Understanding and controlling turbulence at 100 million degrees

Next step for fusion research is ITER

Goal: deliver ten times the power (500 MW) it consumes (50 MW)

→large "fusion gain"

So why is ITER so big?

scientist

Need sufficient confinement to maximize fusion gain

Fusion power ~ $(pressure)^2 \times volume$

 \Rightarrow Maximize confinement time

confinement time ~	pressure × volume
	heat loss

Easiest (conservative) solution - make it big (confinement~V), but...

Increasing volume \rightarrow larger device = \$\$\$ Better to minimize power required (heat losses) to maintain pressure

Strong magnetic fields provide confinement

MAST tokamak (UK)

lons and electrons follow small radius orbits

B = 5 Tesla T = 100 million C

Increasing gradients eventually cause small scale instability \rightarrow turbulence

- Turbulent "eddies" → random velocity fluctuations mix hot and cold
- Can be small size, small amplitude (<1%)

But still effective at transport

Turbulence found throughout the universe - not surprising to find it in tokamaks

Steve Mori

- Seemingly random or chaotic flows
 - Deterministic yet unpredictable (e.g. daily weather)
 - Understand through statistical approach (e.g. climate)
- Exists at multiple length & time scales
 - Energy at large scales
 - Dissipated by friction/viscosity at small scales
- Leads to enhanced mixing & transport
 ⇒ Why we're interested in magnetic fusion

Turbulence found throughout the universe - not surprising to find it in tokamaks

NASA

- Seemingly random or chaotic flows
 - Deterministic yet unpredictable (e.g. daily weather)
 - Understand through statistical approach (e.g. climate)
- Exists at multiple length & time scales
 - Energy at large scales
 - Dissipated by friction/viscosity at small scales
- Leads to enhanced mixing & transport
 ⇒ Why we're interested in magnetic fusion

Universität Duisburg-Essen

The Great Wave off Kanagawa, Hokusai (1831)

Spectroscopic imaging provides a 2D picture of turbulence in tokamaks: cm spatial scales, μs time scales, <1% amplitude

• Utilize interaction of neutral atoms with charged particles to measure density

Rough estimate of turbulent diffusivity indicates it's a plausible explanation for confinement

• $D_{turbulence} \sim (step size)^2 \times "collision frequency"$

step size ~ 5-7 particle orbits ~ cm's "collision frequency" ~ 100 kHz

Rough estimate of turbulent diffusivity indicates it's a plausible explanation for confinement

time-averaged temperature

cm

1-2 m

boundary

Turbulence confinement time estimate ~ 0.1 s Experimental confinement time $\sim 0.1 \, s$

Interpretation aided by theory and nonlinear simulations

- State-of-the-art kinetic codes, 3D space + 2D particle motion
- Self-consistent electric and magnetic fields (Maxwell's equations)
 - 100's millions of grid points, or 10's billions of particle markers
 - Millions of cpu-hours, exploiting up to 200,000 cpu's

Physically realistic nonlinear turbulence simulations now capable of reproducing measured behavior

Movies at: https://fusion.gat.com/theory/Gyromovies

Analogy for turbulence in tokamaks - density gradient in the presence of gravity

- Higher density on top of lower density, with gravity acting downwards (Rayleigh-Taylor instability)
- Any small perturbation becomes unstable
- Convection mixes regions of different density

gravity density/pressure

Centrifugal force in toroidal field acts like an effective gravity

Centrifugal force in toroidal field acts like an effective gravity

Fast parallel dynamics + helical field lines provides stability \rightarrow gradient must surpass a threshold for instability

Onset of turbulence reduces the achieved temperature that would have been present due only to diffusion

Temperature gradient (T_{hot} - T_{cold})

Onset of turbulence reduces the achieved temperature that would have been present due only to diffusion

Temperature gradient (T_{hot} - T_{cold}) Analogous to convective transport when heating a fluid from below ... boiling water (before the boiling)

Nonlinear simulations have improved quantitative predictive capability

 Remember, predicting "climate" not "weather" – only concerned with statistical averages

Success in predicting confinement in multiple tokamaks around the world \rightarrow confidence in ITER

 Considerable work remains to validate the kinetic physics responsible for turbulence, enabling more comprehensive predictions

Equilibrium sheared flows can tear apart turbulent eddies, reduce turbulence \rightarrow improve confinement

- Strong flows often present
- Heat loss through ions no longer turbulent, collision dominated (good!)

Snapshot of density without flow shear

Snapshot of density with flow shear

In neutral fluids, sheared flows are usually the source of free energy to drive turbulence

- Thin (quasi-2D) atmosphere in axisymmetric geometry of rotating planets similar to tokamak plasma turbulence
- Stratospheric ash from Mt. Pinatubo eruption (1991) spread rapidly around equator, but confined in latitude by flow shear

Flow shear reduces turbulence at ion (cm) scales, electron (mm) scale turbulence remains

• Still provides heat loss → plug one leaky hole, another one opens!

density fluctuations

6 ion radii ───── 360 electron radii ────> ~2 cm

Flow shear reduces turbulence at ion (cm) scales, electron (mm) scale turbulence remains

• Still provides heat loss → plug one leaky hole, another one opens!

density fluctuations

6 ion radii ───── 360 electron radii ────> ~2 cm

• Challenge to diagnosis even smaller fluctuations – e.g. microwave scattering

At high pressure, magnetic turbulence becomes important \rightarrow another leaky hole to plug!

- Can we optimize pressure & flow shear to reduce all "flavors" of turbulence?
- NSTX presently undergoing an upgrade (stronger magnetic field, heating power) to test these predictions (late 2014)
- <u>Open challenge</u>- measure internal magnetic fluctuations

Turbulence plays a role in other plasmas throughout the universe, many possible areas of overlap

- Magnetosphere around earth
- Solar atmosphere, solar wind
- Accretion disks around black holes
- Origin of planetary, stellar and cosmic magnetic fields
- Plasma arcs, plasma processing
- Magnetic dynamo in earth's core —>

European Space Agency

(G. A. Glatzmaier/Los Alamos National Lab)

With our present understanding of turbulent transport, confident ITER will demonstrate ~500 MW fusion power

- But ITER is big = \$\$\$
- Frontier is to optimize confinement utilizing new physics understanding, innovative diagnostics and simulations
- Will eventually have to cope with exhausting power to plasma facing components – Hartwig, next talk

Thank you!

Improved confinement means more fusion power for a smaller device = lower Cost of Electricity (COE)

 Caveats: more fusion power for a given device size = more power on plasma facing components – not obvious how to cope with (Hartwig, next talk...)

In addition to flow shear, similar improvements achieved due to other mechanisms

- Magnetic topology/shaping
 - Exploit helical field lines + fast parallel motion to twist eddies apart
- Self-driven "zonal flows"
 - Turbulence drives benign zonal flows that act as self-regulating energy sink
 - Analogous to jet stream

- Presence of high energy ions can reduce turbulence
 - Favorable for ITER and reactors with fusion produced high energy α 's (Helium nuclei)

Self-generated "zonal flows" impact saturation of turbulence and overall transport

Late linear stage demonstrates structure of fastest growing modes (R-T like)

Large shear flows from primary instabilities cause zonal flows to develop (K-H like)

Zonal flows develop uniformly on flux surfaces, with narrow radial extent

More sensitive tests of underlying physics required to constrain simulation validity

 Breakthrough in simultaneously measuring density & temperature

