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This talk is completely biased and in no way 

comprehensive 
• I’ve used examples I’m familiar with and find useful for illustration 

• See the following for broader reviews and thousands of useful references 
 

• Transport & Turbulence reviews: 
– Liewer, Nuclear Fusion (1985) 

– Wootton, Phys. Fluids B (1990) 

– Carreras, IEEE Trans. Plasma Science (1997) 

– Wolf, PPCF (2003) 

– Tynan, PPCF (2009) 

– ITER Physics Basis (IPB), Nuclear Fusion (1999) 

– Progress in ITER Physics Basis (PIPB), Nuclear Fusion (2007) 

• Drift wave reviews: 
– Horton, Rev. Modern Physics (1999) 

– Tang, Nuclear Fusion (1978) 

• Gyrokinetic simulation review: 
– Garbet, Nuclear Fusion (2010) 

• Zonal flow/GAM reviews: 
– Diamond et al., PPCF (2005) 

– Fujisawa, Nuclear Fusion (2009) 

• Measurement techniques: 
– Bretz, RSI (1997) 

• Special issue on gyrokinetic validation (Plasma Phys. Control. Fusion 2017) 

 

• There are many more examples in the last 10 years (review paper expected next year on 
“Comparing gyrokinetic simulations with experiments”) 
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Some topics I’ll try to touch on in two days 

• Refresher of tokamaks & gyrokinetics 

 

• General turbulence characteristics of magnetized 2D drift waves 

 

• Tokamak core turbulence measurements and gyrokinetic validation 

 

• Tokamak edge turbulence* 

 

 

*Courtesy S. Zweben for some slides and videos on scrape-off-layer turbulence 
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TOKAMAKS AND CONFINEMENT 
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Magnetic fusion plasmas are a possible solution for large-

scale clean energy production 

• Need sufficient pressure (p~2-8 atmospheres, at >100 Million C) confined for 
sufficiently long (tE~1-4 s) for high gain (Pfusion >> Pheat) burning plasmas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Confinement time set by turbulent losses 

 

• Can we understand turbulence and therefore reduce/optimize it?                    
 Requires measurement and theory 

Tokamak energy confinement time scaling 
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Tokamaks 

• Axisymmetric 

• Helical field lines confine plasma 

JET (UK) 

Alcator C-Mod (MIT) 
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Going to refer to different spatial regions in the tokamaks 

• Especially core (~100% ionized), edge (just inside separatrix), and 

scrape-off layer (SOL, just outside separatrix) 
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Inferred experimental transport larger than collisional 

(neoclassical) theory – extra “anomalous” contribution 

• Correlation between local transport 

and density fluctuations hints at 

turbulence 

Hawryluk, Phys. Plasmas (1998) 

Garbet, Nuclear Fusion (1992) 

Tynan, PPCF (2009) 
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• Turbulence measurements in ~100 Million C plasma 

will always be challenging and incomplete 

 

• I’m going to show a lot of results from gyrokinetic 

turbulence simulations, as they help develop the 

physics basis to explain and predict 

 

• Such simulations are being used more frequently to 

predict first and guide experiments 
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to obtain dj, dB 

Note to self: add 𝐝 δϕ /𝐝𝐭 term 
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Example of state-of-the-art in multi-scale (ri to re) nonlinear 

gyrokinetic simulations (for the core) 

• Energy drive can occur across large range of scales, but turbulent spectra still exhibit decay 

• Energy and enstrophy conserved in 2D 

– Inverse energy cascade E(k) ~ k-5/3 

– Forward enstrophy [w2~(v)2] cascade E(k)~k-3 

– Non-local wavenumber interactions can couple over larger range in k-space (e.g. to zonal flows) 

• Nonlinear spectra often downshifted in kq (w.r.t. linear growth rates) 

• Both drive and damping can overlap over wide range of k 
– Very distinct from neutral fluid turbulence with large-scale drive + small scale dissipation 

Linear growth rates Nonlinear density power spectra Nonlinear heat flux spectra 

Howard, PoP & NF (2016) 
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Turbulence advects/mixes/transports energy, particles and 

momentum 

• Turbulence provides a highly nonlinear flux-gradient relationship due to sources 

of free energy 

 

 

 

 

 

 

 

• I realize I’m largely focusing on energy transport (fusion gain), but just as 

important for a self-consistent reactor solution is: 

– Particle transport  need to fuel D & T in reactors 

– Impurity transport  expelling He ash; avoiding impurity accumulation from 

e.g. sputtering high-Z (e.g. tungsten) walls 

– Momentum transport  rotation is critical to macrostability (RWM/NTM) and 

part of self-consistent turbulence solution via EB sheared flows (more later) 
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GENERAL CORE TURBULENCE 

CHARACTERISTICS 
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40+ years of theory predicts turbulence in magnetized plasma 

should often be drift wave in nature 

General predicted drift wave characteristics: 

• Finite-frequency drifting waves, w(kq)~w*~kqV*~(kqr)vT/Ln 

– Driven by n, T (1/Ln = -1/nn) 

 

• Quasi-2D, elongated along the field lines (L||>>L, k|| << k ) 

– Particles can rapidly move along field lines to smooth out perturbations 

– Perpendicular sizes linked to local gyroradius, L~ri,e or kri,e~1 

 

• In a tokamak, often expected to be “ballooning”, i.e. stronger on outboard 

side 

– Due to “bad curvature”/”effective gravity” pointing outwards from symmetry 

axis 

 

• Transport has gyrobohm scaling, cGB=ri
2vTi/R 

– But other factors important like threshold and stiffness: cturb ~ cGBF()[R/LT-R/LT,crit] 
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Microwave & far-infrared (FIR) scattering used extensively for 

density fluctuation measurements 

• Geometry and 

frequency determine 

measureable w, k 

 

      wmeas = wscat - wincident 

      kmeas = kscat  - kincident 

 

 

• Can be configured for 

forward scattering, 

backscattering, 

reflectometery, … 

Park, RSI (1985) 
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Broad frequency spectra measured for given scattering 

wavenumber 

• Different scattering angles 

measure different k, observe 

spectral decay in wavenumber 

Mazzucato, PRL (1982) 

Surko & Slusher, Science (1983) 

Princeton Large Torus (PLT) 

k~7 cm-1 



19 

Broad drift wave turbulent spectrum verified simultaneously 

with Langmuir probes and FIR scattering 

• Illustrates drift wave 

dispersion 

• However, real frequency 

almost always dominated by 

Doppler shift 

 

 

• Often challenging to 

determine mode frequency 

(in plasma frame) within 

uncertainties 

Langmuir probe 

FIR 

doppleremodlab vk)k(ωω qq 

TEXT, Ritz, Nuclear Fusion (1987) 

Wooton, Phys. Fluids B (1990) 
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Small normalized fluctuations in core (1%) increasing to the 

edge 

• Combination of diagnostics 

used to measure 

fluctuation amplitudes 

ATF stellarator, Hanson, Nuclear Fusion (1992) TEXT tokamak, Wooton, PoFB (1990)  

• Measurements also often 

show dn/n0~dj/T0 (within 

factor ~2), expected for  
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Mixing length estimate for fluctuation amplitude 

• In the presence of an equilibrium 

gradient, n0, turbulence with 

radial correlation Lr will mix 

regions of high and low density 

• Leads to fluctuation dn 
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Fluctuation intensity across machines loosely scales with 

mixing length estimate, reinforces local rs drift nature 

 

Lechte, New J. of Physics (2002) 

rs/Ln 

Liewer, Nuclear Fusion (1985) 
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2D Langmuir probe array in TJ-K stellarator used to directly 

measure spatial and temporal structures 

• Simultaneously acquiring 64 time signals 
– can directly calculate 2D correlation, 
with time 

• Caveat – relatively cool (T~10 eV) 
compared to fusion performance plasmas 
(T~10 keV) 

TJ-K [Ramisch, PoP (2005)] 
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Radial and poloidal correlation lengths scale with rs 

reinforcing drift wave nature 

• Turbulence close to isotropic 

  Lr~Lq 

TJ-K [Ramisch, PoP (2005)] 
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Temporal scales loosely correlated with acoustic times cs/a 

 

TJ-K [Ramisch, PoP (2005)] 
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Spectroscopic imaging provides a 2D picture of turbulence in 

hot tokamak core: cm spatial scales, ms time scales 

• Utilize interaction of neutral atoms with 

charged particles to measure density 

DIII-D tokamak (General Atomics) 

Movies at: https://fusion.gat.com/global/BESMovies 
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BES videos 

https://fusion.gat.com/global/BESMovies 

 

(University of Wisconsin; General Atomics) 
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Radial and poloidal correlation lengths scale with rs in core 

imaging, reinforcing local drift wave nature 

• Correlation length 

increases with local 

gyroradius r r*=r/a 

 

 

 

 

 

 

 

• Ratio of Lr/r relatively 

constant in radius, for 

the two different r* 

discharges 

DIII-D 

Mckee, Nucl. Fusion (2001) 
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Example of stronger turbulence measured on outboard side, 

“ballooning” in nature 

• Consistent with bad curvature drive  

ISSTOK [Silva, PPCF (2011)] 

Curvature, “effective gravity” 

R 
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Evidence for quasi-2D (L|| >> L) 

• Assume an exponential or 

Gaussian correlation function 

 

 

 

• Measure correlation between 

two probes “on the same field 

line” (0) separated a large 

distance ||>>0 

 JET edge plasma 

 L|| ~ many meters 

 L ~ mm-cm 

 

)L/exp()L/exp(),(C ||||||  

JET edge [Thomsen, Contrib. Plasma Phys. (2001)] 
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More direct measurement 

in TJ-K plasmas 

TJ-K [Birkenmeier, PPCF (2012)] 
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General turbulence characteristics are useful for testing 

theory predictions, but we mostly care about transport 

• Transport a result of finite average correlation between perturbed drift 

velocity (dv) and perturbed fluid moments (dn, dT, dv) 

– Particle flux,  = dvdn 

– Heat flux, Q = 3/2n0dvdT + 3/2T0dvdn 

– Momentum flux,  ~ dvdv (Reynolds stress, just like Navier Stokes) 

 

• Electrostatic turbulence often most relevant  EB drift from potential 

perturbations: dvE=B(dj/B2 ~ kqdj)/B 

 

• Can also have magnetic contributions at high beta, dvB~v||(dBr/B) 

(magnetic “flutter” transport – more later) 
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Measuring turbulent particle and heat fluxes using Langmuir 

probes 

• Illustrates that turbulent transport can account for inferred anomalous 

transport (only possible in edge region) 

TEXT, Wooton, PoFB (1990) 
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Useful to Fourier decompose transport contributions, 

especially for theory comparisons 

• E.g. particle flux from electrostatic perturbations: 

 

 

 

 

 

 

 

• Everything is a function of wavenumber 
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Edge Langmuir probe arrays used to 

decompose turbulent fluxes in kq 

• Very rare to measure this comprehensively! 

• Useful for challenging theory calculations 

• Yet to be done this thoroughly for hot tokamak 

core, where comprehensive gyrokinetic 

simulations available for comparison 

 

TJ-K [Birkenmeier, PPCF (2012)] 
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Threshold-like transport behavior observed experimentally 

• Vary location of heating source to locally change heat flux, map out Q vs. T 
– Experimentally inferred threshold varies with equilibrium, plasma rotation, ... 

– Stiffness (~dQ/dT above threshold) also varies 

–  c = -Q/nT highly nonlinear (also use perturbative experiments to probe stiffness) 

 

JET 

Mantica, PRL (2011) 
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Stellarators exhibit anomalous energy losses and similar 

broad spectrum of fluctuations as in tokamaks and 

• No direction of true symmetry, but can optimize to be quasi-symmetric (symmetry direction 

in |B|) or quasi-omnigenous / quasi-isodynamic (closed drift orbits), both which reduce 

traditionally poor 3D neoclassical transport 
– Validated in HSX [Gerhardt, 2004; Canik, 2006] and W7-X [Helander, APS-DPP 2020 and references therein] 

 

 

 

 

 

 

 

 

 

 

 

• Generally, theory indicates drift wave dynamics should be similar to tokamaks, but 3D 

variation (of curvature, grad-B drifts, diamagnetic “drifts”, parallel streaming, zonal flows) 

makes a quantitative impact 

• A little more challenging to solve numerically, BUT more degrees of freedom for 

optimization [Mynick; Hegna; Helander] 

HSX (UW-Madison) W7-X (IPP-Greifswald, Germany) 
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Beyond general characteristics, there are many theoretical 

“flavors” of drift waves possible in tokamak core & edge 

• Often useful to think of drift waves as gradient driven (Ti, Te, n) 

– Drift waves exhibit thresholds in one or more of these parameters 

 

• Different theoretical “flavors” of microturbulence 

– Electrostatic, ion scale (kqri1) 

• Ion temperature gradient (ITG) – driven by Ti, weakened by n 

• Trapped electron mode (TEM) – driven by Te & ne, weakened by ne 

– Electrostatic, electron scale (kqre1) 

• Electron temperature gradient (ETG) - driven by Te, weakened by n 

– Electromagnetic, ion scale (kqri1) 

• Kinetic ballooning mode (KBM) - driven by bpol 

• Microtearing mode (MTM) – driven by Te, at sufficient be 

 

• Each theoretical instability is distinguished by: 

– Scaling with parameters (a/LT, a/Ln, b, n, , s, q, …) 

– Mode frequency (ion, electron diamagnetic direction) 

– Spatial structure (ballooning, tearing; ES, EM) 

– Partition of transport (, , Q  D/c, cj/c) [“transport fingerprint”, Kotschenreuther, 2019] 
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Challenging to definitively identify a particular theoretical 

turbulent transport mechanism 

• Best we can do: 

– Measure as many transport and turbulence quantities as possible (amplitude 

spectra, cross-phases) 

– Scale equilibrium parameters to investigate trends, key dependencies 

– Compare with theory & simulation to (in)validate the predictions with 

experimental data 

• Use “synthetic diagnostics” to ensure apples-to-apples comparison 

• Quantify uncertainties and sensitivities 

– Reformulate the theory & simulation as needed 

– Make a testable prediction 

– Repeat 

 

• A.K.A. apply the Scientific Method 
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Example validation of core 

gyrokinetic theory/simulation 

predictions 
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Transport, density fluctuation amplitude (from reflectometry) and spectral 

characteristics all consistent with nonlinear ITG simulations in Tore Supra 

• Provides confidence in interpretation of transport in conditions when ITG 

instability/turbulence predicted to be most important 

Casati, PRL (2009) 
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Important to consider the impact of the diagnostic instrument 

response when comparing to experiment (“synthetic diagnostic”) 

• E.g. using FDTD full wave simulations of EM wave propagation into predicted dn by 

nonlinear GK simulation to predict X-mode and O-mode Doppler reflectomery signal 

Doppler reflectometry scattering locations 
dn from (flux-matched) GK turbulence simulation + 

wave E-field from full wave simulation 

ASDEX-Upgrade 

Happel, PPCF (2017) 
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Synthetic diagnostic captures significant difference seen with 

scattering polarization (X-mode vs. O-mode, ASDEX-Upgrade) 

• Synthetic diagnostic also changes predicted location of “knee” in spectra & spectral decay 

GK linear frequencies & growth rates + 

nonlinear spectra 

Raw measured Doppler reflectometry spectra 

Doppler reflectometry spectra from GK sims + 

synthetic diagnostic (full-wave simulation) 

ASDEX-Upgrade 

Happel, PPCF (2017) 

measurement 

simulation 

+ synthetic 

diagnostic 
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Validation using multi-field 

turbulence measurements 
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Multi-field measurement of both electron density and 

temperature fluctuations at overlapping locations (DIII-D)  

• Using electron cyclotron emission (ECE) to measure dTe 

DIII-D 

White, PoP (2008) 
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Normalized density and temperature fluctuations are very 

similar in amplitude 

 

DIII-D 

White, PoP (2008) 
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Comparing dne, dTe fluctuation spectra with simulations using 

synthetic diagnostic 

• Level of agreement sensitive to accounting 

for realistic instrument function 

C. Holland, PoP (2009) 

r=0.5 (mid-radius) 
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Agreement worse further out (r=0.75) 

• Measured intensity larger than simulations (as is transport), so called 

“edge shortfall” problem challenging gyrokinetic simulations 

r=0.75 (outer half) r=0.5 (mid-radius) 

Holland, PoP (2009) 
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Can also compare 2D correlation functions for additional 

validation, try to understand “shortfall” discrepancy 

• Comparing 2D correlation/spectra reveals that simulated <kr> is larger 

than experiment at r=0.75 

r=0.75 (outer half) r=0.5 (mid-radius) 

• Larger <kr> in simulations possibly from 

tilting due to sheared equilibrium EB flows 

being too strongly represented  also 

consistent with small predicted transport 

(more later) 

• Has sparked a huge international code 

benchmarking & validation effort 

Shafer, PoP (2012) 
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Simultaneous measurement of ne and Te using same beam 

path allows for cross-phase measurement 

 

DIII-D 

White, PoP (2010) 
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ne-Te cross phases agree well with simulations 

• Amplitude spectra and transport fluxes still off by 2-3 
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Measured changes of dTe, ne-Te crossphase and transport 

with increasing Te provides constraint for simulations 

• Increasing fluctuations and 

transport with a/LTe consistent 

with enhanced TEM turbulence 

(Te driven TEM) 

DIII-D 

Hillesheim, PRL,PoP (2013) 
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Simulations can reproduce transport… for some 

observations 

• Predicted turbulence levels always too small, even when accounting for 

sensitivity to Te 

• Discrepancies point to missing physics in theory/simulation   

Holland, PoP (2013) 
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ZONAL FLOWS, GAMs 

 
(important elements of 2D turbulence nonlinear saturation) 
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Nonlinearly-generated “zonal flows” also impact saturation 

• Potential perturbations uniform on flux surfaces (ky=0)  marginally stable, do not 

cause transport 

• Turbulence can condense to system size  ZF driven largely by non-local (in k) 

NL interactions (k >> kZF) 

Linear instability stage 

demonstrates structure of 

fastest growing modes 

Large flow shear from 

instability cause 

perpendicular “zonal flows” 

Zonal flows help moderate 

the turbulence 

Rayleigh-Taylor like instability driving Kelvin-Helmholtz-like instability 

(potential contours  stream functions) 
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Zonal flows can saturate at relatively large amplitude for 

toroidal ITG turbulence 

• Regulates saturation via (i) shear decorrelation of eddies, (ii) energy sink 

into marginal (non-transport-causing) modes 

• Typically have distinct kx spectra (overall 2D spectra anisotropic in kx,ky) 

ky 

Ej(k) 

Transport causing (finite-ky) modes 

Marginally stable zonal modes (ky=0) 

ky=0 
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Evidence of zonal flows from measuring potential on same 

flux surface at two different toroidal locations 

• High coherency at very low frequency with zero phase shift suggests 

uniform zonal perturbation 

• Also evidence of a coherent mode around 17 kHZ - geodesic acoustic 

mode (wGAMcs/R) from associated n=0, m=1 pressure perturbation 

CHS, Fujisawa, PRL (2004) 

coherence 
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Also found using poloidal flow measurements from BES on 

DIII-D 

• Poloidal flow determined from 

time delay estimation of 

poloidally separated BES 

channels 

• High coherency at low 

frequency, zero phase shift 

 

• Evidence of GAM oscillation 

• Relative strength of each varies 

with radius 

DIII-D, Gupta PRL (2003) 
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GAM seen on numerous devices using different 

measurement techniques 

• Seems to be in 

nearly all 

machines, if 

looked for 

 

• See Fig. 11 of 

Fujisawa, Nuclear 

Fusion (2009) for 

legend 
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Broad cross-machine agreement of GAM frequency with 

theory 

• Discrepancies have spurred additional theory developments 

to refine GAM frequency and damping rates (due to 

geometry, nonlinear effects, …) 

Fujisawa, NF (2009) 
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Suppression of ion scale turbulence 

in tokamaks 

 
EB shear 

Reverse magnetic shear 

Low aspect ratio + high beta equilibrium 
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Equilibrium background (EB) flows can suppress turbulence 

• Shear flow in neutral (3D) fluids is a source of free-energy, how does it 

stabilize turbulence in magnetized plasmas? 

• Three conditions for sheared flow suppression of turbulence (Terry, RMP 

2000): 

– Shear flow should be stable (Kelvin-Helmholtz threshold different in 2D) 

– Turbulence must reside in region of shear flow for longer than an eddy-

turnover time/decorrelation time (tokamak is a periodic system) 

– Dynamics should be 2D (strong guide magnetic field) 

K.H. Burrell, PoP (1997,1999); Biglari, Diamond, Terry,  PoFB (1990) 

Loosely need: 

dU/dy > tc
-1 
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Large scale sheared flows can tear apart turbulent eddies, 

reduce turbulence  improve confinement 

Simulations for NSTX (PPPL) – a low aspect ratio tokamak 

Snapshot of density without flow shear Snapshot of density with flow shear 

mean flow velocity profile 

100 ion radii 

6,000 electron radii 

~50 cm 

Lower amplitude 

Smaller (titled) eddies 

Reduced transport 

Heat flux Heat flux 
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There are also examples of turbulence suppression via 

sheared flows in neutral fluids 

• Thin (quasi-2D) atmosphere in axisymmetric geometry of rotating 
planets similar to tokamak plasma turbulence 

 

• Stratospheric ash from Mt. Pinatubo eruption (1991) spread rapidly 
around equator, but confined in latitude by flow shear 

   

 

 

 

 

 

 

 

 

 

 

     

Large shear in 

stratospheric 

equatorial jet 

Aerosol concentration 

(Trepte, 1993; 

P.W. Terry, 2000) 



77 

Negative magnetic shear (rate of change in field line pitch/ 

helicity) can minimize ITG turbulence 
• E.g., magnetic shear influences stability by twisting radially-elongated instability to better 

align (or misalign) with bad curvature drive 

• Negative magnetic shear can minimize radial extent, growth and resulting transport 

Antoneson (1996) 
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Reverse magnetic shear can lead to internal transport 

barriers (ITBs) 

• ITBs established on 

numerous devices 

 

• Used to achieve “equivalent” 

QDT,eq~1.25 in JT-60U (in D-

D plasma) 

 

•  ci~ci,NC in ITB region 

(complete suppression of 

ion scale turbulence) 

– What sets anomalous electron 

loss? 

Ishida, NF (1999) 

JT-60U 
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Low aspect ratio “spherical” tokamaks, like NSTX-U at PPPL, 

access very high b=p/B2/2m0  suppresses ITG 
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Aspect ratio is an important free parameter, 

can try to make smaller reactors (i.e. cheaper) 

But smaller R = larger curvature, B (~1/R) -- isn’t this 

terrible for “bad curvature” driven instabilities?!?!?! 

Aspect ratio A = R / a 

Elongation k = b / a  

a R 

R = major radius,  a = minor radius,  b = vertical ½ height 

a 

b 
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• Short connection length  smaller average bad curvature 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

bad curvature 

good curvature 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

qB
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

 

• These same features stabilize macroinstabilities (MHD), allowing for 

very high b equilibrium: ~40% on NSTX, ~100% on Pegasus (U-Wisc) 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

= IP/aB 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Orbit-averaged drift of trapped 

particle 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Kim, Horton, Dong, PoFB (1993) 
ITG growth rate 

b 



86 

• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal 

flow & flow shear  EB shear stabilization (dv/dr) 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 

Biglari, Diamond, Terry,  PoFB 

(1990) 
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• Short connection length  smaller average bad curvature 

• Quasi-isodynamic (~constant B) at high b  grad-B drifts stabilizing [Peng 

& Strickler, NF 1986] 

• Large fraction of trapped electrons, BUT precession weaker at low A  

reduced TEM drive [Rewoldt, Phys. Plasmas 1996] 

• Strong coupling to dB~dA|| at high b  stabilizing to ES-ITG 

• Small inertia (nmR2) with uni-directional NBI heating gives strong toroidal flow 

& flow shear  EB shear stabilization (dv/dr) 

 Not expecting strong ES ITG/TEM instability (much higher thresholds) 

 

• BUT High beta drives EM instabilities: 

– microtearing modes (MTM) ~ beTe 

– kinetic ballooning modes/energetic particle modes (KBM/EPM) ~ 

MHD~q2P/B2 & Pfast 

• Large shear in parallel velocity can drive Kelvin-Helmholtz-like instability 

~dv||/dr 

Many elements of ST are stabilizing to 

toroidal, electrostatic ITG/TEM drift waves 
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• Consistent with ITG/TEM stabilization by equilibrium configuration & strong EB 

flow shear 

– Impurity transport (intrinsic carbon, injected Ne, …) also usually well described 

by neoclassical theory [Delgado-Aparicio, NF 2009 & 2011 ; Scotti, NF 2013] 
 

• Electron energy transport always anomalous 

– Toroidal angular momentum transport also anomalous (Kaye, NF 2009) 

Ion thermal transport in ST H-modes (higher beta) usually 

very close to collisional (neoclassical) transport theory 

Courtesy Y. Ren 
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Beyond ITG/TEM turbulence 
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Electron scale (ETG) turbulence 

 
ETG is “isomorphic” to ITG: 

 

replace mime, TiTe (ri  re, vTi  vTe) 

 

ITG / (vTi/LTi) vs kqri  ETG / (vTe/LTe) vs kqre 
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Microwave scattering used to detect high-k 
(~mm) fluctuations 

6 ion radii 

360 electron radii 

~2 cm 

     

kp 

ks 

2a 

280 GHz 

probe beam 

θs 

ki 

Mazzucato, PRL (2008) 

Smith, RSI (2008) 

density fluctuations from ETG simulation 

Guttenfelder, PoP (2011) 

NSTX 

High-k microwave scattering configuration 



92 Guttenfelder, U. Washington Plasma Seminar (Feb. 7, 2017) 

• Applying RF heating to increase Te 

• Fluctuations increase as expected 
for ETG turbulence (R/LTe>R/LTe,crit) 

Correlation observed between high-k 
scattering fluctuations and Te 

E. Mazzucato et al., NF (2009) 

• Other trends measured that are consistent 

with ETG expectations, e.g. reduction of high-

k scattering fluctuations with: 

1. Strongly reversed magnetic shear (Yuh, PRL 

2011) 

– Simulations predict comparable suppression 

(Peterson, PoP 2012) 

2. Increasing density gradient (Ren, PRL 2011) 

– Simulations predict comparable trend (Ren, PoP 

2012, Guttenfelder NF, 2013, Ruiz PoP 2015) 

3. Sufficiently large EB shear (Smith, PRL 

2009) 

– Observed in ETG simulations (Roach, PPCF 

2009; Guttenfelder, PoP 2011) 

 

w*e  

direction 

NSTX 

Many ETG trends observed in 

NSTX, challenging to correctly 

predict transport 
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Rigorous validation of NSTX ETG predictions via resolution & sensitivity 

tests + comparing turbulence measurements via synthetic diagnostic 

 

J. Ruiz-Ruiz, PPCF (2019, 2020), PoP (2020) 

Matched experimental fluxes varying inputs within 

uncertainties 

Matched turbulence frequency spectra using simulation & 

synthetic diagnostic for high-k microwave scattering 

Matching turbulence wavenumber spectra shape via sim + 

synthetic diagnostic & varying inputs within uncertainties 
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Electromagnetic (drift wave) 

turbulence 
 

Microtearing mode (MTM) turbulence: small scale (large n, m) 

tearing modes driven unstable by Te at sufficient be 

 

 

Kinetic ballooning mode (KBM) turbulence: kinetic analog to ideal 

MHD high-n ballooning modes driven by ptot, expected to set 

upper limit on achievable pressure gradient 

All high performance tokamak discharges either have transport barriers or operate at high 

beta (for significant self-driven bootstrap current)  EM turbulence will always be important 
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MTM density fluctuations distinct from 
ballooning modes like ITG (simulations) 

DIII-D ITG turbulence NSTX MTM turbulence 

Guttenfelder, PRL (2011), PoP (2012) Candy, Waltz (GA) 
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MTM structure distinct from ballooning modes 

• Narrow density perturbations due 

to high-m tearing mode around 

rational surfaces q=m/n 

– Potential to validate with beam 

emission spectroscopy (BES) 

imaging 

 

• Large amplitude dB/B~10-3 

– Potential for internal dB 

measurements 

Predictions from MTM simulation 

Visualization courtesy F. Scotti (LLNL) 
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Very challenging to measure internal magnetic 

fluctuations 

NSTX (PPPL) 

Fluctuations in magnetic field 

  

Injected and reflected 

microwaves experience a 

shift in polarization 

UCLA 

• Synthetic diagnostic calculations 

predict polarimetery should be 

sensitive 

 

 

 

 

 

 

 

 

 

 

• UCLA collaborators will be 

installing polarimetry and cross-

polarization scattering (CPS) on 

NSTX-U in 2021-2025 (good time 

to get involved!) 

Zhang, PPCF (2013) 

Guttenfelder, PRL (2011) 
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Inference of microtearing turbulence via magnetic probes in 

RFX reversed field pinch (Zuin, PRL 2013) 

• Used internal array of closely spaced (~wavenumber resolved) high frequency Mirnov coils 

(~dB/dt) mounted near vacuum vessel wall 

• Confinement and Te increase during “quasi-single helicity” (QSH) state  broadband dB 

measured (left figure, #3 curve) 

•  dB amplitude increases with a/LTe & b (expected for MTM) 

• Measured frequency and mode numbers (n,m) align with linear gyrokinetic predictions of MTM 

• Additional MTM inferences using novel heavy ion beam probe technique (internal, non-

perturbative) in JIPPT-IIU tokamak (Hamada, NF 2015) 
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Analysis indicates MTM sets electron transport in the internal 

transport barrier in DIII-D high-bpol discharges 

• Large  ~ bpol gives strong Shafranov shift + negative magnetic shear (s<0) 

stabilizes ITG/TEM (ion thermal transport is neoclassical) 

• MTM turbulence predicted to limit electron thermal transport in region of s<0 

• Significant correlation between interferometer measurements and MTM expectations in 

other DIII-D discharges [J. Chen, APS 2019] 
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EDGE TURBULENCE 

L-H TRANSITION 
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Moving outwards from the hot core 

• Especially core, edge (just inside separatrix), and scrape-off layer 

(SOL, just outside separatrix) 
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Spontaneous “H-mode” edge transport barrier can form with 

sufficient heating power  improved confinement 

• Correlated with strong shear in 
equilibrium radial electric field (Er) 

• Suppression of turbulence predicted 
when equilibrium shearing rate (wEB) > 
turbulence decorrelation rate (wD) 
[Biglari, 1990; Hahm, 1994] 

(from Carter, 2013) 
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Transition from LH correlated with drop in turbulence 

amplitude, reduction in radial correlation length 

• Consistent with EB shear 

suppression 

 

• Understanding what initiates 

the transition and the 

dynamics involved is still 

being developed 

 

• Practically important for 

understanding how much 

power required to reach H-

mode ( almost all reactor 

designs assume H-mode) 

Burrell, PoP (1997) 

Coda, Phys. Lett. A (2000) 
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Lots of videos via Stewart Zweben:  

http://w3.pppl.gov/~szweben/ 

L-H mode transition t~0.245 s 
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Multiple doppler backscattering 

diagnostics provide dn, dvEB at 

multiple radii simultaneously (DIII-D) 

• During dithering L-H phase 

(identified by D signal), dvEB 

and dn start to oscillate 

 

• Equilibrium ne, Te begin to 

increase 

 

 

• Eventually strong equilibrium 

flow shear locks in, fluctuations 

drop permanently, and pedestal 

finishes forming 

DIII-D, Schmitz, PRL (2012) 
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Dynamics consistent with two-predator – prey model (Kim, 

PRL 2003) 

• In L-mode, increasing 

turbulence drives stronger ZF 

 

• Eventually starts to suppress 

turbulence, leads to predator-

prey limit cycle oscillation 

between ZF and turbulence 

 

• As confinement (and 

gradients) increases, 

equilibrium Er driven by Pi 

increases, until it is strong 

enough to maintain 

suppression 

 DIII-D, Schmitz, PRL (2012) 

(need to review more recent papers) 
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EDGE TURBULENCE 

H-mode pedestal 
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In fully-developed H-modes, periodic MHD instabilities (Edge 

Localized Modes, ELMs) often occur 

• Rapidly expels energy (see GPI videos) 

• Profiles drop after ELM, recover between 

ELMs 

• General question of what transport 

mechanism limits H-mode pedestal & 

post-ELM recovery 

NSTX, Diallo, NF (2011) 
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Local density and magnetic fluctuations measured inter-ELM 

- possible importance of EM turbulence 

• Density from reflectometry (& Gas Puff Imaging) 

• Magnetic probes inserted 2 cm from separatrix 

(measures same kq as density) 

• Evidence for importance of EM turbulence? 
– Leading theory posits KBM (EM drift wave) as a key 

contributor setting H-mode pedestal (Snyder, NF, 2011) 

– Recent analysis indicates magnetic signatures consistent 

with MTM 

Alcator C-Mod, Diallo, PRL (2014) 

Review paper on inter-ELM fluctuations: Diallo, Laggner PPCF (2021) 
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Ensemble of inter-ELM measurements (DIII-D) indicate 

magnetics amplitude correlated with recovery of Te 

•  dB ~ Te more consistent with MTM 

expectations 
– MTM specifically driven by Te (to regulate 

electron heat flux) 

– KBM is driven by Ptot 

Magnetics spectrogram (inter-ELM) 

Diallo, PoP (2015) 

Ensemble evolution of inter-ELM dB & Te 
dB vs Te (from inter-ELM ensemble) 
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Recent gyrokinetic analysis indicates these magnetic 

signatures are consistent with MTM 

• Similar frequencies as MTM (wMTM,lab~w*e+wDoppler) 

• Selective appearance of toroidal mode numbers correlated with overlap of corresponding rational 

surfaces (qrat=m/n) with maximum w*e 

• Nonlinear transport predicted to be significant [Hatch, NF 2017, 2019, & 2020] 

Kotschenreuther, NF (2019) 

Hatch, NF (2020) 

Final report of 2019 FES Theory Performance Target 

Hassan, APS-DPP (2020) 

Frequency vs. radius (from magnetics 

observation and MTM prediction) 

Magnetics spectrogram (DIII-D 162940) 

exp. freq Unstable 

MTM 
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Various fluctuations observed in ELM free pedestal regions – 

Weakly Coherent Mode in C-mod I-mode 

• I-mode in C-mod similar to H-mode 

except temperature pedestal only 

 

• Evidence for weakly coherent 

density, temperature & magnetic 

fluctuations associated with 

increased particle transport 

preventing density pedestal 

 

• Other examples exist in ELM-free 

H-modes (EHO in DIII-D; QCM in 

C-Mod EDA H-mode) 

 

• Is this turbulence? 

C-mod, White, NF (2011) 
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SCRAPE OFF LAYER 

TURBULENCE 
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• Concept of “turbulence” in open field lines starts to change a 

bit 

 

• Often get blobby, strongly intermittent behavior 
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Going to refer to different spatial regions in the tokamaks 

• Especially core, edge (just inside separatrix), and scrape-off layer 

(SOL, just outside separatrix) 
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Understanding scrape-off-layer (SOL) heat-flux width 

extremely important under reactor conditions 

• Narrow SOL heat flux width lq leads to huge (>10 MW/m2) heat flux density on 

the divertor plasma facing components (PFCs)  significant concern for 

sputtering and erosion 

• Empirical scaling (lq ~ 1/Bpol,MP) very unfavorable for reactors 

• Recent turbulence simulations suggest a possible break from this scaling 

D. Brunner, APS-DPP (2017) 

T. Eich, PRL (2011) 

 

XGC-1 turbulence predictions 

(C.S. Chang) 
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Many options being considered for divertor/SOL magnetic 

geometry 

• Requires additional complexity in poloidal field coils and controllability 

• Generally will also required impurity seeding in core/edge plasma to radiate much 

of the power 

• Spreading (from turbulence) could reduce heat flux density 

X divertor Snowflake divertor Super-X divertor 
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Outside separatrix, blobs can be ejected and self-propagate 

to vessel wall (NSTX GPI) 

• Plasma is much less dense farther out in scrape-off layer 

• Relative intensity of blob becomes large (dI/I) 

• Measurements are generally intermittent (large skewness, kurtosis) 

Many characterizations of blob size, velocity, trajectory, etc… [Zweben; Lampert; others…] 
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Theories and simulations exist that predict blob 

characteristics: size, density, velocity 

• Simulations further out in edge become progressively more challenging, 

more effects to deal with (neutrals, open field lines to conducting walls, 

dust, …) 
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NSTX measurements investigate blob correlation along open field lines from 

upstream midplane, through divertor region, to divertor floor 

• GPI for upstream separatrix turbulence near midplane (bad curvature drive) 

• C2+ emission to measure fluctuations in cool divertor region 

• Neutral Li I emission to measure fluctuations very surface (~few mm off divertor floor in NSTX) 

F. Scotti (NF 2018; NF 2020) 

Projection of a field-aligned filament 
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NSTX measurements investigate blob correlation along open field lines from 

upstream midplane, through divertor region, to divertor floor 

• GPI for upstream separatrix turbulence near midplane (bad curvature drive) 

• C2+ emission to measure fluctuations in cool divertor region 

• Neutral Li I emission to measure fluctuations very surface (~few mm off divertor floor in NSTX) 

C2+ divertor leg image 

F. Scotti (NF 2018; NF 2020) 

Li I divertor floor image 
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Upstream (midplane) blob filaments seen to propagate down to divertor far away 

from X-point, but can also exist in isolation, driven independently near X-point 

• Comparison to predictions of different blob 

dynamic regimes [D’Ippolito, 2011] 
– RB: resistive ballooning (disconnected) 

– RX: Resistive X-point (disconnected) 

– Ci: Ideal interchange (connected) 

– Cs: Sheath connected (connected) 

F. Scotti (NF 2018; NF 2020) 

• Correlation between upstream midplane (GPI) and divertor 

floor (Li I) 

• Becomes weaker near separtrix, where strong variation in 

local magnetic shear can decorrelate upstream & 

downstream turbulence 
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SUMMARY 

• Many experiments and diagnostics developed to measure 

fluctuation amplitudes, spectra, cross-phases, transport, 

etc… in various regions of magnetically confined plasmas 

 

• Have seen progress in comparing theory/simulation & 

measurements, with agreement approving from order-of-

magnitude to factor of 2-3 or better in limited cases (at least 

in core plasma) 

 

• Improves confidence (in some regimes) in our physics 

understanding, which improves our predictive ability (not 

really addressed here) 

 

• Plenty more to do (pedestals, open field lines, 3D systems) 


