



# Investigating electromagnetic effects on core transport in Alcator C-Mod H-mode discharges

W. Guttenfelder<sup>1</sup>, N.T. Howard<sup>2</sup>, J. Irby<sup>3</sup>, F.M. Poli<sup>1</sup>, A.E. White<sup>3</sup>, W.F. Bergerson<sup>4</sup>, D.L. Brower<sup>4</sup>, J. Candy<sup>5</sup>, W.X. Ding<sup>4</sup>, C.E. Kessel<sup>1</sup>, C. Sung<sup>3</sup>, S.M. Wolfe<sup>3</sup>, P. Xu

<sup>1</sup> Princeton Plasma Physics Laboratory <sup>2</sup> ORISE

<sup>3</sup> Massachusetts Institute of Technology

<sup>4</sup> University of California – Los Angeles

<sup>5</sup> General Atomics



APS-DPP, New Orleans Oct. 27-31, 2014

### **Overview & Summary**

- Beginning validation of gyrokinetic simulations for high- $\beta$  ITER-like H-mode plasmas in Alcator C-Mod
  - β<sub>N</sub>=1.3-2.1 H-modes unstable to ITG (r/a~0.5-0.8), sub-dominant microtearing modes (MTM) also predicted
  - Baseline nonlinear simulations are dominated by ITG, but ion/electron heat fluxes do not match experiment
  - Varying T<sub>e</sub> & T<sub>i</sub> gradients to match fluxes changes balance of ITG vs. MTM, challenges nonlinear simulations (requires large numerical resolution)
- Characterizing expected importance of electromagnetic effects
  - Finite  $\beta$  reduces predicted ion heat fluxes from ITG by 50%
  - EM flutter transport contributions are small (1% for heat, 15% for particle flux)
- Using synthetic diagnostic, predict sensitivity of polarimeter diagnostic to  $\delta n_e$ ,  $\delta B_r$  using synthetic diagnostic
  - $|\delta B/B_0| \sim 1\% |\delta n/n_0|$ , negligible influence of  $\delta B$  on Faraday rotation
  - Will likely change if predicted character of turbulence changes (ITG  ${\rightarrow}$  MTM) with gradient variations



### **EXPERIMENTAL DETAILS**



### Analysis based on ITER-like Hmode discharges with $\beta_N$ =1.3-2.1

- ITER-like discharges with 2.5-5 MW ICRH heating (Kessel, NF 2013)
- Using reduced  $B_T=2.6 \text{ T}$  to achieve high  $\beta_N$  and  $f_{GW}$  (higher  $v_*$  compared to ITER)
- Dominant electron heating, T<sub>e</sub>~T<sub>i</sub>, no torque (expect low rotation, *but no measurement*)
- Following transport analysis and gyrokinetic scoping studies around 1.3 s





# TRANSP runs & profiles

- 1120717006 (1300 ms) TRANSP ID 87637
- 1120719005 (1300 ms) TRANSP ID 87632
- 1120719014 (1300 ms) TRANSP ID 87634
- Measured T<sub>i</sub> profiles unavailable - scaled χ<sub>i,NC</sub> to match neutron rate
  - New experiment planned to get  $T_i$ ,  $v_{\phi}$ , and MSE-constrained q profile
- Flat Z<sub>eff</sub> assumed

Alcator

C-Mod

 For GYRO sims, keeping D & B (sometimes Mo)





## Fluctuation data available from polarimeter, PCI, TCI and reflectometer for validation with simulations



### LINEAR GYROKINETICS



## Initial linear GYRO stability simulations show that ITG dominates r/a=0.6-0.8

- Microtearing modes (MTM) exist for  $k_{\theta}\rho_s < 0.4$  at r/a=0.5, 0.6
  - Distinguishable from eigenfunctions/spatial structure (not shown)
  - Tracking MTM when subdominant using eigenvalue solver (dashed line)
- Clearly distinct dispersion in real frequencies
- Similar results for other two shots



#### Linear ITG weakly stabilized by finite beta (r/a=0.6)

• MTM has threshold at  $\beta_e \sim 0.3\% \sim 1/2 \cdot \beta_{e,exp}$ , predicts much larger EM fluctuations,  $|\delta B_{MTM}/B_0| \sim 20\%$  of  $|\delta n_{MTM}/n_0|$ 



- Fits for 1120719014 ( $\beta_N$ =2.1) give a/L<sub>Ti</sub> ~ 1.4·a/L<sub>Te</sub> (r/a=0.6)
  - a/L<sub>Ti</sub> ~ a/L<sub>Te</sub> in the other two shots (no ion measurements)
- Let's investigate sensitivity to gradients

Alcator C-Mod

### ITG stiff with ion temperature gradient ( $a/L_{Ti}$ ), MTM stiff with electron temperature gradient ( $a/L_{Te}$ )



## Microtearing present over broad radial region, but always subdominant to ITG

• MTM getting stronger further out in radius, but so is ITG





### MTM shows non-monotonic dependence with collisionality, as predicted in core of NSTX & AUG

- Same dependence predicted in core of NSTX [Guttenfelder, 2012] and ASDEX-UG [Doerk, 2012]
- Perhaps expected to be less relevant at lower collisionality
  - (ITER r/a~0.6,  $v_e \sim 10^{-2} c_s/a$ )





### **NONLINEAR GYROKINETICS**



#### Initial nonlinear run for 1120719014, 1300 ms, r/a=0.6

- For base case, fluxes dominated by ES contributions ( $Q_i$ =4.8 MW,  $Q_e$ =1.9 MW)
- Inconsistent with TRANSP analysis (Q<sub>i,exp</sub>=0.6 MW, Q<sub>e,exp</sub>=4.4 MW)
- Only ~1% EM contribution (~ $\delta B_r$ ) to  $Q_e$

**Collisions** 





Guttenfelder, APS-DPP 2014, New Orleans LA

 $k_{\theta}\rho_{s}$  [min, max] = [0.049, 1.14]  $k_{r}\rho_{s}$  [min, max] = [0.050, 3.21]

[n||,nλ,ne]=[14,8,8]×2

#### Ion heat flux (Q<sub>i</sub>) decreases ~50% with finite $\beta_e$

- $Q_e$  shows weaker dependence,  $\Gamma_e$  increases
  - Heat flux dependence similar to previous studies (e.g. Pueschel, PoP 2008)
- Biggest EM flutter contribution is to particle flux (~15% inward)





## Try to match fluxes by adjusting gradients – 1.2-1.4×a/L<sub>Te</sub> gives larger Q<sub>e</sub> approaching experiment

- But also increases Q<sub>i</sub> (further from experiment)
- Will probably need a corresponding decrease in a/L<sub>Ti</sub>





## **0.8**×a/L<sub>Ti</sub> (for 1.2×a/L<sub>Te</sub>) reduces $Q_i$ and $\Gamma_e$ much closer to experiment

- Also brings down Q<sub>e</sub> significantly (further from experiment)
- BUT there are serious numerical resolution problems...





#### Insufficient resolution for reduced a/L<sub>Ti</sub> simulations

• Pathological peaking at highest  $k_{\theta}\rho_s$  modes in electron heat flux spectra





Guttenfelder, APS-DPP 2014, New Orleans LA

## Linear tests for n=90 ( $k_{\theta}\rho_s$ =0.88) using nonlinear numerical resolution setup show insufficient resolution

 Artificial growth (n=90, k<sub>θ</sub>ρ<sub>s</sub>=0.88) with insufficient resolution, need nx~500 to recover flux-tube results (i.e. γ~0, stable mode)



- Seems that it's necessary to resolve rational surfaces associated with highest  $k_{\theta}\rho_{s}$  modes,  $\Delta x/\rho_{s} \le 1/(4 \cdot s \cdot k_{\theta}\rho_{s}) \sim 0.25$  (nx $\ge 500$ )
  - $\Delta r_{rat}/\rho_s = 1/s \cdot k_{\theta} \rho_s = 1$  (for  $k_{\theta} \rho_s = 0.88$ , q=1.17, s=1.13)
  - Working on nonlinear simulations

Alcator

C-Mod

#### Relative EM amplitude increases linearly with $\beta_e$

- $\delta B_r/B_0 \sim \text{few \% of } e\delta \phi/T_e \approx \delta n_e/n_{e0}$
- Even if turbulence doesn't change character, expect  $\delta B$  to get bigger  $\rightarrow$  is polarimeter expected to be sensitive to  $\delta B$  fluctutions?





### 2D fluctuation snapshot (in R,Z) C-Mod 1120719014, 1300 ms



### **SYNTHETIC FARADAY ROTATION**



### Utilize synthetic diagnostic to examine sensitivity of polarimeter measurement to $\delta n$ , $\delta B$

- Interested in interferometry, Faraday rotation and Cotton-Mouton effects
  - $$\begin{split} \Psi_{\text{int}} = & c_{\text{int}} \lambda \int dL \cdot (n_e) & c_{\text{FR}} = 2.817 \times 10^{-15} \text{ m/T}, \ \lambda = 118 \mu \text{m} \\ \Psi_{\text{FR}} = & c_{\text{FR}} \lambda^2 \int dL \cdot (B_{||} n_e) & c_{\text{FR}} = 2.631 \times 10^{-13} \text{ 1/T} \end{split}$$

  - $\Psi_{CM} = c_{CM} \lambda^3 \int dL \cdot (B_{\perp}^2 n_e) = c_{CM} = 2.456 \times 10^{-11} \ 1/mT^2$
- Equilibrium  $n_{e0}(R,Z)$ ,  $B_0(R,Z)$  from Thomson Scattering and EFIT
- On right is plot of GYRO  $\delta n_e/n_{e0}$  and  $\delta B_r/B$  vs. R (at Z=0) ۲
  - Simulations don't span entire cross-section, at least use what we've got
  - Would be a little more realistic to run a global simulation, still can't include pedestal



### Let's examine equilibrium first

- Using EFIT (in this case actually .geq from TRANSP plasma state)
- Shown are three polarimeter chords (1,2,4) where data was acquired











### Calculated equilibrium Faraday Rotation bigger than Cotton-Mouton effect, matches experimental measurement



#### Incorporating GYRO fluctuations by interpolating in lab space

- For each polarimeter chord (R,Z), determine corresponding GYRO (r/a,  $\theta$ )
- Interpolate  $\delta n_e(r/a, \theta)$  to obtain  $\delta n_{e,pol}$
- Interpolate  $\delta A_{\parallel}(r/a,\theta)$  onto a 5-point stencil in (R,Z)
- Calculate  $\delta B_R$ ,  $\delta B_Z$  from  $\delta A_{\parallel}(R \pm \Delta R, Z \pm \Delta Z)$ 
  - To lowest order in  $\rho_s/R \rightarrow \delta B_R = -B_{\phi}/B \cdot \delta A_{\parallel}/dZ$ ,  $\delta B_Z = B_{\phi}/B \cdot \delta A_{\parallel}/dR$
- Project along chord to obtain  $\delta B_{\parallel,pol} \cdot dL = (\delta B_R \cdot dR + \delta B_Z \cdot dZ)$



### Predicted Faraday rotation dominated by $\delta n_e \cdot B_{\parallel 0}$ , Interferometric signal ~300× bigger than Faraday rotation

- $(\delta n_e \cdot B_{\parallel 0}) \sim 6 \times (n_{e0} \cdot \delta B_{\parallel})$
- $\delta n_e \sim 0.1 \cdot 10^{20} \text{ m}^{-3}$   $\delta B_{\parallel} \sim 2 \cdot 10^{-3} \text{ T}$
- $n_{e0} \sim 2.5 \cdot 10^{20} \text{ m}^{-3}$   $B_{\parallel 0} \sim 3 \cdot 10^{-1} \text{ T}$

- $\delta \Psi_{int} = c_{int} \lambda \times \int dL \cdot (\delta n_e)$
- $\delta \Psi_{FR} \approx c_{FR} \lambda^2 B_{\parallel 0} \times \int dL \cdot (\delta n_e)$
- $c_{int}\lambda \sim 300 \times c_{FR}\lambda^2 B_{\parallel 0}$
- ⇒ Will estimate sensitivity of Faraday rotation to interferometric contamination due to non-collinearity of two FIR paths



## Simulated synthetic polarimeter phase predicts Faraday rotation fluctuations ~5x smaller than experiment

- Experimental values averaged over 200 ms polarimeter signal (1250-1450 ms)
- RMS amplitude ~5x bigger than synthetic
  - rms  $\delta \psi_{exp} = [0.14, -..., 0.26]$  degrees
  - rms  $\delta \psi_{syn}$  = [0.029, 0.037, 0.051] degrees
- Possible sources of error: (i) haven't matched heat fluxes (possible change in turbulence character) (ii) local, not global, simulations, (iii) not simulating edge and/or near-axis, (iv) contamination from interferometric effects, (v) ...



### **Future work**

- Complete flux-matching simulations with sufficient resolution
  - Will MTM become a more significant contributor?
- Clarify discrepancy between measured and synthetic polarimeter signal
  - If not resolved with local flux-matched simulations consider running global simulations
- Apply synthetic diagnostics for comparison with other available turbulence data (PCI, TCI and reflectometer)
- Possibly run new experiment in 2015 to obtain ion measurements (planned for 2014)

