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• Goal: use thermonuclear fusion to generate 

electricity 

 

• Need T~150 million C & sufficient triple product, 

nTtE, to generate fusion gain, Q=Pfusion/Ploss>1 

 

• Magnetically confined plasmas have generated 11-

16 MW of fusion power using 46-22 MW (Q=0.23-

0.7) (TFTR & JET tokamaks) 

 

• Remaining obstacle  need higher energy 

confinement time, tE=3nTV/Ploss 

 

• ITER being built to demonstrate Q=5-10, uses very 

large volume (V) to increase tE – what about trying 

to minimize Ploss at smaller V (cheaper)? 

Big picture: Magnetic fusion energy 
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• Tokamaks, confinement, micro-instabilities & 

turbulence 

 

• Uniqueness of spherical tokamaks (STs) 

 

• Status of NSTX-Upgrade 

 

• NSTX transport results, challenges & research plans 

Outline 
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Tokamak confinement 
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Charged particles confined by magnetic fields 

• F=qvB  gyromotion  perpendicular confinement 

 

• But large end losses  bend into a torus 
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Toroidicity Leads To Inhomogeneity in |B| 

• Magnetic field strength varies as B ~ 1/R, weaker on the outboard side 

 

• B and curvature (k) point towards symmetry axis, leads to additional 
perpendicular drifts 
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B & Curvature Lead To Perpendicular Drifts, charge 
separation 

• Drifts mostly vertical (Z direction), oppositely directed 

for ions and electrons  charge separation 

• EB drift of particles would limit confinement to ~1 ms 
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Use helical field lines to short-circuit perpendicular 
equilibrium drifts:  The Tokamak 
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Nested flux surfaces confine hot, high pressure plasma 
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• Quasi-2D dynamics: small perpendicular scales (L~ri), elongated along field lines 

• Small amplitude (dn/n<1%), still effective at transport, limiting tE=3nT/Ploss 

 

Increasing gradients eventually cause small scale 
micro-instability  turbulence 

GENE gyrokinetic simulation 

genecode.org 

Ploss 
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Gyrokinetics in brief – evolving 5D gyro-averaged 
distribution function 

1
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Howes et al., Astro. J. (2006) 

• Average over fast gyro-motion  

evolve a distribution of gyro-rings 
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Gyrokinetics in brief – evolving 5D gyro-averaged 
distribution function 

• Must also solve gyrokinetic Maxwell equations self-consistently 
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Why does turbulence develop in 
tokamaks? 

 
Example: Linear stability analysis of 

Ion Temperature Gradient (ITG) 
“ballooning” micro-instability 
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B & Curvature Lead To Perpendicular Drifts 

• Curvature, B drifts depend on particle energy 

(v||
2, v

2) ~ (T||, T) 

• What happens when there are small perturbations 

in T||, T? 

Linear stability analysis… 
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Temperature perturbation leads to compression 

• Fourier decompose 

perturbations in space, 

assume small dT 

perturbation 

 

• Spatial variation in T(q) 

leads to variation in 

toroidal drifts 

 

• Resulting compression 

(vdi) causes a density 

perturbation – 90 out-of-

phase with dT 
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Dynamics Must Satisfy Quasi-neutrality 

• Quasi-neutrality (Poisson equation, k
2lD

2<<1) requires 

 

 

 

 

• For this ion drift wave instability, parallel electron motion is very rapid 
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Perturbed Potential Creates EB Advection 

• Advection occurs in the 

radial direction 

B, curvature 
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Background Temperature Gradient Reinforces 
Perturbation  Instability 

Characteristic wavelength ~ ri 
(kri~1) 
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Analogy for turbulence in tokamaks - density gradient in 
the presence of gravity 

• Higher density on top of lower density, with gravity acting 

downwards (Rayleigh-Taylor instability) 

• Any small perturbation becomes unstable 

• Convection mixes regions of different density 

gravity density/pressure 
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Inertial force in toroidal field acts like an effective gravity 

gravity 

pressure 

Unstable in the 

outer region 

pressure 

centrifugal force 

effective gravity 

GYRO code 

https://fusion.gat.com/theory/Gyro 
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Same Dynamics Occur On Inboard Side But Now 
Temperature Gradient Is Stabilizing 

• Advection with T counteracts perturbations on inboard side – “good” 

curvature region 
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Fast Parallel Motion Along Helical Field Line Connects 
Good & Bad Curvature Regions 

• Approximate growth rate on outboard side 

 

• Parallel transit time 
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Threshold like behavior analogous to Rayleigh-Benard 
instability 

Temperature gradient 

(Thot  - Tcold) 

Heat flux ~ heating power 

diffusion 

+ 

turbulence 

collisional 

diffusion 

Analogous to convective transport 

when heating a fluid from below … 

boiling water (before the boiling) 

Rayleigh, Benard, early 1900’s 

Threshold gradient for temperature gradient driven instabilities have been 

characterized over parameter space with gyrokinetic simulations 
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Inhomogeneous magnetic field causes trapped 
particles to precess toroidally 

Trapped electron precession frequencies can be comparable to drift wave 

frequency (~vTi/R)  resonance can enhance ITG instability and lead to 

distinct trapped electron mode (TEM) instabilities driven by Te, ne 

E = 1/2mv2  = constant 

m = mv
2/2B = constant 



25 Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016) 

Where do spherical tokamaks 
enter the picture? 



26 Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016) 

Aspect ratio is an important free parameter, can try to 
make smaller reactors (i.e. cheaper) 

But smaller R = larger curvature, B (~1/R) -- isn’t this 

terrible for “bad curvature” driven instabilities?!?!?! 

Aspect ratio A = R / a 

Elongation k = b / a  

a R 

R = major radius,  a = minor radius,  b = vertical ½ height 

a 

b 
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• STs naturally elongated, also contributes to improved stability 

• High beta achievable  can use weaker field (cheaper) 

Field lines spend more time in good curvature region  
improved average curvature 
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• Field strength does not simply follow |B|~1/R 

• A nearly uniform |B| exists in the outboard region 

B drifts are stabilizing in bad curvature 
region 

High-beta STs become quasi-isodynamic (region of 
~constant |B|) 
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• Large variation in |B| along a field line gives large fraction of trapped 
electrons, BUT orbit-averaged drifts more favorable at low-aspect ratio 
Good for TEM stability 

Trapped electron precession weaker in STs 

Rewoldt et al., PoP (1996) 

Orbit-averaged drift of trapped particle 
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• Tries to bend field lines, energetically unfavorable  stabilizing 

ITG instability typically stabilized at high beta by 
coupling to magnetic fluctuations 
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• Perpendicular (EB) shear can tear apart 

turbulent eddies 

• Turbulent transport expected to be reduced 

as the mean flow shear rate (s~dU0/dy) 

approaches the turbulence decorrelation 

rate (DD) 

 

 

 

 

 

 

 

 

 

With low moment of inertia, ST plasmas can rotate 
rapidly (Mach0.5) 

Biglari, Diamond, Terry 1990 

• Correlation between EB 

shearing rate and transport 

reduction observed 

experimentally (Ren, NF 2013) 
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NSTX-U 
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NSTX recently completed major upgrade: 
~2 higher BT, Ip, PNBI, ~5  longer pulse length 
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• After ~3 weeks of baking the vacuum vessel: 

 

• First days spent optimizing plasma breakdown and current 

ramp-up 

 

• Continued by optimizing feedback control of plasma current 

flat-top, outer gap and vertical stability of plasma (i.e. simple 

position control) 

 

• Began injecting neutral beam power up to 3-4 MW 

– Able to divert and achieve H-mode 

Commissioning of NSTX-U began Dec. 2015! 
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Stationary discharges achieved, limited only by ohmic 
flux/current 
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26 kA swing 

1 MW NBI 

202814 

Also limiting length of discharge to limit coil 

heating  increased shot rep rate (~15 min) 
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Routine operation at 0.65 T (0.55 T max for NSTX), 
H-mode access achieved 

Ip  0.58 MA 

BT0 0.61 T 

PNBI 3 MW 

POH 0.2 MW 

A 1.6 

κ 1.53 

li 0.97 

δlower 0.55 

W  150 kJ 

βT 7.9% 

βP 1.2% 

βN 4.6 

τe 
50 ms ψN 

202946 

L-mode 0.30s 

H-mode 0.48s 

L
o

w
e

r 

d
iv

 D
α

 
M

id
 D

α
 

LFS 

gas HFS 

gas 

Divert 

L-H transition 

ELMs 

EFIT01 202946 0.481000 s 

shot
time
chi**2
Rout(m)
Zout(m)
a(m)
elong
utri
ltri
indent
V (m**3)
A (m**2)
W (MJ)
betaT(%)
betaP
betaN
In
Li
error(e-4)
q1
q95
dsep(m)
Rm(m)
Zm(m)
Rc(m)
Zc(m)
betaPd
betaTd
Wdia(MJ)
Ipmeas(MA)
BT(0)(T)
Ipfit(MA)
Rmidin(m)
Rmidout(m)
gapin(m)
gapout(m)
gaptop(m)
gapbot(m)
Zts(m)
Rvsin(m)
Zvsin(m)
Rvsout(m)
Zvsout(m)
Rsep1(m)
Zsep1(m)
Rsep2(m)
Zsep2(m)
psib(Vs/R)
elongm
qm
nev1(e19)
nev2(e19)
nev3(e19)
ner0(e19)
n/nc
dRsep
qmin
rhoqmin

    202946
0.481000

217.269
0.912

-0.047
0.568
1.570
0.412
0.554
0.000
8.112
1.489
0.151
7.857
1.223
4.661
1.686
0.972

10000.000
11.729
6.041
0.030
1.000
1.000
1.038

-0.017
1.320
8.483
0.163
0.617

-0.611
0.584
0.345
1.480
0.030
0.087
0.486
0.379

100.000
0.337

-1.099
0.769

-1.568
0.598

-0.938
0.582
0.927

-0.042
1.529
1.000
0.000
0.000
0.000
0.000
0.032

-0.003
1.704
0.533

shot
time
chi**2
Rout(m)
Zout(m)
a(m)
elong
utri
ltri
indent
V (m**3)
A (m**2)
W (MJ)
betaT(%)
betaP
betaN
In
Li
error(e-4)
q1
q95
dsep(m)
Rm(m)
Zm(m)
Rc(m)
Zc(m)
betaPd
betaTd
Wdia(MJ)
Ipmeas(MA)
BT(0)(T)
Ipfit(MA)
Rmidin(m)
Rmidout(m)
gapin(m)
gapout(m)
gaptop(m)
gapbot(m)
Zts(m)
Rvsin(m)
Zvsin(m)
Rvsout(m)
Zvsout(m)
Rsep1(m)
Zsep1(m)
Rsep2(m)
Zsep2(m)
psib(Vs/R)
elongm
qm
nev1(e19)
nev2(e19)
nev3(e19)
ner0(e19)
n/nc
dRsep
qmin
rhoqmin

    202946
0.481000

217.269
0.912

-0.047
0.568
1.570
0.412
0.554
0.000
8.112
1.489
0.151
7.857
1.223
4.661
1.686
0.972

10000.000
11.729
6.041
0.030
1.000
1.000
1.038

-0.017
1.320
8.483
0.163
0.617

-0.611
0.584
0.345
1.480
0.030
0.087
0.486
0.379

100.000
0.337

-1.099
0.769

-1.568
0.598

-0.938
0.582
0.927

-0.042
1.529
1.000
0.000
0.000
0.000
0.000
0.032

-0.003
1.704
0.533

Fri Jan 22 20:45:46 2016



39 Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016) 

• Will move into research operations after 4-8 weeks of machine 

commissioning (improved plasma shape control, wall 

conditioning, diagnostic commissioning, …) 

– 18 run weeks in FY16, through ~July 

 

• Field & current limits in 1st year: BT=0.8 T, Ip=1.6 MA 

– 2nd year will utilize full field, current: 1.0T, 2 MA 

 

• Have done various boronizations to condition plasma facing 

components 

– Plan to introduce Lithium after ~9 weeks of operation 

 

Status and operations in FY16 
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Some general NSTX transport 
observations 

 
L-mode (i.e. lower beta) – 

ITG/TEM predicted unstable 
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GYRO* simulations illustrate reduction in ITG/TEM 
turbulence due to EB shear in NSTX L-mode plasma 

Snapshot of density without EB shear Snapshot of density with EB shear 

mean flow velocity profile 

100 ion radii 

6,000 electron radii 

~50 cm 

Lower amplitude 

Smaller (titled) eddies 

Reduced transport 

Heat flux Heat flux 

*Candy, Waltz, PRL (2003) 

 

Ren, NF (2013) 
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• Experimental fluxes not matched by predictions 

GYRO* simulations illustrate reduction in ITG/TEM 
transport due to EB shear in NSTX L-mode plasma 

Ren, NF (2013) 
EB shearing rate 
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• Nature of instability can also change with radius in plasma, e.g. strong flow 

shear can drive a Kelvin-Helmholtz-like instability deeper in core (W.X. 

Wang, PoP 2015) 

• Challenge #1: Likely need robust non-local simulations (r*~1/100) 

• Also need ion scale turbulence  measurements  2D BES in NSTX-U 

Previous simulations run in local limit, non-local 
simulations tend to reduce predicted transport 

Ren, PoP (2015) 

GYRO - run in local limit 

GTS – non-local (W.X. Wang, PoP 2007) 

Local limit: Assume 

r*=ri/R0 (OK for 

ITER, r*~1/1000)       

 use equilibrium 

parameters from one 

flux surface 
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Some general NSTX transport 
observations 

 
H-mode 
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• Follows simple argument that traditional ion scale turbulence (ITG/TEM) 
suppressed by equilibrium configuration and/or strong EB flow shear 

 

 

 

 

 

 

 

 

 

 

 

• Impurity transport (intrinsic carbon, injected Ne, …) also usually well described 
by neoclassical theory 
– Toroidal angular momentum transport is anomalous (Kaye, NF 2009) 

 

• Electron energy transport always anomalous 

Ion thermal transport in H-modes (higher beta) usually 
very close to collisional (neoclassical) transport theory 

Courtesy Y. Ren 
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Normalized energy confinement time scales favorably 
with collisionality in STs 

• Different from ITER scaling law (tE,98y2~n*e
-0.1) 

• Next generation STs (FNSF, CTF, Pilot Plant) likely to be at lower n* 

• Present ST confinement scaling with n* favorable  will it hold at lower n*? 
– Hints at lower n* that ci > ci,NC (Dimp > Dimp,NC) 

Kaye et al. (2007) 

ITER-like 

scaling 

ST-CTF 

 

? 

 constant 
q, b, r* 

NSTX Upgrade 

NSTX 

ne*  ne / Te
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NSTX upgrade (Menard) 
6.0

L

35.0

e

0.1

T

6.0

p

th

E PnBI~ t



47 Guttenfelder – UCLA Plasma Seminar (Feb. 11, 2016) 

At increasing b, ITG/TEM predicted 
to be much weaker or absent 

 
Electron scale (ETG) turbulence 
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Electron scale (~mm) turbulence can dominate when 
ITG/TEM suppressed 

• Electron temperature gradient (ETG) 

instability “isomorphic” to ITG, same 

ballooning instability mechanism but 

reversed role of ions and electrons 

 

• L ~ re,  ~ vTe/R (~60 times smaller, ~60 

times faster than ITG) 

 

• Characteristic gyroBohm transport 

expected to be 1/60 of ITG transport 

     cETG ~ (Dx)2/Dt ~ re
2vTe/R ~ (1/60)  ri

2vTi/R 

 

• “Streamers” can exist nonlinearly (Jenko, 

Dorland, 2000, 2001) 

 Dx ~ Lr > Lq (kq>>kr) 

Much larger transport than expected 

6 ion radii 

360 electron radii 

~2 cm 

density fluctuations from ETG simulation 

Guttenfelder, PoP (2011) 
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Not easy to image electron scale (mm) fluctuations  
“microwave scattering” used to detect high-k fluctuations 

6 ion radii 

360 electron radii 

~2 cm 

 

     

kp 

ks 

2a 

280 GHz 

probe beam 

θs 

ki 

Smith, RSI (2008) 

density fluctuations from ETG simulation 
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• Applying RF heating to increase Te 

• Fluctuations increase as expected 
for ETG turbulence 

Correlation observed between high-k scattering 
fluctuations and Te 

E. Mazzucato et al., NF (2009) 

• Other trends measured that are consistent 

with ETG expectations, e.g. reduction of high-

k scattering with: 

1. Strongly reversed magnetic shear (Yuh, PRL 

2011) 

– Simulations predict comparable suppression 

(Peterson, PoP 2012) 

2. Increasing density gradient (Ren, PRL 2011) 

– Simulations predict comparable trend (Ren, PoP 

2012, Guttenfelder NF, 2013, Ruiz PoP 2015) 

3. Sufficiently large EB shear (Smith, PRL 

2009) 

– Observed in ETG simulations (Roach, PPCF 

2009; Guttenfelder, PoP 2011) 
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• Challenge #2: May need multi-scale simulations (recall UCLA seminar 

by N. Howard, Jan. 22, 2016) and improved high-k scattering 

measurements 

While many high-k trends correlate with ETG predictions, 
predicted transport often too small 

Ren, PoP (2012) 
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• Will allow better overlap with streamer like structure (kq>>kr) 

New high-k scattering configuration should allow 
improved spectral coverage 

PPPL/UCD 

collaboration 

Old spectral 

coverage 

New spectral 

coverage 
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At highest b’s, electromagnetic 
turbulence is predicted 

 
Microtearing mode (MTM) 

turbulence 
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Simulations of microtearing turbulence predict 
dB/B~10-3 

Guttenfelder, PRL (2011) 
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Linear microtearing instability 

• High-m tearing mode around a rational q(r0)=m/n surface (k||(r0)=0) 

 (Classical tearing mode stable for large m, D-2m/r<0) 

• In the core, driven by Te with* time-dependent thermal force  requires collisionality 

  

 Conceptual linear picture 

• Imagine helically resonant (q=m/n) dBr perturbation 

 

• dBr leads to radially perturbed field line, finite island width 

 

• Te projected onto field line gives parallel gradient 

 

• Time-dependent parallel thermal force (phase shifted, ~i/n*ne||Te) balanced by 

inductive electric field E||=-dA||/dt with a dBr that reinforces the instability 

 

• Instability requires sufficient Te, b, ne (differences predicted in the edge) 

• Not explicitly driven by bad-curvature 
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Onset of magnetic stochasticity leads to large 
electron thermal transport, Qe~vTe|dB/B|2 

• Inspecting Poincare plots during early phase of simulation (before saturation) 

56 

t=10 a/cs t=20 a/cs 

t=30 a/cs t=40 a/cs t=50 a/cs 
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 Microtearing-driven (MT) transport may explain ST 
collisionality scaling  

Guttenfelder, et al., PoP (2012) 

NSTX-U 
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• Numerically challenging to simulate, susceptible to EB shear 
suppression? (Doerk, PRL 2011; Hatch, UCLA seminar 2015) 

 

• Strongly desire internal magnetic fluctuation measurements  to 
validate simulations (ongoing collaboration with UCLA diagnostic 
group) 

 

• A unique “dissipative” TEM predicted to have similar collisionality scaling 
to MTM (W.X. Wang, PoP 2015) 
– From global ES simulations 

– Highlights need for global EM sims, see Challenge #1 

Challenge #3:  Simulation and measurement of 
electromagnetic at high beta 
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Other mechanisms that are not drift 
wave micro-turbulence 
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• Gradient-driven 

microinstabilities unlikely to 

explain flattened profiles 

(unless substantial non-local 

effects are important) 

 

• GAE and CAE (compressional 

Alfven eigenmodes) driven 

unstable by gradients in fast-

ion phase space 

 

• How do they influence electron 

thermal transport? 

In high power H-modes max Te limited, correlated 
with presence of Global Alfven eigenmodes (GAE) 

Stutman, PRL (2009) 
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• Global structure simulated (Belova, PRL 2015) 

   and measured by reflectometry (Crocker, NF 2013) 

 

 

 

 

• Computed electron orbits become stochastic with 
sufficient number & amplitude of overlapping GAE & 
CAE modes 

The presence of a large number of GAE/CAEs 
can stochasticize electron orbits 

Gorelenkov, NF (2010); Crocker (2016) 
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• CAEs also couple to kinetic Alfven waves (KAW) near mid-radius (Belova, 
PRL 2015)  may redistribute beam energy before heating electrons 

 

• Challenge #4: Must consider mechanisms beyond drift wave micro-
turbulence 

Stochastic orbits can give very large ce,st~Dr2/Dt 

Tritz, APS (2012) 
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• Numerous transport observations and simulations give hints as to the nature 
of transport in NSTX, complicated by broad range of operating regime 
(especially beta) 

 

• Continuously improving diagnostics to validate predictions, verify transport 
mechanisms 
– Upgraded BES 

– New “2D” high-k scattering 

– Internal dB measurement? 

• Gyrokinetic simulations have advance considerably, but still require reliable 
and robust simulations that are: 
– Global, electromagnetic, possibly multiscale, with strong flow/flow shear (haven’t even 

mentioned equilibrium centrifugal effects) 

• Likely need to account for mechanism beyond drift wave turbulence 
– GAE/CAE stochastic orbit 

– CAE-KAE coupling 

 

• Ultimately want to improve our predictive capability for next 
generation tokamaks (ITER, FNSF, CTF, Pilot Plant, …) 

Summary of observations and challenges 
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MT 

KBM 

ITG, TEM, ETG 

(DTEM, K-H…) 

NSTX-U transport and turbulence research aims to establish 
predictive capability for performance of FNSF & ITER 

• Challenging and exciting as: 

– NSTX-U accesses a variety of drift wave transport mechanisms 

r/a~0.6-0.7 

All potentially relevant for ITER & 

other tokamaks 

Guttenfelder, NF (2013) 
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MT 

KBM 

ITG, TEM, ETG 

(DTEM, K-H…) 

NSTX-U transport and turbulence research aims to establish 
predictive capability for performance of FNSF & ITER 

• Challenging and exciting as: 

– NSTX-U accesses a variety of drift wave transport mechanisms 

– NSTX-U is unique in achieving high b and low collisionality regime 

r/a~0.6-0.7 

NSTX-U 

Will tE~1/n* remain valid? 

Will microtearing be suppressed? 

Will cici,NC & DimpDimp,NC hold? 
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MT 

KBM 

ITG, TEM, ETG 

(DTEM, K-H…) 

NSTX-U transport and turbulence research aims to establish 
predictive capability for performance of FNSF & ITER 

• Challenging and exciting as: 

– NSTX-U accesses a variety of drift wave transport mechanisms 

– NSTX-U is unique in achieving high b and low collisionality regime 

– Electron thermal transport can also be driven by Global & Compressional Alfvén 
eigenmodes (GAE/CAEs) 

r/a~0.6-0.7 

NSTX-U 

GAE/CAE activity 

What is role of GAE/CAE setting Te,0? 

How will GAE/CAE respond for higher field, 2nd NBI? 

NSTX-U 

NSTX           

     

Fredrickson 
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• Thrust 1: Characterize H-mode global energy confinement 

scaling in the lower collisionality regime of NSTX-U 

• Thrust 2: Identify regime of validity for instabilities responsible 

for anomalous electron thermal, momentum, and 

particle/impurity transport in NSTX-U 

– Low-k modes (krs1):  ITG/TEM/KBM, MT  

– High-k mode: ETG 

– CAE/GAE 

• Thrust 3: Establish and validate reduced transport models 

NSTX-U transport and turbulence research thrusts 

 drift waves 

 Alfvén eigenmodes 
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The End!!! 


