

NSTX-U first results, and progress in transport research

Walter Guttenfelder

Princeton Plasma Physics Laboratory

Plasma Seminar University of Washington, Dept. of Aeronautics & Astronautics Feb. 7, 2017

Outline

- Motivation for spherical tokamak (ST) research
- NSTX-U & first results from 2016

- Transport research:
- Microstability properties related to STs
- Some transport observations & theory

Big picture: Magnetic fusion energy

- Goal: thermonuclear fusion to generate electricity
- Need T~150 million °C & sufficient triple product, $nT\tau_E$, to generate fusion gain, Q=P_{fusion}/P_{loss}>1
- Magnetically confined plasmas have generated 11-16 MW of fusion power using 46-22 MW (Q=0.23-0.7) (TFTR & JET tokamaks)
- Remaining obstacle \rightarrow need higher energy confinement time, $\tau_E=3nT\cdot V/P_{loss}$
- ITER being built to demonstrate Q=5-10, uses very large volume & strong field (\$\$\$) to increase τ_E

Spherical tokamak (ST) has aspect ratio A<2, many parameters intermediate to tokamak – spheromak, FRC

	Tokamak	ST	Spheromak, FRC
A=R/a	3	1.2-2	≥1, 1
q _{edge}	3-4	6-20	→0, ~0
β	3-10%	10-40%	≤20%, 100%
ρ ∗= ρ _i /a	1/200	1/100	1/50, 1/30

• ST is naturally elongated, favorable average curvature improves MHD stability, allowing higher β & use of smaller B_T, also more compact \rightarrow cheaper to build

Why explore spherical tokamaks?

- Potentially attractive for electricity production Pilot Plant (Menard, NF 2011)
- High neutron wall loading in small device Fusion Nuclear Science Facility, FNSF (Menard, NF 2016)
- Improve toroidal physics predictive capability
 - High β and at low collisionality
 - Understand confinement, fast-ion physics for ITER

NSTX-U: National Spherical Torus Experiment – Upgrade

Not addressing many NSTX results in this talk:

- Achieved 40% beta
- Observed favorable confinement scaling with collisionality ($\tau_E \sim 1/v_{*e}$)
- Improved edge and core confinement with lithium wall conditioning
- Achieved 70% non-inductive fraction
- Achieved 300 kA non-inductive startup current via coaxial helicity injection (CHI)
- Heat flux mitigation using "snowflake" divertor

^{• .}

NSTX completed major upgrade in 2015 with goal of: 2 × higher B_T , I_p , P_{NBI} & 5 × longer pulse length

NSTX-U

NSTX-U has surpassed maximum pulse duration and magnetic field of NSTX

Compare similar NSTX / NSTX-U Boronized L-modes, P_{NBI}=1MW

Recovered ~1MA H-modes with performance comparable to best NSTX plasmas at similar current

NSTX-U

Accessed high elongation κ using progressively earlier H-mode and heating + optimized EFC

New: Most tangential NBI generates counterpropagating Toroidal Alfvén Eigenmodes (TAEs)

 Counter-propagating TAE predicted for hollow fast-ion profiles

H.V. Wong, H. Berk, Phys. Lett. A 251 (1999) 126.

NSTX-U had scientifically productive 1st year

- Achieved H-mode on 8th day of 10 weeks of operation
- Surpassed magnetic field and pulse-duration of NSTX
- Matched best NSTX H-mode performance at ~1MA
- Identified and corrected dominant error fields
- Commissioned all magnetic and kinetic profile diagnostics
- Discovered new 2nd NBI modifies several fast-ion modes
- Injected up to 12MW NBI power into armor by end of run
- Implemented techniques for controlled plasma shut down, disruption detection, commissioned new tools for mitigation
- 2016 run ended prematurely due to fault in divertor PF coil
 - Coil forensics, Extent of Condition \rightarrow new coil fab, other repairs
 - Aim to resume plasma operation during 2018

Goals for future NSTX-U operation

- Increase field to 0.8-1T, current to 1.6-2MA, extend flat-top duration (H-mode) to 2-5s
- Assess global stability, energy confinement, pedestal height/structure, edge heat-flux width
- Characterize 2nd beam: heating, current drive, torque / rotation profiles, fast-ion instabilities
- Push toward full non-inductive startup & current drive
- Test advanced divertor heat flux mitigation

Goals for future NSTX-U operation

- Increase field to 0.8-1T, current to 1.6-2MA, extend flat-top duration (H-mode) to 2-5s
 (my expertise ...)
- Assess global stability, <u>energy confinement</u>, pedestal height/structure, edge heat-flux width
- Characterize 2nd beam: heating, current drive, torque / rotation profiles, fast-ion instabilities
- Push toward full non-inductive startup & current drive
- Test advanced divertor heat flux mitigation

Normalized energy confinement time scales favorably with collisionality in STs

- $\tau_{E} \sim I_{p}^{0.4}B_{T}^{1.0}$ (boronization + between-shots He GDC) $\tau_{E} \sim I_{p}^{0.8}B_{T}^{-0.15}$ (between-shots Lithium evap.) similar to ITER $\tau_{E,98y2} \sim I_{p}^{0.9}B_{T}^{-0.15}$

- Considering dimensionless scaling $(\sim \rho_*, q, \beta, \nu_*), \Omega_{ci} \tau_{F} \sim \nu_*^{-0.8} \beta^{0.0}$
- Next generation STs (FNSF, CTF, Pilot Plant) likely to be at lower v_*
 - Will favorable v_* scaling continue?
 - Hints at lower v_* that $\chi_i > \chi_{i,NC}$

NSTX-U H-mode confinement consistent with ST scaling (so far) – need higher I_P , B_T to test

Ion thermal transport in H-modes (higher beta) usually very close to collisional (neoclassical) transport theory

 Conventional tokamaks usually observe anomalous ion heat transport, attributed to microturbulence e.g. from Ion Temperature Gradient (ITG) instability

Why does turbulence develop in tokamaks?

Example: Linear stability analysis of Ion Temperature Gradient (ITG) "ballooning" microinstability (expected to dominate in ITER)

Toroidicity Leads To Inhomogeneity in |B|, gives ∇B and curvature (κ) drifts

• What happens when there are small perturbations in $T_{\parallel}, T_{\perp}? \Rightarrow$ Linear stability analysis...

Temperature perturbation (δ T) leads to compression ($\nabla \cdot v_{di}$), density perturbation – 90° out-of-phase with δ T

Dynamics Must Satisfy Quasi-neutrality

• Quasi-neutrality (Poisson equation, $k_{\perp}^2 \lambda_D^2 <<1$) requires

$$\begin{split} &-\nabla^2 \widetilde{\phi} = \frac{1}{\epsilon_0} \sum_{s} e Z_s \int d^3 v f_s \\ &\left(k_{\perp}^2 \lambda_D^2 \right) \frac{\widetilde{\phi}}{T} = \frac{\widetilde{n}_i - \widetilde{n}_e}{n_0} \end{split}$$

• For this ion drift wave instability, parallel electron motion is very rapid

$$\omega < k_{\parallel} v_{Te} \rightarrow 0 = -T_e \nabla \widetilde{n}_e + n_e e \nabla \widetilde{\phi}$$

⇒Electrons (approximately) maintain a Boltzmann distribution

$$(n_0 + \widetilde{n}_e) = n_0 \exp(e\widetilde{\varphi} / T_e)$$

$$\widetilde{\mathsf{n}}_{\mathsf{e}} \approx \mathsf{n}_{\mathsf{0}} \mathsf{e} \widetilde{\varphi} / \mathsf{T}_{\mathsf{e}} \Longrightarrow \widetilde{\mathsf{n}}_{\mathsf{e}} \approx \widetilde{\varphi}$$

Perturbed Potential Creates E×B Advection

NSTX-U

Background Temperature Gradient Reinforces Perturbation \Rightarrow Instability

Analogy for turbulence in tokamaks – Raylor-Taylor instability

• Higher density on top of lower density, with gravity acting downwards

Same Dynamics Occur On Inboard Side But Now Temperature Gradient Is Stabilizing

 Advection with \(\nabla T\) counteracts perturbations on inboard side – "good" curvature region

NSTX-U

Guttenfelder, U. Washington Plasma Seminar (Feb. 7, 2017)

Fast Parallel Motion Along Helical Field Line Connects Good & Bad Curvature Regions

Threshold like behavior analogous to Rayleigh-Benard instability

Temperature gradient (T_{hot} - T_{cold}) Analogous to convective transport when heating a fluid from below ... boiling water (before the boiling)

Rayleigh, Benard, early 1900's

Threshold gradient for temperature gradient driven instabilities have been characterized over parameter space with gyrokinetic simulations

ITG/TEM & ETG turbulence appears to describe tokamak transport in many cases

lon scales ($k_{\perp} \rho_i \sim 1$)

- Ion temperature gradient (ITG, $\gamma \sim \nabla T_i$) via ion compressibility ($\sim \nabla B, \kappa$)
- Trapped electron mode (**TEM**, $\gamma \sim \nabla T_e, \nabla n_e$) from electron trapping (~f_t)

Electron scales ($k_{\perp}\rho_{e}$ ~1)

• Electron temperature gradient (**ETG**, $\gamma \sim \nabla T_e$), analogous to ITG ($\sim \nabla B$, κ)

Instabilities driven by gradients (∇T_i, ∇ T_e, ∇n) surpassing thresholds which depend on: connection length (~qR), magnetic shear (dq/dr), temperature ratio (T_e/T_i), additional equilibrium effects ...

Short connection length → smaller average bad curvature

- Short connection length → smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]

- Short connection length \rightarrow smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]

- Short connection length \rightarrow smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG

- Short connection length \rightarrow smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nm<u>R</u>²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv_⊥/dr)

Biglari, Diamond, Terry, PoFB (1990)

- Short connection length \rightarrow smaller average bad curvature
- Quasi-isodynamic (~constant B) at high $\beta \rightarrow$ grad-B drifts stabilizing [Peng & Strickler, NF 1986]
- Large fraction of trapped electrons, BUT precession weaker at low A → reduced TEM drive [Rewoldt, Phys. Plasmas 1996]
- Strong coupling to $\delta B_{\perp} \sim \delta A_{\parallel}$ at high $\beta \rightarrow$ stabilizing to ES-ITG
- Small inertia (nmR²) with uni-directional NBI heating gives strong toroidal flow & flow shear → E×B shear stabilization (dv_⊥/dr)
- ⇒Not expecting strong ES ITG/TEM instability (much higher thresholds)
- <u>BUT</u>
- High beta drives EM instabilities: microtearing modes (MTM) ~ $\beta_e \cdot \nabla T_e$, kinetic ballooning modes (KBM) ~ α_{MHD} ~ $q^2 \nabla P/B^2$
- Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability ~dv_{II}/dr

Ion thermal transport in H-modes (higher beta) usually very close to collisional (neoclassical) transport theory

- Consistent with ITG/TEM stabilization by equilibrium configuration & strong E×B flow shear
 - Impurity transport (intrinsic carbon, injected Ne, ...) also usually well described by neoclassical theory [Delgado-Aparicio, NF 2009 & 2011 ; Scotti, NF 2013]
- Electron energy transport always anomalous
 - Toroidal angular momentum transport also anomalous (Kaye, NF 2009)

Typically address transport mechanisms in three regions of the plasma

- H-mode edge pedestal strong gradients
- Core gradient region inside pedestal
- Core flat region region of weak ⊽Te

Susceptible to gradient-driven instabilities (e.g. drift-waves)

Must consider other mechanisms (e.g. driven by fast-ions)

Typically address transport mechanisms in three regions of the plasma

- H-mode edge pedestal strong gradients
- Core gradient region inside pedestal
- Core flat region region of weak ∇ Te

Susceptible to gradient-driven instabilities (e.g. drift-waves)

Must consider other mechanisms (e.g. driven by fast-ions)

Predicted dominant core-gradient instability correlated with local beta and collisionality

- For sufficiently small β , ES instabilities can still exist (ITG, TEM, ETG)
- At increasing $\beta,$ MTM and KBM are predicted \rightarrow depending on ν
 - Various instabilities often predicted in the same discharge global, nonlinear EM theory & predictions will hopefully simplify interpretation (*under development*)

Simulations of core microtearing mode (MTM) turbulence predict significant transport at high β & ν

- Collisionality scaling $(\chi_{e,MTM} \sim v_e)$ consistent with global confinement $(\tau_E \sim 1/v)$, follows linear stability trends:
 - In the core, driven by ∇T_e with time-dependent thermal force (e.g. Hassam, 1980)
 - Requires collisionality → not explicitly driven by bad-curvature

Simulations of core microtearing mode (MTM) turbulence predict significant transport at high β & ν

- Collisionality scaling $(\chi_{e,MTM} \sim v_e)$ consistent with global confinement $(\tau_E \sim 1/v)$, follows linear stability trends:
 - In the core, driven by ∇T_e with time-dependent thermal force (e.g. Hassam, 1980)
 - Requires collisionality → not explicitly driven by bad-curvature
- δB leads to flutter transport (~v_{II}· δB^2) consistent with stochastic transport

NSTX-U

MTM structure distinct from ballooning modes

- Narrow density perturbations due to high-m tearing mode around rational surfaces q=m/n
 - Potential to validate with beam emission spectroscopy (BES) imaging [Smith, RSI (2012)]

Large δB/B~10⁻³

 Potential for internal δB measurements via Cross
Polarization Scattering, CPS (UCLA collaboration) ⇒ focus of a 2017
DIII-D National Campaign experiment

Visualization courtesy F. Scotti (LLNL)

NSTX-U

At high β & <u>lower v</u>, KBM modes predicted; Sensitive to compressional magnetic (B_{II}) perturbations

- Kinetic analogue of MHD high-n ballooning mode, driven by total ∇P (α_{MHD})
- Smooth transition from ITG/TEM at reduced $\nabla \mathsf{P}$
- Transport has significant compressional component ($\sim \delta B_{||}$)

NSTX-U

Electron scale turbulence measured and predicted at lower beta

Microwave scattering used to detect high-k_ (~mm) fluctuations

density fluctuations from ETG simulation

6 ion radii ──── 360 electron radii ────→ ~2 cm

Guttenfelder, PoP (2011)

NSTX

Correlation observed between high-k scattering fluctuations and ∇T_e

- Applying RF heating to increase Te
- Fluctuations increase as expected for ETG turbulence (R/L_{Te}>R/L_{Te,crit})
- Other trends measured that are consistent with ETG expectations, e.g. reduction of highk scattering fluctuations with:
- Strongly reversed magnetic shear (Yuh, PRL 2011)
 - Simulations predict comparable suppression (Peterson, PoP 2012)
- 2. Increasing density gradient (Ren, PRL 2011)
 - Simulations predict comparable trend (Ren, PoP 2012, Guttenfelder NF, 2013, Ruiz PoP 2015)
- Sufficiently large E×B shear (Smith, PRL 2009)
 - Observed in ETG simulations (Roach, PPCF 2009; Guttenfelder, PoP 2011)

NSTX

Non drift wave mechanisms may also influence thermal transport

Max T_e limited in high power H-modes,

 Thermal-gradient-driven microinstabilities unlikely to explain flattened profiles

Max T_e limited in high power H-modes, correlated with presence of Global Alfven eigenmodes (GAE)

- Thermal-gradient-driven microinstabilities unlikely to explain flattened profiles
- High-frequency (ω/Ω_{ci}<1) Global/Compressional Alfven eigenmodes (GAE/CAE) present
 - Driven unstable by gradients in fast-ion phase space
- How do they influence electron thermal transport?

The presence of a large number of GAE/CAEs can stochasticize electron orbits

- Computed electron orbits become stochastic with sufficient number & amplitude of overlapping GAE & CAE modes [Gorelenkov, NF 2010]
- Stochastic orbits can give very large $\chi_{e,st} \sim \langle \Delta r^2 \rangle / \Delta t$

- **Tritz, APS (2012)**
- CAE's also couple to kinetic Alfven waves (KAWs) near mid-radius → redistributes fast-ion energy to KAWs that damp on thermal electrons [Belova, PRL 2015]

New: Tangential 2nd neutral beam suppresses Global Alfven Eigenmode (GAE) – consistent with simulation

Summary & outlook

- First NSTX-U operation completed, with significant commissioning of control, heating, diagnostics, and scientific progress
- Future goals (2018 and beyond):
 - Assess global stability, energy confinement, fast-ion stability, pedestal height/structure, edge heat-flux width using full operational parameters (1 T, 2 MA, 12 MW, 5 sec)
 - Push toward full non-inductive current drive
 - Test advanced divertor heat flux mitigation
- Future transport experiments will take advantage of facility enhancements and improved diagnostic capabilities to validate transport theories and improve predictive capability

THANK YOU!

