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• Motivation for spherical tokamak (ST) research 

• NSTX-U & first results from 2016 

 

• Transport research: 

• Microstability properties related to STs 

• Some transport observations & theory 

 

Outline 
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• Goal: thermonuclear fusion to generate electricity 

 

• Need T~150 million C & sufficient triple product, 

nTtE, to generate fusion gain, Q=Pfusion/Ploss>1 

 

• Magnetically confined plasmas have generated 11-

16 MW of fusion power using 46-22 MW (Q=0.23-

0.7) (TFTR & JET tokamaks) 

 

• Remaining obstacle  need higher energy 

confinement time, tE=3nTV/Ploss 

 

• ITER being built to demonstrate Q=5-10, uses very 

large volume & strong field ($$$) to increase tE 

Big picture: Magnetic fusion energy 
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• ST is naturally elongated, favorable average curvature improves MHD stability, 

allowing higher b & use of smaller BT, also more compact  cheaper to build 

Spherical tokamak (ST) has aspect ratio A<2, many 
parameters intermediate to tokamak – spheromak, FRC 

Tokamak ST Spheromak,   FRC 

A=R/a 3 1.2-2 ≥1,         1 

qedge 3-4 6-20 0,       ~0 

b 3-10% 10-40% ≤20%,     100% 

r*=ri/a 1/200 1/100 1/50,      1/30 

Tokamak ST Spheromak, FRC 

Peng 
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• Potentially attractive for electricity production - Pilot Plant 

(Menard, NF 2011) 

 

• High neutron wall loading in small device - Fusion Nuclear 

Science Facility, FNSF (Menard, NF 2016) 

 

• Improve toroidal physics predictive capability 

– High b and at low collisionality 

– Understand confinement, fast-ion physics for ITER 

Why explore spherical tokamaks? 
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NSTX-U: 

National Spherical Torus 

Experiment – Upgrade 

Not addressing many NSTX results in this talk: 

• Achieved 40% beta 

• Observed favorable confinement scaling with collisionality (tE~1/n*e) 

• Improved edge and core confinement with lithium wall conditioning 

• Achieved 70% non-inductive fraction 

• Achieved 300 kA non-inductive startup current via coaxial helicity injection 

(CHI) 

• Heat flux mitigation using “snowflake” divertor 

• …. 
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NSTX completed major upgrade in 2015 with goal of: 
2  higher BT, Ip, PNBI & 5  longer pulse length 
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NBI #1 

NBI #2 

RF system 

NSTX-U 
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NSTX-U has surpassed maximum  
pulse duration and magnetic field of NSTX 

Compare similar NSTX / NSTX-U Boronized L-modes, PNBI=1MW 

NSTX-U L-mode duration  

exceeds longest NSTX H-mode 

4x longer 

NSTX-U BT > highest NSTX BT  
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Recovered ~1MA H-modes with performance 
comparable to best NSTX plasmas at similar current  

H98 ≥ 1, βN ~ 3.5-4 ≥ n=1 no-wall limit 202946 – no EFC   204112 – EFC v2 
203679 – EFC v1   204118 – EFC v2 
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Accessed high elongation k using progressively 
earlier H-mode and heating + optimized EFC 

L-mode flattop 

H-mode flattop 

NSTX-U (5 run weeks) 

NSTX (10 years) 

Future goal 

• Goal:  Internal inductance li = 0.5-0.7  k= 2.4-2.7 

EFIT 
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• Counter-propagating TAE 

predicted for hollow fast-ion 

profiles 
H.V. Wong, H. Berk, Phys. Lett. A 251 (1999) 126. 

New: Most tangential NBI generates counter-
propagating Toroidal Alfvén Eigenmodes (TAEs) 

• TRANSP:  As current builds up beam 
fast-ion beta profile predicted to become 
hollow 

• 1st evidence of off-axis NBI in NSTX-U 
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NSTX-U had scientifically productive 1st year 

• Achieved H-mode on 8th day of 10 weeks of operation 

• Surpassed magnetic field and pulse-duration of NSTX 

• Matched best NSTX H-mode performance at ~1MA 

• Identified and corrected dominant error fields  

• Commissioned all magnetic and kinetic profile diagnostics 

• Discovered new 2nd NBI modifies several fast-ion modes 

• Injected up to 12MW NBI power into armor by end of run 

• Implemented techniques for controlled plasma shut down, disruption 

detection, commissioned new tools for mitigation 
 

 

• 2016 run ended prematurely due to fault in divertor PF coil 

– Coil forensics, Extent of Condition  new coil fab, other repairs 

– Aim to resume plasma operation during 2018 
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• Increase field to 0.8-1T, current to 1.6-2MA, extend 
flat-top duration (H-mode) to 2-5s 
 

• Assess global stability, energy confinement, pedestal 
height/structure, edge heat-flux width  
 

• Characterize 2nd beam: heating, current drive, torque 
/ rotation profiles, fast-ion instabilities 
 

• Push toward full non-inductive startup & current drive 
 

• Test advanced divertor heat flux mitigation 

 

Goals for future NSTX-U operation 
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• Increase field to 0.8-1T, current to 1.6-2MA, extend 
flat-top duration (H-mode) to 2-5s 
 

• Assess global stability, energy confinement, 
pedestal height/structure, edge heat-flux width  
 

• Characterize 2nd beam: heating, current drive, torque 
/ rotation profiles, fast-ion instabilities 
 

• Push toward full non-inductive startup & current drive 
 

• Test advanced divertor heat flux mitigation 

 

Goals for future NSTX-U operation 

(my expertise      ) 
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Normalized energy confinement time scales 
favorably with collisionality in STs 

Kaye, NF (2013) 

• Considering dimensionless scaling 

(~r*, q, b, n*), WcitE~n*
-0.8 b0.0 

 

• Next generation STs (FNSF, CTF, 

Pilot Plant) likely to be at lower n* 

– Will favorable n* scaling continue? 

– Hints at lower n* that ci > ci,NC 

~
W

c
it

E
 

NSTX 

• tE ~ Ip
0.4BT

1.0   (boronization + between-shots He GDC) 

• tE ~ Ip
0.8BT

-0.15 (between-shots Lithium evap.) – similar to ITER tE,98y2 ~ Ip
0.9BT

-0.15 
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NSTX-U H-mode confinement consistent with ST 
scaling (so far) – need higher IP, BT to test 

NSTX-U 
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• Conventional tokamaks usually observe anomalous ion heat 

transport, attributed to microturbulence e.g. from Ion 

Temperature Gradient (ITG) instability 

Ion thermal transport in H-modes (higher beta) usually 
very close to collisional (neoclassical) transport theory 

Courtesy Y. Ren 
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Why does turbulence develop in 
tokamaks? 

 
 

Example: Linear stability analysis of Ion 
Temperature Gradient (ITG) “ballooning” micro-

instability (expected to dominate in ITER) 
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Toroidicity Leads To Inhomogeneity in |B|, gives 
B and curvature (k) drifts 

• What happens when there are small perturbations 

in T||, T?  Linear stability analysis… 
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Temperature perturbation (dT) leads to compression 
(vdi), density perturbation – 90 out-of-phase with dT 

• Fourier decompose 

perturbations in space 

(kqri1) 

 

• Assume small dT 

perturbation 

 

B, curvature 
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Dynamics Must Satisfy Quasi-neutrality 

• Quasi-neutrality (Poisson equation, k
2lD

2<<1) requires 

 

 

 

 

• For this ion drift wave instability, parallel electron motion is very rapid 
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Perturbed Potential Creates EB Advection 

• Advection occurs in the 

radial direction 

B, curvature 
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Background Temperature Gradient Reinforces 
Perturbation  Instability 
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Analogy for turbulence in tokamaks – Raylor-
Taylor instability 

• Higher density on top of lower density, with gravity acting downwards 

gravity density/pressure 
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Same Dynamics Occur On Inboard Side But 
Now Temperature Gradient Is Stabilizing 

• Advection with T counteracts perturbations on inboard side – “good” 

curvature region 
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Fast Parallel Motion Along Helical Field Line 
Connects Good & Bad Curvature Regions 

• Approximate growth rate on outboard side 

 

• Parallel transit time 

 

 

 

 

 

 

 

 

• Expect instability if ginstability > gparallel , or 

 

T

th
yinstabilit

RL

v
~g

qR

v
~ th

parallelg

2

thresholdT q

1

L

R










TT/1L/1 T 



30 Guttenfelder, U. Washington Plasma Seminar (Feb. 7, 2017) 

Threshold like behavior analogous to Rayleigh-
Benard instability 

Temperature gradient 

(Thot  - Tcold) 

Heat flux ~ heating power 

diffusion 

+ 

turbulence 

collisional 

diffusion 

Analogous to convective transport 

when heating a fluid from below … 

boiling water (before the boiling) 

Rayleigh, Benard, early 1900’s 

Threshold gradient for temperature gradient driven instabilities have been 

characterized over parameter space with gyrokinetic simulations 
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Ion scales (kri~1) 

• Ion temperature gradient (ITG, g~Ti) via ion compressibility (~B, k) 

• Trapped electron mode (TEM,g~Te,ne) from electron trapping (~ft) 

 

Electron scales (kre~1) 

• Electron temperature gradient (ETG, g~Te), analogous to ITG (~B, k) 

 

 

• Instabilities driven by gradients (Ti,  Te, n) surpassing thresholds which 

depend on: connection length (~qR), magnetic shear (dq/dr), temperature 

ratio (Te/Ti), additional equilibrium effects … 

 

ITG/TEM & ETG turbulence appears to describe 
tokamak transport in many cases  
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• Short connection length  smaller average bad curvature 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

bad curvature 

good curvature 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Orbit-averaged drift of trapped particle 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Kim, Horton, Dong, PoFB (1993) 
ITG growth rate 

b
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal flow & 

flow shear  EB shear stabilization (dv/dr) 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 

Biglari, Diamond, Terry,  PoFB (1990) 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng & 

Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal flow & 

flow shear  EB shear stabilization (dv/dr) 

Not expecting strong ES ITG/TEM instability (much higher thresholds) 

 

• BUT 

• High beta drives EM instabilities: microtearing modes (MTM) ~ beTe, kinetic 

ballooning modes (KBM) ~ aMHD~q2P/B2 

• Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability ~dv||/dr 

Many elements of ST are stabilizing to toroidal, 
electrostatic ITG/TEM drift waves 
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• Consistent with ITG/TEM stabilization by equilibrium configuration & strong EB flow 

shear 

– Impurity transport (intrinsic carbon, injected Ne, …) also usually well described by 

neoclassical theory [Delgado-Aparicio, NF 2009 & 2011 ; Scotti, NF 2013] 
 

• Electron energy transport always anomalous 

– Toroidal angular momentum transport also anomalous (Kaye, NF 2009) 

Ion thermal transport in H-modes (higher beta) usually 
very close to collisional (neoclassical) transport theory 

Courtesy Y. Ren 
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• H-mode edge pedestal – strong gradients 

• Core gradient region – inside pedestal 

• Core flat region – region of weak Te 

Typically address transport mechanisms in 
three regions of the plasma 

 Susceptible to gradient-driven 

instabilities (e.g. drift-waves) 

 Must consider other mechanisms 

(e.g. driven by fast-ions) 
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Typically address transport mechanisms in 
three regions of the plasma 

 

• H-mode edge pedestal – strong gradients 

• Core gradient region – inside pedestal 

• Core flat region – region of weak Te 

 Susceptible to gradient-driven 

instabilities (e.g. drift-waves) 

 Must consider other mechanisms 

(e.g. driven by fast-ions) 
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• For sufficiently small b, ES instabilities can still exist (ITG, TEM, ETG)  

• At increasing b, MTM and KBM are predicted  depending on n

– Various instabilities often predicted in the same discharge – global, nonlinear EM 

theory & predictions will hopefully simplify interpretation (under development) 

Predicted dominant core-gradient instability 
correlated with local beta and collisionality 

Local gyrokinetic 

analyses at ~2/3 radius 

Guttenfelder, NF (2013) 

MTM 

KBM 

ITG, TEM, ETG 

NSTX 
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• Collisionality scaling (ce,MTM~ne) consistent with global confinement 

(tE~1/n), follows linear stability trends: 

– In the core, driven by Te with time-dependent thermal force (e.g. Hassam, 1980) 

– Requires collisionality  not explicitly driven by bad-curvature 

 

Simulations of core microtearing mode (MTM) turbulence 
predict significant transport at high b & n 

sim. 
(gE=0) 

 

 
exp. 

Guttenfelder, PRL (2011), PoP (2012) 

Predicted transport 

NSTX 
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• Collisionality scaling (ce,MTM~ne) consistent with global confinement 

(tE~1/n), follows linear stability trends: 

– In the core, driven by Te with time-dependent thermal force (e.g. Hassam, 1980) 

– Requires collisionality  not explicitly driven by bad-curvature 

• dB leads to flutter transport (~v||dB2) consistent with stochastic transport 

 

Simulations of core microtearing mode (MTM) turbulence 
predict significant transport at high b & n 

sim. 
(gE=0) 

 

 
exp. 

Poincare plots of flux-tube surfaces 

Guttenfelder, PRL (2011), PoP (2012) E. Wang, PoP (2011) 

Predicted transport 

NSTX 
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MTM structure distinct from ballooning modes 

• Narrow density perturbations due 

to high-m tearing mode around 

rational surfaces q=m/n 

– Potential to validate with beam 

emission spectroscopy (BES) 

imaging [Smith, RSI (2012)] 

 

• Large dB/B~10-3 

– Potential for internal dB 

measurements via Cross 

Polarization Scattering, CPS (UCLA 

collaboration)  focus of a 2017 

DIII-D National Campaign 

experiment 

Predictions from MTM simulation 

Visualization courtesy F. Scotti (LLNL) 
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• Kinetic analogue of MHD high-n ballooning mode, driven by total P (aMHD) 

• Smooth transition from ITG/TEM at reduced P 

• Transport has significant compressional component (~dB||) 

At high b& lower n, KBM modes predicted; 
Sensitive to compressional magnetic (B||) perturbations 

Guttenfelder, NF (2013) 

exp. 

values 

(r=0.7) 

Linear growth rates 

2

0

2

MHD B/P2Rq a

TEM          KBM 
NSTX 
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Electron scale turbulence measured 
and predicted at lower beta 
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Microwave scattering used to detect high-k 
(~mm) fluctuations 

6 ion radii 

360 electron radii 

~2 cm 

 

     

kp 

ks 

2a 

280 GHz 

probe beam 

θs 

ki 

Mazzucato, PRL (2008) 

Smith, RSI (2008) 

density fluctuations from ETG simulation 

Guttenfelder, PoP (2011) 

NSTX 
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• Applying RF heating to increase Te 

• Fluctuations increase as expected 
for ETG turbulence (R/LTe>R/LTe,crit) 

Correlation observed between high-k scattering 
fluctuations and Te 

E. Mazzucato et al., NF (2009) 

• Other trends measured that are consistent 

with ETG expectations, e.g. reduction of high-

k scattering fluctuations with: 

1. Strongly reversed magnetic shear (Yuh, PRL 

2011) 

– Simulations predict comparable suppression 

(Peterson, PoP 2012) 

2. Increasing density gradient (Ren, PRL 2011) 

– Simulations predict comparable trend (Ren, PoP 

2012, Guttenfelder NF, 2013, Ruiz PoP 2015) 

3. Sufficiently large EB shear (Smith, PRL 

2009) 

– Observed in ETG simulations (Roach, PPCF 

2009; Guttenfelder, PoP 2011) 

 

*e  

direction 

NSTX 
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Non drift wave mechanisms may 
also influence thermal transport 
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• Thermal-gradient-driven 

microinstabilities unlikely to 

explain flattened profiles 

Max Te limited in high power H-modes,                  
 

Stutman, PRL (2009) 

NSTX 
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• Thermal-gradient-driven 

microinstabilities unlikely to 

explain flattened profiles 

 

• High-frequency (/Wci<1) 

Global/Compressional Alfven 

eigenmodes (GAE/CAE) 

present 

• Driven unstable by gradients in 

fast-ion phase space 

 

• How do they influence 

electron thermal transport? 

Max Te limited in high power H-modes, correlated with 
presence of Global Alfven eigenmodes (GAE) 

Stutman, PRL (2009) 

NSTX 
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• Computed electron orbits become stochastic with sufficient number & amplitude of 

overlapping GAE & CAE modes [Gorelenkov, NF 2010] 

• Stochastic orbits can give very large ce,st~Dr2/Dt 

The presence of a large number of GAE/CAEs 
can stochasticize electron orbits 

Gorelenkov, NF (2010); Crocker (2016) 

Tritz, APS (2012) 

• CAE’s also couple to kinetic Alfven waves (KAWs) near mid-radius  redistributes 

fast-ion energy to KAWs that damp on thermal electrons [Belova, PRL 2015] 
 

NSTX 
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New: Tangential 2nd neutral beam suppresses Global 
Alfven Eigenmode (GAE) – consistent with simulation 

t ci 

HYM code simulation (n=10) 

|dBn |2 

t=0.44s 

t=0.47s 

NSTX-U 

Damping from 2nd NBI 
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Summary & outlook 

• First NSTX-U operation completed, with significant commissioning of 

control, heating, diagnostics, and scientific progress 

 

• Future goals (2018 and beyond): 
– Assess global stability, energy confinement, fast-ion stability, pedestal 

height/structure, edge heat-flux width using full operational parameters (1 T, 2 
MA, 12 MW, 5 sec)  

– Push toward full non-inductive current drive 

– Test advanced divertor heat flux mitigation 

 

• Future transport experiments will take advantage of facility 

enhancements and improved diagnostic capabilities to validate 

transport theories and improve predictive capability 
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THANK YOU! 


