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NSTX microtearing instability exhibits thresholds in electron 

temperature gradient and beta, collisionality important 

(1) Apparent threshold in Te, (a/LTe)crit 1.3-1.5  (a/LTe,exp=2.7) 

(2) Growth rates depend on e non-monotonically 

(3) Lowering beta stabilizes microtearing 
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(1) (2) (3) 

Linear growth rates ( a/cs) from gyrokinetic simulations 

for NSTX 120968 t=0.56 s  r/a=0.6 

Exp. value Exp. value (8.8%) 

All three Te, e, e 

appear to be important 
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Experimental motivation 
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• Microtearing modes predicted to be linearly unstable in many devices: 
– high beta spherical tokamaks  (NSTX, MAST) 

– conventional tokamaks (ASDEX-UG, DIII-D, JET, possibly ITER edge) 

– reversed field pinches (RFX, MST) 

 

• Important to determine: 

 (1) whether they cause significant transport 

 (2) whether they matter for next generation devices (NSTX-U, ST-FNSF, ITER) 

 

Want to better understand: 

 (1) Linear stability 

 (2) Nonlinear saturation 
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Overview 

• MHD & resistive tearing instability 

 

• Schematic of magnetic drift wave & linear microtearing 

instability due to time-dependent thermal force 

 

• Examples from linear gyrokinetic simulations 

 

• Transport and stochasticity in nonlinear simulations 
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Tokamak review:  Ideal MHD equilibrium (J B= P) gives 

nested flux surfaces with helical field lines 

• External coils establish B

• Plasma current gives B  

• Helical pitch characterized by 

safety factor, q 

 

 

• Low beta, high aspect ratio (R/a) 

limit: 

 

 

• We’re interested in perturbations 

with toroidal, poloidal mode 

numbers (n,m) 
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With infinite conductivity plasma topology remains 

unchanged 

• Ideal Ohms law leads to “frozen 

flux” 

• Perturbations can occur but field 

lines tied to plasma 

 

• Finite resistivity allows field to 

diffuse 

 

• Over equilibrium scales ( ~1/L) 

diffusion is very slow, 

characterized by magnetic 

Reynolds numbers 

 

• Resistive effects can be much 

faster if they occur over much 

shorter scale,  << L 
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Tearing/reconnection of field lines can occur with sheared 

magnetic field and finite resistivity 

• Islands can form which flatten Te profile (from fast parallel conduction), degrade confinement, 

cause other bad things to happen (neoclassical tearing modes) 
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Let’s consider a resistive tearing instability for chosen (n,m) 

[Wesson, 6.8; Goldston Ch. 20] 

• Resistive instability can be driven by equilibrium current gradient ( J0)  

• Inner region near the rational surface q(rs)=m/n must be solved including 

resistive Ohm’s law ( / 0
2B) 

• Ideal equations are sufficient “far enough” outside the inner layer 

Two regions solved separately, then matched at boundaries to solve 

perturbation structure and growth rate 
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Wesson 6.8 



NSTX-U PPPL Graduate Student Seminar (Guttenfelder) March 25, 2013 

Perturbed outer region determined entirely by ideal force 

balance J B= P 

Linearize and 

assume low , 

high R/a 
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Equation for ideal outer 

region 

 

Stability determined by 

equilibrium current 

gradient, J0 
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Expand equilibrium gradient of perturbed toroidal current 
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Expand perturbed gradient of equilibrium toroidal current 
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Equation for ideal 
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Equilibrium current in the ideal outer region determines 

instability, given by  

12 

Equation for ideal 
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from either side, usually given in the form of the tearing parameter,  

Competition between 

destabilization from current 

gradient and stabilization 

from field line bending 
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Solution to inner layer provides relation between growth rate 

and  

• Must include resistivity in Ohm’s law and inertia in momentum equation 

• Also assuming radial scale length much smaller than poloidal 

(d2/dr2>>m2/r2) 

 

 

 

 

 

•  > 0 necessary for instability 

• Also requires positive magnetic shear q’>0  

• Grows on a hybrid time scale between resistive and Alfvenic 
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Stabilization from field line bending dominates microscopic 

perturbations (large n,m) 

• For large m, solutions go like A||~r+m (r<rs) and A||~r-m (r>rs) 

 

 

 

Resistive tearing modes always stable in high m,n limit 

 

• Some other mechanism(s) required to drive microtearing instabilities… 

 

• Parallel current is important, let’s consider parallel electron momentum 

equation in the Braginskii (fluid) limit, <<(k||vTe)
2/ e, k|| e<<1 
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Fluid limit of parallel electron momentum 
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Fluid limit of parallel electron momentum 

• Assuming (n,m) perturbations around surfaces with rational q 

• Linearize parallel gradients allowing for magnetic perturbations, Br=ikyA||, 

e.g. 

 

 

 

 

16 

e||eTei

2

e||ee||
e

ee Tn)vv()en(eEnp
dt

dv
mn

Inertia         pressure     electric field          resistivity                 thermal force 

)r(ik
qR

)r(nqm

B

B
||

0

0
0||,

0,e||e0||,e|| p
~

p~p

r

0

||y

0

r
||

B

A
~

ik

B

B
~

~

Parallel electron momentum 

Braginskii 

(1965) 



NSTX-U PPPL Graduate Student Seminar (Guttenfelder) March 25, 2013 

Fluid limit of parallel electron momentum 

• Assuming (n,m) perturbations around surfaces with rational q 

• Linearize parallel gradients allowing for magnetic perturbations, Br=ikyA||, 

e.g. 

 

 

 

 

• Do same for Te and  in E|| 

 

• In simplest limit, ignore electron inertia and resistivity (me/mi smaller) 
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Very near the rational surface the equilibrium parallel 

gradient vanishes, k||(r) 0 

• Ignoring radial variations around the rational surface, parallel pressure 

and thermal force simply balanced by inductive electric field (E||=-dA||/dt), 

establishing a finite frequency, drift wave like magnetic perturbation 
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Schematic of magnetic drift wave propagation – imagine an 

infinitesimal magnetic perturbation at a resonant q=m/n 
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A parallel pressure gradient occurs in the presence of an 

equilibrium radial pressure gradient 
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A parallel electric field is rapidly established to balance the 

pressure gradient force 
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Only an inductive electric field as we’re not allowing for 

electrostatic perturbations 

22 

x 

y 

z 
B0 

v*e=b Pe/(-e)B 

x 

Pe 

||

||
E

dt

dA

      

 

 

 



NSTX-U PPPL Graduate Student Seminar (Guttenfelder) March 25, 2013 

Inductive field causes dB/dt out of phase with B which 

propagates perturbation in electron drift direction 
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Accounting for finite perturbation width introduces 

corrections from k||(r) and stabilization from  

• Accounting for inertia and resistivity requires solving for radial structure 

and matching to ideal outer region solution which gives stabilizing 

influence 

• So what causes instability? 
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Thermal force (Braginskii, 1965) 

• Braginskii limit, collisional/fluid-like, very slow perturbations, <<k||
2vTe

2/ e 

• Electrons experience drag from ions 

• If Te gradient exists, drag varies spatially 
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Thermal force (Braginskii, 1965) 

• Braginskii limit, collisional/fluid-like, very slow perturbations, <<k||
2vTe

2/ e 

• Electrons experience drag from ions 

• If Te gradient exists, drag varies spatially 
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Thermal force (Braginskii, 1965) 

• Braginskii limit, collisional/fluid-like, very slow perturbations, <<k||
2vTe

2/ e 

• Electrons experience drag from ions 

• If Te gradient exists, drag varies spatially 
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Time-dependent thermal force (as described by A. Hassam, 

1980) 

• Slightly less restrictive constraint, << e, 2
nd order Chapman-Enskog expansion 

• While electrons equilibrate on a time scale ( e
-1) faster than Te varies ( -1), a small fraction will 

lag behind, adding a small correction (~i / e) 
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Time-dependent thermal force (as described by A. Hassam, 

1980) 

• Slightly less restrictive constraint, << e, 2
nd order Chapman-Enskog expansion 

• While electrons equilibrate on a time scale ( e
-1) faster than Te varies ( -1), a small fraction will 

lag behind, adding a small correction (~i / e) 
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Similar effect occurs due to changing gradient 

• Time lag corrections also in inertia and resistive terms 
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Time lag of thermal force now allows for instability 

• k||(r) 0 as q(r) m/n 
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 (field line bending) still provides stabilizing influence 

Finite threshold for instability 

Depends on magnetic shear and stuff 
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||Te part gives wave propagation like ||Pe 
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Time dependent part gives a lag contribution 
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Time dependent part gives a lag contribution 
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Inductive field dB/dt from time lag thermal force adds in-

phase to initial perturbation  linear growth 
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Collisionality dependence from TDTF predicted at high 

collisionality

• Peak  occurs for e/i/ ~ 1-6 

• Experimental values often e/i/ <=1, 
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NSTX growth rates 
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Hassam (1980) fluid approach 
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Experimental values often more weakly-collisional

• Peak  occurs for e/i/ ~ 1-6 

• Experimental values often e/i/ <=1, 
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NSTX growth rates 

        
ei a/cs) ~ ne/Te

2 

“semi-collisional” regime 

of Drake & Lee (1997), 
e/i>> & j s  

~ / e/I 

 
 
Hassam (1980) fluid approach 

weakly-collisional regime, 
e/i  

~ e/i/
 

Requires improved (numerical) 

kinetic treatment: 

 
Slab examples: 

Hazeltine et al. (1975) 

Gladd et al. (1980) 

D’Ippolito et al. (1980) 

Rosenberg et al. (1980) 

 

Gyrokinetic torus examples: 

Redi et al. (2003-2005) 

Roach et al. (2005) 

Applegate et al. (2006/2007) 

Wong et al. (2007/2008) 

Told et al. (2008) 

Predebon et al. (2010) 



NSTX-U PPPL Graduate Student Seminar (Guttenfelder) March 25, 2013 

Non-monotonic e scaling consistent with time-dependent 

thermal force (TDTF) when treated kinetically

           RT = - T ne Te 

 

• Fully kinetic (Hazeltine et al., 1975; Gladd et al., 1980; D’Ippolito et al., 1980; 

Rosenberg et al., 1980) 

   0< / e< , k|| mfp<<1 

    

 

• Makes assumptions on inner layer width ( >rs) and mean free path (k|| mfp<<1) that 

are typically violated in hot core of tokamaks 

 

• In addition, other “flavors” of microtearing modes exist such as purely collisionless 

often near the plasma edge, possibly driven by B/  drifts [Canik, IAEA 2012; 

Dickinson, arXiv; Predebon, arXiv; Carmody, arXiv], or stable microtearing modes 

driven non-linearly [Hatch, 2012] 

Missing unified analytic (or semi-analytic) theory for understanding and modeling 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 

• Finite A||  (resonant tearing parity), strongly ballooning 
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Linear mode structure in perpendicular plane illustrates key 

microtearing mode features 

• Narrow resonant current channel ( 0.3 s 1.4 mm) centered on rational surface 

• Finite A||  (resonant tearing parity), strongly ballooning 

• Narrow ne & Te perturbations 

• Nearly unmagnetized/adiabatic ion response    
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Linear mode structure in NSTX toroidal (R,Z) plane 

• Nonuniform poloidal structure (comparing inboard and outboard perturbations) 

• Density perturbations radially narrow, extended vertically on outboard side 
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A|| much stronger on outboard side (ballooning), 

j|| stronger and narrower on inboard side 

• Analytic theories know nothing of these poloidal 

variations 
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Field line integration used to identify island growth 

•  Br in linear run (arbitrary) determines wisland ~ 0.4 s 

 

 

• Estimate using rms Br 

 

 

 

 

 

 

 

• wisland/LTe  8 10-3  but 

 max( Te/Te)  4.5 10-4 

Additional drift dynamics 

 important 

45 

s

2/1

rms

r

5

2/1

,

2

2

r

39.0
ŝn
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Predicted electron thermal transport comparable to 

experiment 

• Simulated transport (1.2 s
2cs/a, 6 m2/s) comparable to experimental transport (1.0-1.6 s

2cs/a) 

• Well defined peak in transport spectra (k s 0.2), downshifted from maximum lin (k s 0.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Negligible particle, momentum, or ion thermal transport 
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• Flux surfaces become distorted in linear phase (t=25) 

• Globally stochastic in saturated phase, complete island overlap wisland(n) > rrat(n) 

 

 

 

 

 

 

 

 

 

 

•  e,EM close to collisionless Rechester-Rosenbluth* ( mfp=12 m, Lc 2.5 m) 

 
 

 

• Unclear what sets overall saturation and scaling of Br/B0 

• Also of interest, what determines minimum numerical resolution x requirements? 
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~98% of transport due to magnetic “flutter” contribution 
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t=25 (linear phase) t=500 (saturated phase) 
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How can we experimentally identify microtearing modes? 
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n/n0 Br (Gauss) 

Movies at http://w3.pppl.gov/~wgutten/ 

BT0=3.5 kG 
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• BES suitable for long poloidal 

scale (U-Wisconsin, Smith et al., 

RSI 2010) 

• May average over narrow radial 

scale – requires synthetic 

diagnostic and instrument 

function (D. Smith, BO4.2) 

 

BES for density fluctuations 
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n/n0 

 

BES fiber views 
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• New UCLA polarimetry system (Zhang, 2013) 

• Simulations suggest ( B/B)internal 0.1% may 

be detectable (1-20 or ~0.30 rms mixer phase) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Useful to research other potential 

diagnostics to infer Br (e.g. MSE, external 

magnetics, …?) 

Polarimetry for magnetic field fluctuations 
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Br (Gauss) BT0=3.5 kG 

 

polarimeter 

Radial propagation, 

retroreflection from center stack 

~2 ms 
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Summary 

• Microtearing modes predicted in many devices NSTX, MAST, ASDEX-UG, DIII-D, JET, 

RFX, MST 

• Initial nonlinear simulations suggest they could cause significant electron thermal transport 

• Still lack of understanding in thresholds (a/LTe, e), scaling with other parameters of interest 

( e, s), distinction of different instability drives (time-depedent thermal force, curvature/grad-

B drifts), saturation and non-linear scaling, … 

 

 Possible future work: 

1. Analytic theory improvements including: 

(i) arbitrary / e and magnetic shear 

(ii) toroidal effects, curv/grad-B, strong ballooning, trapped particles 

(iii) influence of potential 

(iv) prediction of (a/LTe, e) thresholds as a function of relevant parameters (R/a, nu, s, q) 

2. Improve understanding in saturation model ( improve transport models, e.g. TGLF) 

– What sets nonlinear Br/B and how does it scale? 

3. Develop & improve diagnostic measurement and interpretation 

– How can we distinguish microtearing turbulence from others? 
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