

Micro-instabilities and Turbulence In Toroidal Magnetically Confined Plasmas

Walter Guttenfelder Postdoc Seminar December 15, 2009

Motivation

- Idealistic goal of magnetic fusion energy (MFE) create a self-sustaining "burning" plasma with ~1 GWe of power
- Requires sufficient pressure & energy confinement to obtain fusion power > power loss

 $nT\tau_E > 5 \times 10^{21} \text{ m}^{-3} \cdot \text{keV} \cdot \text{s}$

• Confinement (τ_E) dominated by turbulent transport (much greater than collisional diffusion)

 $\chi_{turb} >> \chi_{collisions}$ $(q = -n\chi \nabla T)$

 \Rightarrow Want to understand (reduce?) turbulent transport in MFE

Toroidal Magnetic Geometry For Plasma Confinement - Tokamaks

 Helical magnetic field provides nested flux surfaces to confine energetic (~100 million °C, 10 keV) plasma

safety factor = $q = \frac{toroidal transits}{poloidal transits}$

Gyromotion In A Magnetic Field

- Particles free to move parallel to B
- Strong magnetic field (B=5T) leads to a deuterium gyroradius (~10 keV)
 ρ_i≈3.7 mm << 1-5 meter device size
- If transport was due only to collisional diffusivity $\chi_{coll} \sim \frac{\Delta x^2}{\Delta t} \sim \rho_i^2 \cdot v_i$

confinement times would be sufficiently long, also increasing with temperature

$$\tau_{\text{E,coll}} \sim \frac{a^2}{\chi_{\text{coll}}} \sim \left(\frac{a}{\rho_i}\right)^2 \frac{1}{\nu_i} \sim T_i^{1/2}$$

Toroidicity Leads To Inhomogeneity in |B|

- Magnetic field strength varies as $B \sim 1/R$, weaker on the outboard side
- ∇B and curvature (κ) point towards symmetry axis, leads to additional perpendicular drifts

4 4.2

VB & Curvature Lead To Perpendicular Drifts

Assuming $\rho \cdot \nabla B/B = \rho/L_B <<1$

$$\vec{v}_{\kappa} = m v_{\parallel}^2 \frac{\hat{b} \times \vec{\kappa}}{qB}$$
$$\vec{v}_{\nabla B} = \frac{m v_{\perp}^2}{2} \frac{\hat{b} \times \nabla B / B}{qB}$$

If $\beta = nT \cdot 2\mu_0 / B^2 \ll 1$ $\nabla B / B \approx \kappa \approx 1 / R$

- Drifts are mostly vertical (Z direction)
- Drift off flux surface leads to enhancement of collisional transport
- Dependent on particle energy $(v_{\parallel}^2, v_{\perp}^2) \sim (T_{\parallel}, T_{\perp})$
- What happens when there are small perturbations in T_{\parallel}, T_{\perp} ?
- \Rightarrow Linear stability analysis...

Cartoon of Temperature Gradient Driven Instabilities

 $\vec{v}_{d,ion}$

n

n+

n-

n+

n-

- Fourier decompose perturbations in space, assume small δT perturbation
- Spatial variation in T(θ) leads to variation in toroidal drifts
- Resulting compression (∇·v_{di}) causes a density perturbation

Dynamics Must Satisfy Quasi-neutrality

• Quasi-neutrality (Poisson equation, $k_{\perp}^2 \lambda_D^2 <<1$) requires

• For this ion drift wave instability, parallel electron motion is very rapid

 $\omega < k_{\parallel} v_{Te}$

 \Rightarrow Electrons (approximately) maintain a Boltzmann distribution

$$(n_0 + \widetilde{n}_e) = n_0 \exp(-e\widetilde{\phi}/T_e)$$

$$\widetilde{\mathsf{n}}_{\mathrm{e}} \approx \mathsf{n}_{\mathrm{0}} \mathsf{e} \widetilde{\varphi} / \mathsf{T}_{\mathrm{e}} \Rightarrow \widetilde{\mathsf{n}}_{\mathrm{e}} \approx \widetilde{\varphi}$$

Perturbed Potential Creates E×B Advection

3.2 3.4 3.6 3.8 4 4.2

Background Temperature Gradient Reinforces Perturbation \Rightarrow Instability

Simple Analogy to Rayleigh-Taylor (Rayleigh-Benard) Instabilities

• Instability due to alignment of gravity force with density gradient force

Same Dynamics Occur On Inboard Side But Now Temperature Gradient Is Stabilizing

 Advection with VT counteracts perturbations on inboard side – "good" curvature region

Fast Parallel Motion Along Helical Field Line Connects Good & Bad Curvature Regions

- Approximate growth rate on outboard side
- Parallel transit time

 $\gamma_{\text{parallel}} \sim \frac{V_{\text{th}}}{qR}$

 $\gamma_{\text{instability}} \sim \frac{V_{\text{th}}}{\sqrt{RL_{T}}} \quad 1/L_{T} = -1/T \cdot \nabla T$

- Expect instability if $\gamma_{\text{instability}} > \gamma_{\text{parallel}}$, or $\left(\frac{R}{L_T}\right)_{\text{threshold}} \approx \frac{1}{q^2}$
- Threshold gradient for temperature gradient driven instabilities have been characterized over parameter space with more accurate calculations...

Stability Calculated With Gyrokinetic Codes

• Evolving 5D "gyro-averaged" distribution function

$$f(\vec{x}, \vec{v}, t) \xrightarrow{gyroaverage} f(\vec{R}, v_{\parallel}, v_{\perp}, t)$$

$$f=F_{_M}+\delta f$$

• Also must solve gyrokinetic-Maxwell equations to obtain perturbed fields $\tilde{\varphi}$

Example From Gyrokinetics

- Using fixed profile gradients in tokamak geometry
- Many poloidal modes unstable

Snapshot of density perturbations in linear phase

GYRO simulation (http://fusion.gat.com/theory/Gyro)

Perpendicular Non-Linear Interactions Provide Saturation

$$\frac{\partial(\delta f)}{\partial t} = \delta \vec{v}_{\mathsf{E}} \cdot \nabla \delta f + \dots$$

Late linear stage demonstrates structure of fastest growing modes (R-T like) Large shear flows from primary instabilities cause zonal flows to develop (K-H like)

Zonal flows develop uniformly on flux surfaces, with narrow radial extent

GYRO simulation (http://fusion.gat.com/theory/Gyro)

Again, Simple Analogy with R-T and Kelvin-Helmotz Instability

• Linearly growing sheared flow field results in Kelvin-Helmholtz instability

RT Non-Linear

- Flows driven by RT primary excite KH instability, leading to generation of smaller scale structure
- Secondary instability mechanism important with dominant single-mode primary

Fully Developed Turbulence Becomes Isotropic (in 2D)

- Highly elongated along the field line (fast parallel motion)
- Roughly isotropic in perpendicular directions (non-linear interactions)
- \Rightarrow Quasi-2D
- Stronger fluctuations on the outboard side ("bad" curvature)

Spatial Correlation On The Order Of Gyroradii

- Perpendicular correlation $L_r \approx L_{\theta} \sim 7\rho_i$
- Decorrelation time

$$\tau \sim 10 L_T/V_{Ti}$$

• Turbulent thermal diffusivity

$$\chi_{i} \leq 1.0 \cdot \frac{\rho_{i}^{2} V_{Ti}}{L_{Ti}} \left(\sim \frac{L_{r}^{2}}{\tau} \right)$$

• Intensity levels

$$\frac{\widetilde{T}}{T_0} \le 1\%$$

Transport Very Non-Linear With Gradients

Do We Understand Plasma Turbulence?

• A little bit - *quantitative* predictions of energy confinement times and plasma profiles based on comprehensive turbulence codes are becoming plausible

• ANY QUESTIONS?

BEAM EMISSION SPECTROSCOPY MEASUREMENT OF LOCALIZED, LONG-WAVELENGTH ($k_{\perp}\rho_{I}$ < 1) DENSITY FLUCTUATIONS

EXAMPLE SEQUENCE OF TIME-RESOLVED 2D TURBULENCE FLOW FIELD

Vectors represent local velocity field (scaled by image)

Direct Comparison Of Measured Fluctuation Spectra With Simulated Spectra

- Simulation output is processed in a manner representative of the actual diagnostic ("synthetic diagnostics")
- Agreement in core plasmas are not far off

Additional Physics Often Important

- Particles trapped in the inhomogenous field can add to instability
- Collisions can stabilize these trapped particle influences
- Electromagnetic perturbations at higher $\beta = nT \cdot 2\mu_0/B^2$ can become important

 Physically, turbulent transport is expected to be reduced as the shear rate (ω_s~dU₀/dy) approaches the turbulence decorrelation rate (Δω_p) (Biglari, Diamond, Terry, 1990)

Magnetic shear can also influence

Can Generalize To Arbitrary 3D Topology -Stellarators

NCSX (National Compact Stellarator Experiment, Princeton, NJ USA)

HSX (Helically Symmetric Experiment, Madison, WI USA)

HSX - Helically Symmetric Experiment

