac{R\Omega}{c_{s}}$

 Pinch expected due to Coriolis effect (Peeters, 2007), or equivalently turbulent equipartition (Hahm, 2007) + thermoelectric force (Peeters, 2009) Interpretation of toroidal angular momentum transport often assumes diffusive (- $\chi_{0}\nabla\Omega$) and convective (V₀ Ω) components

a

• Transport equation:

• Assumed transport form:

$$\frac{\partial}{\partial t} \left(n_{i} m_{i} \left\langle R^{2} \right\rangle \Omega \right) + \nabla \cdot \Pi_{\varphi} = T$$

$$\int$$

$$\prod_{\varphi} = nmR^{2} \left(-\chi_{\varphi} \nabla \Omega + V_{\varphi} \Omega + V_{\varphi} S \right)$$

Prandtl number

Pinch parameter

$$Pr = \frac{\chi_{\varphi}}{\chi_{i}}$$

$$RV_{\varphi}$$

$$\hat{\Pi}_{\phi} = \hat{\chi}_{\phi} \left(\hat{u}' + \frac{RV_{\phi}}{\chi_{\phi}} \hat{u} + \frac{C_{\text{PS}}}{\chi_{\phi}} \right)$$

$$\hat{u}' = \frac{-R^2 \nabla \Omega}{c_s} \qquad \hat{u} = \frac{R\Omega}{c_s}$$

 Pinch expected due to Coriolis effect (Peeters, 2007), or equivalently turbulent equipartition (Hahm, 2007) + thermoelectric force (Peeters, 2009)

Ignoring any possible residual stress (intrinsic torque) contributions

Momentum pinch measured and predicted in conventional tokamaks

 Measurements in many machines from both perturbative experiments (NBI, 3D coils) and statistical regression analysis

 Increase in (inward) pinch observed with ε=r/R and R/L_n, also predicted by ITG theory (Peeters, PRL 2007; PoP 2009)

Higher beta NSTX H-modes often dominated by microtearing modes (MTM) with sub-dominant ballooning modes

- Most cases have $\gamma_{MTM} > \gamma_{ballooning}$ ($\Pi_{\phi}=0$ for MTM)
- Sub-dominant modes can be ITG, KBM or compressional ballooning modes – calculate pinch assuming they contribute to transport

Guttenfelder, 2016 (Phys. Plasmas, in review)

Negligible or outward momentum convection predicted from ES and EM ballooning modes in NSTX

- Weak/outward pinch consequence of parallel mode structure response at high beta, low aspect ratio, see:
 - Peeters, PoP (2009)
 - Kluy, PoP (2009)
 - Hein, PoP (2011)
 - Guttenfelder, PoP (2016, in review)

A larger (inward) pinch can be found: (i) at increased aspect ratio, (ii) in purely ES limit at high ∇n

- Non-monotonic dependence on ε=r/R
- Can't do aspect ratio scan...can try to do similar analyses at lower beta

MAST L-mode experiment conducted in 2013

- 2 MW LSN L-mode
 - $< n_{e} > = 2.3 \times 10^{19} \text{ m}^{-3}$
 - B_T=0.5 T, I_p=0.4 MA (q₉₅≈5)
 - $-\beta_N \sim 2, \beta_T \sim 4\%$
- 29890/ 29892 three n=3 field pulses applied to brake rotation 29891 – no nRMP pulses
- Weak density pump out w/ nRMP, drop in β_N
- Without RMP, eventual transition into H-mode (t~0.47 s)

Changes in toroidal rotation due to n=3 nRMP clearly observed

- Non-stationary conditions -- control shot (29891) provides a baseline for analysis
- Filtering to remove faster sawteeth oscillations($\Delta t_{ST} \sim 6-12 \text{ ms}$)
 - $\Delta\Omega_{ST}$ ~2-6 krad/s < $\Delta\Omega_{3D}$ ~10-20 krad/s

Inward momentum pinch inferred from transient recovery

- χ_{ϕ} , V_{ϕ} assumed constant in time
- Using both χ_φ and V_φ improves the quality of fit (χ_ν² smaller than χ_φ-only fit)
- At locations where there is a strong Ω - $\nabla\Omega$ linear correlation, method is illposed $\Rightarrow \chi_{\phi} \& V_{\phi}$ tend to large values

Inward momentum pinch inferred from transient recovery

- χ_{ϕ} , V_{ϕ} assumed constant in time
- Using both χ_φ and V_φ improves the quality of fit (χ_ν² smaller than χ_φ-only fit)
- At locations where there is a strong Ω - $\nabla \Omega$ linear correlation, method is illposed $\Rightarrow \chi_{\phi} \& V_{\phi}$ tend to large values
- Can fit entire analysis region simultaneously using polynomial profiles
 - Best fit (lowest χ_v^2) using quadratic

🛈 NSTX-U

Pinch parameter comparable to conventional tokamaks and those found in NSTX H-modes

Where ITG dominant, predicted Pinch is small (RV $_{\phi}/\chi_{\phi} \approx -1$)

- Similar discrepancy as in NSTX Hmodes
- Expecting parametric dependencies to be similar to NSTX L-mode predictions
- Investigate nonlocal effects at finite ρ_{*}~1/100 due to:
 - Profile shear ~ $\omega_r' \cdot \rho_*$ (Camenen, NF 2011)
 - Intensity shear ~ $d(\gamma_{ITG}-\gamma_E)/dr \cdot \rho_*$ (Gurcan, PoP 2010)
 - Neoclassical flows (Barnes, PRL 2013)

Summary & future work

 Inward momentum pinch inferred from perturbative experiments in both NSTX H-mode and MAST L-modes

- RV_{ϕ}/χ_{ϕ} = (-1)-(-10) comparable to conventional tokamaks

- Not reproduced by local, quasilinear GK theory (Coriolis pinch), unlike in in conventional tokamaks
- Investigating other possibilities:
 - Revisit experimental analysis: (i) $\chi_{\phi} \sim \chi_i(t)$, (ii) if $V_{\phi} \sim 0$, solve instead for Π_{RS}
 - Working on global GYRO and GTS simulations to predict residual stress at finite $\rho_*{\sim}1/100$
- NSTX-U L-mode experiments planned for this run campaign (2016)

BACKUP

MAST M9-TC11 Momentum Transport Analysis (Oct, 2015)

Perturbative NSTX H-mode experiments indicate existence of an inward momentum pinch, $RV_{o}/\chi_{o} \approx$ -(1-7)

 Local, linear gyrokinetic simulations of ITG turbulence describe pinch and scaling in conventional tokamaks ⇒ does this hold for STs?

Subtracting neoclassical ion thermal transport leads to larger Pr~0.8-4.0

- In L-mode, χ_{i,NC} smaller than χ_i but still substantial contribution
- χ_e ~ 3·χ_i, additional uncertainty from T_e~T_i
 collisional energy exchange

Linear GYRO simulations predict unstable microtearing (ρ=0.5-0.6) and ITG (ρ>0.6)

ρ=0.5 MTM 2 $\rho = 0.55$ $\rho = 0.6$ ρ=0.65 Was surprised to ω_{r} (c /a) ρ=0.7 1 see this in L-mode! 0 ITG 0.3 γ (c_s/a) 0.2 γ_{E} 0.1 0 0.8 0.2 0.6 0 0.4 κ_ρ

Increasing level of residual stress contribution towards outer radii due to up-down asymmetry

- Eliminated when surfaces forced to be up-down symmetric
- Small compared to diffusive flux

Increasing level of residual stress contribution towards outer radii due to up-down asymmetry

- Small compared to diffusive flux
- Eliminated when forced to be up-down symmetric (using Miller, 1998)

Momentum pinch measured and predicted in conventional tokamaks

Momentum pinch coupled to symmetry breaking in parallel mode structure

Can think of as correction to curvature drift in lab frame

$$v_{\kappa} \approx \frac{mv_{\parallel}^{2}}{eBR} \rightarrow \frac{2m(v_{\parallel} + u_{0})^{2}}{eBR} = \frac{mv_{\parallel}^{2}}{eBR} + \frac{2mv_{\parallel}u_{0}}{eBR} + \frac{mu_{0}^{2}}{eBR}$$

Curvature
Curvature
Coriolis
Centrifugat
(M)

- M<1 smaller than curv. drift, does not influence stability
- But, toroidal flow couples δn , δT with δu \rightarrow causes momentum transport
- Asymmetry very small due to u>0 in NSTX – little convective transport

-0.6

-2

0

 θ (rad)

2

Momentum pinch coupled to symmetry breaking in parallel mode structure

 Can think of as correction to curvature drift in lab frame

$$\frac{d\mathbf{X}}{dt} = v_{\parallel}\mathbf{b} + \mathbf{v}_E + \frac{m(v_{\parallel}^2 + 2v_{\parallel}u_{\parallel} + u_{\parallel}^2) + \mu B}{ZeB_{\parallel}^*} \frac{\mathbf{B} \times \nabla B}{B^2}.$$
 (45)

• M<1 smaller than curv. drift, does not influence stability

$$\mathbf{v}_{\rm co} = \frac{2mv_{\parallel}u_{\parallel}}{ZeB_{\parallel}^*} \frac{\mathbf{B} \times \nabla B}{B^2},$$
$$\mathbf{v}_{\rm cf} = \frac{mu_{\parallel}^2}{ZeB_{\parallel}^*} \frac{\mathbf{B} \times \nabla B}{B^2},$$

 But, toroidal flow couples δn, δT with δu → causes momentum transport

MAST L-mode experiments

• adf

Momentum pinch analysis

Method to infer χ_{ϕ} and V_{ϕ} from transient rotation response <u>after</u> RMP turn-off

 TRANSP solves for momentum flux, Π, using the flux-surface-averaged toroidal angular momentum transport equation (Goldston, Varenna 1985), plus NUBEAM calculations for torque sources & sinks:

$$\frac{\partial}{\partial t} \left(\sum_{i} n_{i} m_{i} \langle R^{2} \rangle \Omega \right) + \frac{1}{V'} \frac{\partial}{\partial \rho} \left[V' \cdot \Pi \right] = \sum T_{\text{source}} - \sum T_{\text{sink}}$$

• <u>Assuming</u> momentum flux composed of only diffusive and convective contributions:

$$\Pi = \sum_{i} n_{i} m_{i} \left[- \left\langle R^{2} \left(\nabla \rho \right)^{2} \right\rangle \chi_{\phi} \frac{\partial \Omega}{\partial \rho} + \left\langle R^{2} \right\rangle \left\langle \nabla \rho \right\rangle V_{\phi} \Omega \right]$$

we can use $\Pi(\rho,t)$, $d\Omega/d\rho(\rho,t)$, and $\Omega(\rho,t)$ in a nonlinear least squares fit algorithm to determine best fit $\chi_{\sigma}(\rho)$, $V_{\sigma}(\rho)$ (assumed constant in time)

• Note: method only valid if $d\Omega/d\rho(t)$ and $\Omega(t)$ are sufficiently decorrelated

Quasi-linear gyrokinetic analysis

Linear GYRO simulations (Candy, Waltz, 2003) 3 species: D,C,e EM: ϕ , A_{\parallel} , B_{\parallel} Equilibrium reconstruction

Analysis method of Peeters, PRL (2007)

Use multiple runs with: [u,u']=[0,0],[0,1],[1,0] to infer $\chi_{\phi} = [\Pi(u')-\Pi(u'=0)] / u'$ $V_{\phi} = [\Pi(u)-\Pi(u=0)] / u$

Momentum transport is anomalous in NSTX, Prandtl numbers χ_{ω}/χ_{i} < 1 for L- and H-modes

- Pr=χ_φ/χ_i≈0.3-1.0 over many radii and discharges (assumes V_φ=0)
- $\chi_{\phi} > \chi_{\phi,NC}$ for both L and H In L-mode $\chi_i > \chi_{i,NC}$

$$Pr = \frac{\chi_{\phi}}{\chi_{i}} \approx \frac{\chi_{\phi,turb}}{\chi_{i,turb}}$$

In H-mode $\chi_i \approx \chi_{i,NC}$

$$Pr = \frac{\chi_{\varphi}}{\chi_{i}} = \frac{\chi_{\varphi,turb}}{(\chi_{i,NC} + \chi_{i,turb})} \sim 0$$

- \Rightarrow Pr less useful in H-mode?
- RV_{ϕ}/χ_{ϕ} less ambiguous

Steady state transport analysis (Kaye et al., 2009)

Diffusivity (m²/s)

To obtain sufficient rotation braking required strong bias to lower single null

3D perturbation from IPEC

IPEC-PENT modeling predicts similar range of core-dominant NTV torque, but profiles are different due to q=1 subtlety

- Lower coil n=3 configuration generates both resonant and non-resonant components of the field
- Total NTV by trapped and passing ions = 0.13~0.36N-m for q_{min}=0.95~1.05
 - NTV torque is strong at the core by l=1,2 bounce resonances, and also by low enough collisionality due to peaked temperature profile
- But wrong in details: Non-linear saturation of the field inside q<1, potato orbits at the center, and finite-orbit averaging near the peaks can be all important

Effect of sawteeth visible in central rotation

- Sawteeth occur with period $(\Delta t)_{ST} \approx 6-22 \text{ ms}$ (average ~12 ms)
- CXRS measurement sampling of $\Delta t=5$ ms
- Can ensemble difference just before/after to estimate average $\Delta\Omega_{ST}$, $\Delta T_{e,ST}$, ...

Sawteeth cause ~6 krad/s (~8%) deceleration inside inversion radius

- q=1 surface ψ_N ~0.19-0.26 (R_{out}~114-118 cm) consistent with ΔT_e inversion
- $\Delta T_{e} \sim 120 \text{ eV} (\sim 16\% \text{ of } T_{e,0} \sim 750)$
- ΔT_i ~ 50 eV (~6% of T_{i,0}~800)

Predicted $\Omega(t)$ response improved when including convection $(\chi_{\phi} \& V_{\phi})$ as opposed to diffusion only (χ_{ϕ})

 Details of time response not accurately reproduced

Many theoretical mechanisms to consider for momentum transport

$$\Pi_{\varphi} = nmR(\chi_{\varphi}u' + \chi_{\varphi\perp}\gamma_{E}) + (nmRV_{\varphi} + mR\Gamma_{p})u + C_{UD} + C_{\rho*} + \dots$$

- More general expression for momentum transport (e.g., Peeters, NF 2011) includes contributions due to:
 - Perpendicular (E×B) flow shear [Casson, 2010; Dominguez, 1993]
 - Particle convection (usually expected to be small)
 - Up-down asymmetry [Camenen, 2009]
 - Finite ρ_* /nonlocal effects (profile shearing, ...) [Camenen, 2011]
- Also, important to consider all mechanisms in fully developed nonlinear turbulence (i.e. not just quasi-linear)
- In the core of NSTX NBI plasmas, toroidal flow dominates radial force balance so that u'=(qR/r)·γ_E (i.e. negligible v_{pol}, ∇p_i contributions)
 - In theory and codes we can vary u', γ_E, u, ρ_{*} independently to identify various physical mechanisms
- Have begun to investigate nonlinear, E×B shear and finite ρ_* effects

EFIT and profiles - 29890F01, t~0.43 s

- Using MSE-constrained EFIT++ g-file from I. Lupelli (t=0.432 s)
- Using TRANSP profiles from 29890F01, time-averaged t=0.43-0.44 s
- Wrote D, C, D_{beam} information ($T_C=T_D$, $T_{beam}=2/3E_{beam}$)
- Calculated Z_{eff} from species densities what about Z_{eff} from Bremsstrahlung (larger than carbon only)?

Raw data example vs. ψ_N

• Can see the CXRS T_i get a bit crazy for ψ_N >0.8, and rotation has gotten small (probably low carbon density) – flattish rotation profiles used in TRANSP out here

Rotation shear strongest around X=0.6; Peeters rough non-locality condition not particularly big

