

Progress, challenges and plans in transport research in NSTX-Upgrade

Walter Guttenfelder

Princeton Plasma Physics Laboratory

Plasma Physics Seminar Series UCLA Dept. of Physics and Astronomy Feb. 11, 2016

Big picture: Magnetic fusion energy

- Goal: use thermonuclear fusion to generate electricity
- Need T~150 million °C & sufficient triple product, $nT\tau_E$, to generate fusion gain, Q=P_{fusion}/P_{loss}>1
- Magnetically confined plasmas have generated 11-16 MW of fusion power using 46-22 MW (Q=0.23-0.7) (TFTR & JET tokamaks)
- Remaining obstacle \rightarrow need higher energy confinement time, $\tau_E=3nT\cdot V/P_{loss}$
- ITER being built to demonstrate Q=5-10, uses very large volume (V) to increase τ_E what about trying to minimize P_{loss} at smaller V (cheaper)?

Outline

- Tokamaks, confinement, micro-instabilities & turbulence
- Uniqueness of spherical tokamaks (STs)
- Status of NSTX-Upgrade
- NSTX transport results, challenges & research plans

Tokamak confinement

Charged particles confined by magnetic fields

- F=qv×B \rightarrow gyromotion \rightarrow perpendicular confinement
- But large end losses \rightarrow bend into a torus

Toroidicity Leads To Inhomogeneity in |B|

- Magnetic field strength varies as $B \sim 1/R$, weaker on the outboard side
- ∇B and curvature (κ) point towards symmetry axis, leads to additional perpendicular drifts

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

VB & Curvature Lead To Perpendicular Drifts, charge separation

- Drifts mostly vertical (Z direction), oppositely directed for ions and electrons → charge separation
- E×B drift of particles would limit confinement to ~1 μs

Use helical field lines to short-circuit perpendicular equilibrium drifts: The Tokamak

NSTX-U

Nested flux surfaces confine hot, high pressure plasma

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Increasing gradients eventually cause small scale micro-instability \rightarrow turbulence

- Quasi-2D dynamics: small perpendicular scales ($L_{\perp} \sim \rho_i$), elongated along field lines
- Small amplitude ($\delta n/n < 1\%$), still effective at transport, limiting $\tau_E=3nT/P_{loss}$

Gyrokinetics in brief – evolving 5D gyro-averaged distribution function

Howes et al., Astro. J. (2006)

Gyrokinetics in brief – evolving 5D gyro-averaged distribution function

Must also solve gyrokinetic Maxwell equations self-consistently

Why does turbulence develop in tokamaks?

Example: Linear stability analysis of Ion Temperature Gradient (ITG) "ballooning" micro-instability

VB & Curvature Lead To Perpendicular Drifts

$$\vec{v}_{\kappa} = m v_{||}^2 \frac{\hat{b} \times \vec{\kappa}}{qB}$$
$$\vec{v}_{\nabla B} = \frac{m v_{\perp}^2}{2} \frac{\hat{b} \times \nabla B / B}{qB}$$

If $\beta = nT \cdot 2\mu_0 / B^2 \ll 1$ $\nabla B / B \approx \kappa \approx 1 / R$

- Curvature, ∇B drifts depend on particle energy $(v_{\parallel}^2, v_{\perp}^2) \sim (T_{\parallel}, T_{\perp})$
- What happens when there are small perturbations in T_{\parallel}, T_{\perp} ?

⇒Linear stability analysis...

Temperature perturbation leads to compression

- Fourier decompose perturbations in space, assume small δT perturbation
- Spatial variation in T(θ) leads to variation in toroidal drifts
- Resulting compression
 (∇·v_{di}) causes a density
 perturbation – 90° out-of phase with δT

NSTX-U

Dynamics Must Satisfy Quasi-neutrality

• Quasi-neutrality (Poisson equation, $k_{\perp}^2 \lambda_D^2 <<1$) requires

• For this ion drift wave instability, parallel electron motion is very rapid

 $\omega < k_{\parallel} v_{Te}$

⇒Electrons (approximately) maintain a Boltzmann distribution

$$(n_0 + \widetilde{n}_e) = n_0 \exp(-e\widetilde{\phi}/T_e)$$

$$\widetilde{\mathsf{n}}_{\mathrm{e}} \approx \mathsf{n}_{\mathrm{0}} \mathsf{e} \widetilde{\varphi} / \mathsf{T}_{\mathrm{e}} \Rightarrow \widetilde{\mathsf{n}}_{\mathrm{e}} \approx \widetilde{\varphi}$$

Perturbed Potential Creates E×B Advection

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Background Temperature Gradient Reinforces Perturbation \Rightarrow Instability

Analogy for turbulence in tokamaks - density gradient in the presence of gravity

- Higher density on top of lower density, with gravity acting downwards (Rayleigh-Taylor instability)
- Any small perturbation becomes unstable
- Convection mixes regions of different density

Inertial force in toroidal field acts like an effective gravity

GYRO code https://fusion.gat.com/theory/Gyro

Same Dynamics Occur On Inboard Side But Now Temperature Gradient Is Stabilizing

 Advection with VT counteracts perturbations on inboard side – "good" curvature region 0.5 "good" curvature "bad" curvature -0.5 $\nabla \mathsf{T}$ $abla \mathsf{T}$ B (T) **1.8**⊧ $\vec{v}_{E\times B} = \frac{\vec{E} \times \hat{b}}{R}$ ∇B $\vec{v}_{E \times B}$ T+ T+ 1.6 T-T-1.4 T+ T+ 1.2 Т-Тn T+ T+ 0.5 Т-Т-3.2 3.4 3.6 3.8 4.2 4

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Fast Parallel Motion Along Helical Field Line Connects Good & Bad Curvature Regions

Threshold like behavior analogous to Rayleigh-Benard instability

Temperature gradient (T_{hot} - T_{cold}) Analogous to convective transport when heating a fluid from below ... boiling water (before the boiling)

Rayleigh, Benard, early 1900's

Threshold gradient for temperature gradient driven instabilities have been characterized over parameter space with gyrokinetic simulations

Inhomogeneous magnetic field causes trapped particles to precess toroidally

Trapped electron precession frequencies can be comparable to drift wave frequency ($\omega \sim v_{Ti}/R$) \Rightarrow resonance can enhance ITG instability and lead to distinct trapped electron mode (TEM) instabilities driven by ∇T_e , ∇n_e

Where do spherical tokamaks enter the picture?

Aspect ratio is an important free parameter, can try to make smaller reactors (i.e. cheaper)

Aspect ratio A = R / aElongation $\kappa = b / a$

R = major radius, a = minor radius, b = vertical $\frac{1}{2}$ height

But smaller R = larger curvature, ∇B (~1/R) -- isn't this terrible for "bad curvature" driven instabilities?!?!?!

Field lines spend more time in good curvature region \rightarrow improved average curvature

- STs naturally elongated, also contributes to improved stability
- High beta achievable \rightarrow can use weaker field (cheaper)

High-beta STs become quasi-isodynamic (region of ~constant |B|)

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Trapped electron precession weaker in STs

 Large variation in |B| along a field line gives large fraction of trapped electrons, BUT orbit-averaged drifts more favorable at low-aspect ratio →Good for TEM stability

Rewoldt et al., PoP (1996)

ITG instability typically stabilized at high beta by coupling to magnetic fluctuations

• Tries to bend field lines, energetically unfavorable \rightarrow stabilizing

With low moment of inertia, ST plasmas can rotate rapidly (Mach≥0.5)

- Perpendicular (E×B) shear can tear apart turbulent eddies
- Turbulent transport expected to be reduced as the mean flow shear rate (ω_s~dU₀/dy) approaches the turbulence decorrelation rate (Δω_D)

 Correlation between E×B shearing rate and transport reduction observed experimentally (Ren, NF 2013)

NSTX-U

NSTX recently completed major upgrade: ~2× higher B_T , I_p , P_{NBI} , ~5 × longer pulse length

NSTX-U

Commissioning of NSTX-U began Dec. 2015!

- After ~3 weeks of baking the vacuum vessel:
- First days spent optimizing plasma breakdown and current ramp-up
- Continued by optimizing feedback control of plasma current flat-top, outer gap and vertical stability of plasma (i.e. simple position control)
- Began injecting neutral beam power up to 3-4 MW
 - Able to divert and achieve H-mode

Stationary discharges achieved, limited only by ohmic flux/current

Routine operation at 0.65 T (0.55 T max for NSTX), H-mode access achieved

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Status and operations in FY16

• Will move into research operations after 4-8 weeks of machine commissioning (improved plasma shape control, wall conditioning, diagnostic commissioning, ...)

– 18 run weeks in FY16, through ~July

- Field & current limits in 1st year: B_T =0.8 T, I_p =1.6 MA 2nd year will utilize full field, current: 1.0T, 2 MA
- Have done various boronizations to condition plasma facing components
 - Plan to introduce Lithium after ~9 weeks of operation

Some general NSTX transport observations

L-mode (i.e. lower beta) – ITG/TEM predicted unstable

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

GYRO* simulations illustrate reduction in ITG/TEM turbulence due to E×B shear in NSTX L-mode plasma

Snapshot of density without E×B shear

100 ion radii —— 6,000 electron radii —— ~50 cm

Snapshot of density with E×B shear

*Candy, Waltz, PRL (2003)

Ren, NF (2013)

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

GYRO* simulations illustrate reduction in ITG/TEM transport due to E×B shear in NSTX L-mode plasma

• Experimental fluxes not matched by predictions

Previous simulations run in *local* limit, non-local simulations tend to reduce predicted transport

- Nature of instability can also change with radius in plasma, e.g. strong flow shear can drive a Kelvin-Helmholtz-like instability deeper in core (W.X. Wang, PoP 2015)
- Challenge #1: Likely need robust non-local simulations (ρ_{*}~1/100)
- Also need ion scale turbulence measurements \rightarrow 2D BES in NSTX-U

Some general NSTX transport observations

H-mode

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Ion thermal transport in H-modes (higher beta) usually very close to collisional (neoclassical) transport theory

• Follows simple argument that traditional ion scale turbulence (ITG/TEM) suppressed by equilibrium configuration and/or strong E×B flow shear

- Impurity transport (intrinsic carbon, injected Ne, ...) also usually well described by neoclassical theory
 - Toroidal angular momentum transport is anomalous (Kaye, NF 2009)
- Electron energy transport always anomalous

Normalized energy confinement time scales favorably with collisionality in STs

- Different from ITER scaling law ($\tau_{E,98y2} \sim v_{*e}^{-0.1}$)
- Next generation STs (FNSF, CTF, Pilot Plant) likely to be at lower ν_{\star}
- Present ST confinement scaling with v_* favorable \Rightarrow will it hold at lower v_* ?
 - Hints at lower v_* that $\chi_i > \chi_{i,NC}$ ($D_{imp} > D_{imp,NC}$)

At increasing β, ITG/TEM predicted to be much weaker or absent

→Electron scale (ETG) turbulence

Electron scale (~mm) turbulence can dominate when ITG/TEM suppressed

- Electron temperature gradient (ETG) instability "isomorphic" to ITG, same ballooning instability mechanism but reversed role of ions and electrons
- $L_{\perp} \sim \rho_e, \omega \sim v_{Te}/R$ (~60 times smaller, ~60 times faster than ITG)
- Characteristic gyroBohm transport expected to be 1/60 of ITG transport $\chi_{ETG} \sim (\Delta x)^2 / \Delta t \sim \rho_e^2 v_{Te} / R \sim (1/60) \cdot \rho_i^2 v_{Ti} / R$
- "Streamers" can exist nonlinearly (Jenko, Dorland, 2000, 2001)

 $\Delta \mathbf{x} \sim \mathbf{L}_{\mathrm{r}} > \mathbf{L}_{\mathrm{\theta}} (\mathbf{k}_{\mathrm{\theta}} >> \mathbf{k}_{\mathrm{r}})$

 \Rightarrow Much larger transport than expected

density fluctuations from ETG simulation

6 ion radii ←──── 360 electron radii ────→ <mark>~2 cm</mark>

Guttenfelder, PoP (2011)

Not easy to image electron scale (mm) fluctuations \rightarrow "microwave scattering" used to detect high-k fluctuations

density fluctuations from ETG simulation

6 ion radii ──── 360 electron radii ────→ <mark>~2 cm</mark>

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Correlation observed between high-k scattering fluctuations and ∇T_e

- Applying RF heating to increase Te
- Fluctuations increase as expected for ETG turbulence
- Other trends measured that are consistent with ETG expectations, e.g. reduction of highk scattering with:
- Strongly reversed magnetic shear (Yuh, PRL 2011)
 - Simulations predict comparable suppression (Peterson, PoP 2012)
- 2. Increasing density gradient (Ren, PRL 2011)
 - Simulations predict comparable trend (Ren, PoP 2012, Guttenfelder NF, 2013, Ruiz PoP 2015)
- Sufficiently large E×B shear (Smith, PRL 2009)
 - Observed in ETG simulations (Roach, PPCF 2009; Guttenfelder, PoP 2011)

E. Mazzucato et al., NF (2009)

While many high-k trends correlate with ETG predictions, predicted transport often too small

 Challenge #2: May need multi-scale simulations (recall UCLA seminar by N. Howard, Jan. 22, 2016) and improved high-k scattering measurements

New high-k scattering configuration should allow improved spectral coverage

• Will allow better overlap with streamer like structure $(k_{\theta} >> k_r)$

At highest β's, electromagnetic turbulence is predicted

→Microtearing mode (MTM) turbulence

Simulations of microtearing turbulence predict $\delta B/B \sim 10^{-3}$

NSTX-U

Linear microtearing instability

- High-m tearing mode around a rational q(r₀)=m/n surface (k_{||}(r₀)=0) (Classical tearing mode stable for large m, Δ'≈-2m/r<0)
- In the core, driven by ∇T_e with^{*} time-dependent thermal force \Rightarrow requires collisionality

Conceptual linear picture

- Imagine helically resonant (q=m/n) δB_r perturbation
- δB_r leads to radially perturbed field line, finite island width
- + ∇T_e projected onto field line gives parallel gradient
- Time-dependent parallel thermal force (phase shifted, $\sim i\omega/v^*n_e \nabla_{\parallel}T_e$) balanced by inductive electric field E_{\parallel} =-d A_{\parallel} /dt with a δB_r that reinforces the instability
- Instability requires sufficient ∇T_e , β , ν_e (differences predicted in the edge)
- Not explicitly driven by bad-curvature

*e.g. Hazeltine et al., Phys. Fluids (1975); Drake & Lee, Phys. Fluids (1977); A. Hassam (1980)

 $\mathbf{w} = 4 \left(\frac{\delta \mathbf{B}_{r}}{\mathbf{B}} \frac{\mathbf{r} \mathbf{R}}{\mathbf{n} \hat{\mathbf{s}}} \right)^{1/2}$ $\nabla_{||} \mathbf{T}_{e0} = \frac{\mathbf{\vec{B}} \cdot \nabla \mathbf{T}_{e0}}{\mathbf{B}} = \frac{\delta \mathbf{B}_{r}}{\mathbf{B}} \nabla \mathbf{T}_{e0}$

 $\delta B_r \sim \cos(m\theta - n\phi)$

Onset of magnetic stochasticity leads to large electron thermal transport, $Q_e \sim v_{Te} |\delta B/B|^2$

• Inspecting Poincare plots during early phase of simulation (before saturation)

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Microtearing-driven (MT) transport may explain ST collisionality scaling

Guttenfelder, et al., PoP (2012)

Challenge #3: Simulation and measurement of electromagnetic at high beta

- Numerically challenging to simulate, susceptible to E×B shear suppression? (Doerk, PRL 2011; Hatch, UCLA seminar 2015)
- Strongly desire internal magnetic fluctuation measurements to validate simulations (ongoing collaboration with UCLA diagnostic group)
- A unique "dissipative" TEM predicted to have similar collisionality scaling to MTM (W.X. Wang, PoP 2015)
 - From global <u>ES</u> simulations
 - Highlights need for global <u>EM</u> sims, see Challenge #1

Other mechanisms that are not drift wave micro-turbulence

In high power H-modes max T_e limited, correlated with presence of Global Alfven eigenmodes (GAE)

- Gradient-driven microinstabilities unlikely to explain flattened profiles (unless substantial non-local effects are important)
- GAE and CAE (compressional Alfven eigenmodes) driven unstable by gradients in fastion phase space
- How do they influence electron thermal transport?

NSTX-U

The presence of a large number of GAE/CAEs can stochasticize electron orbits

 Global structure simulated (Belova, PRL 2015) and measured by reflectometry (Crocker, NF 2013)

 Computed electron orbits become stochastic with sufficient number & amplitude of overlapping GAE & CAE modes

NSTX-U

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

Stochastic orbits can give very large $\chi_{e,st} \sim \langle \Delta r^2 \rangle / \Delta t$

- CAEs also couple to kinetic Alfven waves (KAW) near mid-radius (Belova, PRL 2015) → may redistribute beam energy before heating electrons
- Challenge #4: Must consider mechanisms beyond drift wave microturbulence

Summary of observations and challenges

- Numerous transport observations and simulations give hints as to the nature of transport in NSTX, complicated by broad range of operating regime (especially beta)
- Continuously improving diagnostics to validate predictions, verify transport mechanisms
 - Upgraded BES
 - New "2D" high-k scattering
 - Internal δB measurement?
- Gyrokinetic simulations have advance considerably, but still require reliable and robust simulations that are:
 - Global, electromagnetic, possibly multiscale, with strong flow/flow shear (haven't even mentioned equilibrium centrifugal effects)
- Likely need to account for mechanism beyond drift wave turbulence
 - GAE/CAE stochastic orbit
 - CAE-KAE coupling
- Ultimately want to improve our predictive capability for next generation tokamaks (ITER, FNSF, CTF, Pilot Plant, ...)

NSTX-U transport and turbulence research aims to establish predictive capability for performance of FNSF & ITER

- Challenging and exciting as:
 - NSTX-U accesses a variety of drift wave transport mechanisms

All potentially relevant for ITER & other tokamaks

64

NSTX-U transport and turbulence research aims to establish predictive capability for performance of FNSF & ITER

- Challenging and exciting as:
 - NSTX-U accesses a variety of drift wave transport mechanisms
 - NSTX-U is unique in achieving high β and low collisionality regime

 $\begin{array}{l} \mbox{Will τ_{E}\sim$1/$\nu_{\star}$ remain valid?} \\ \mbox{Will microtearing be suppressed?} \\ \mbox{Will $\chi_{i} \approx \chi_{i,NC} \& D_{imp} \approx D_{imp,NC}$ hold?} \end{array}$

NSTX-U transport and turbulence research aims to establish predictive capability for performance of FNSF & ITER

- Challenging and exciting as:
 - NSTX-U accesses a variety of drift wave transport mechanisms
 - NSTX-U is unique in achieving high β and low collisionality regime
 - Electron thermal transport can also be driven by Global & Compressional Alfvén eigenmodes (GAE/CAEs)
 What is role of GAE/CAE setting T_{e 0}?

Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016)

NSTX-U transport and turbulence research thrusts

- Thrust 1: Characterize H-mode global energy confinement scaling in the lower collisionality regime of NSTX-U
- Thrust 2: Identify regime of validity for instabilities responsible for anomalous electron thermal, momentum, and particle/impurity transport in NSTX-U
 - Low-k modes ($k_{\perp}\rho_s \leq 1$): ITG/TEM/KBM, MT
 - High-k mode: ETG
 - CAE/GAE

drift waves

Alfvén eigenmodes

Thrust 3: Establish and validate reduced transport models

The End!!!

