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Motivation
• Idealistic goal of magnetic fusion energy (MFE) – create a 

self-sustaining “burning” plasma with ~1 GWe of power

• Requires sufficient pressure & energy confinement to obtain
fusion power > power loss

nTτE > 5×1021 m-3⋅keV⋅s

• Confinement (τE) dominated by turbulent transport (much 
greater than collisional diffusion)

χturb >> χcollisions

⇒ Want to understand (reduce?) turbulent transport in MFE
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Toroidal Magnetic Geometry For Plasma 
Confinement - Tokamaks

• Helical magnetic field provides nested flux surfaces to confine energetic 
(~100 million °C, 10 keV) plasma

transits poloidal
transits toroidalqfactor safety ==

R – major radius

a – minor radius



Gyromotion In A Magnetic Field

• Particles free to move parallel to B
• Strong magnetic field (B=5T) leads to a 

deuterium gyroradius (~10 keV)
ρi≈3.7 mm << 1-5 meter device size

• If transport was due only to collisional
diffusivity

confinement times would be sufficiently 
long, also increasing with temperature
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Toroidicity Leads To Inhomogeneity in |B|

• Magnetic field strength varies as B ~ 1/R, 
weaker on the outboard side

• ∇B and curvature (κ) point towards symmetry 
axis, leads to additional perpendicular drifts
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∇B & Curvature Lead To Perpendicular Drifts

• Drifts are mostly vertical (Z direction)
• Drift off flux surface leads to enhancement of 

collisional transport

• Dependent on particle energy (v||
2, v⊥

2) ~ (T||, T⊥)
• What happens when there are small perturbations in 

T||, T⊥?
⇒ Linear stability analysis…
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Cartoon of Temperature Gradient Driven 
Instabilities

• Fourier decompose 
perturbations in space, 
assume small δT 
perturbation

• Spatial variation in T(θ) 
leads to variation in 
toroidal drifts

• Resulting compression 
(∇⋅vdi) causes a density 
perturbation
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Dynamics Must Satisfy Quasi-neutrality

• Quasi-neutrality (Poisson equation, k⊥
2λD

2<<1) requires

• For this ion drift wave instability, parallel electron motion is very rapid

⇒ Electrons (approximately) maintain a Boltzmann distribution
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Perturbed Potential Creates E×B Advection
• Advection occurs in the 

radial direction

∇B, curvature
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Background Temperature Gradient Reinforces 
Perturbation ⇒ Instability
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Simple Analogy to Rayleigh-Taylor (Rayleigh-
Benard) Instabilities

• Instability due to alignment of gravity force with density gradient force

g ∇ρ



Same Dynamics Occur On Inboard Side But 
Now Temperature Gradient Is Stabilizing

• Advection with ∇T counteracts perturbations on inboard side – “good”
curvature region
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Fast Parallel Motion Along Helical Field Line 
Connects Good & Bad Curvature Regions

• Approximate growth rate on outboard side

• Parallel transit time

• Expect instability if γinstability > γparallel , or

• Threshold gradient for temperature gradient driven instabilities have been 
characterized over parameter space with more accurate calculations…
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Stability Calculated With Gyrokinetic Codes

• Evolving 5D “gyro-averaged” distribution function

• Also must solve gyrokinetic-Maxwell equations to obtain perturbed fields
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Example From Gyrokinetics

• Using fixed profile gradients in tokamak geometry
• Many poloidal modes unstable

E×B flows

GYRO simulation (http://fusion.gat.com/theory/Gyro)
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SEE ALSO GKW WEBPAGES: 
http://www2.warwick.ac.uk/fac/sci/physics/research/
cfsa/people/hornsby/



Perpendicular Non-Linear Interactions Provide 
Saturation 

Late linear stage 
demonstrates structure of 
fastest growing modes
(R-T like)

Large shear flows from 
primary instabilities cause 
zonal flows to develop
(K-H like)

Zonal flows develop 
uniformly on flux surfaces, 
with narrow radial extent

GYRO simulation (http://fusion.gat.com/theory/Gyro)

...fv
t

)f(
E +δ∇⋅δ=

∂
δ∂ r



Again, Simple Analogy with R-T and Kelvin-
Helmotz Instability

• Linearly growing sheared flow field results in Kelvin-Helmholtz instability

RT - Linear
RT Non-Linear



Fully Developed Turbulence Becomes Isotropic (in 2D)

• Highly elongated along the field 
line (fast parallel motion)

• Roughly isotropic in perpendicular 
directions (non-linear interactions)

⇒ Quasi-2D

• Stronger fluctuations on the 
outboard side (“bad” curvature)



Spatial Correlation On The Order Of Gyroradii

• Perpendicular correlation    Lr≈Lθ ~ 7ρi

• Decorrelation time               τ ~ 10 LT/vTi

• Turbulent thermal diffusivity 

• Intensity levels
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Transport Very Non-Linear With Gradients

Effective threshold



Do We Understand Plasma Turbulence?

• A little bit - quantitative predictions of energy confinement times 
and plasma profiles based on comprehensive turbulence codes 
are becoming plausible

• ANY QUESTIONS?

Predicted energy content







Direct Comparison Of Measured Fluctuation Spectra 
With Simulated Spectra

• Simulation output is processed in a manner representative of the actual 
diagnostic (“synthetic diagnostics”)

• Agreement in core plasmas are not far off



Additional Physics Often Important

• Particles trapped in the inhomogenous field can add to instability
• Collisions can stabilize these trapped particle influences
• Electromagnetic perturbations at higher β=nT⋅2μ0/B2 can become important

Magnetic shear can also influence 
stability and transport significantly



Can Generalize To Arbitrary 3D Topology -
Stellarators

NCSX (National Compact Stellarator
Experiment, Princeton, NJ USA)
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HSX (Helically Symmetric 
Experiment, Madison, WI USA)



HSX - Helically Symmetric Experiment
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