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Overview & Summary

• Quasilinear predictions are unable to account for experimental observations 
of strong momentum pinch in high beta NSTX H-modes

• Have begun investigating additional effects (nonlinear, EB shear, finite *)
• Initially focused on a low beta L-mode unstable to ITG/TEM (easier to handle 

and interpret computationally):

1) Nonlinear simulations, including EB shear, give Pr and RV/ similar to 
quasilinear analysis
– IF this holds for H-modes, can not explain observed pinch

2) Linear, global (finite *) simulations predict residual stress contributions 
comparable to pinch but directed outward; both smaller than diffusive flux

3) Initial nonlinear, global simulations predict a strong inward momentum flux in 
the absence of flow or flow shear
– Linear and nonlinear global simulations ongoing for high beta H-mode plasmas unstable to 

mix of microtearing (MT) and kinetic ballooning modes (KBM)
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Background & Motivation

3



NSTX-U Progress on momentum transport predictions in NSTX (Guttenfelder, US TTF, April 2014)

Interpretation of toroidal angular momentum transport often 
assumes diffusive and convective components

• Transport equation:

• Assumed transport form:

Prandtl number

Pinch parameter

• Pinch expected due to Coriolis drift [Peeters, 2007], turbulent 
equipartition + thermoelectric force [Hahm, 2007]
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Momentum transport is anomalous in NSTX,
Prandtl numbers /i < 1 for L- and H-modes

• Pr=/i0.3-1.0 over many 
radii and discharges 
(assumes V=0)

• >,NC for both L and H
In L-mode i>i,NC

In H-mode ii,NC

 Pr less useful in H-mode?
• RV/ less ambiguous
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Steady state transport analysis (Kaye et al., 2009)
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Perturbative H-mode experiments (using n=3 magnetic 
braking) indicate existence of an inward momentum pinch

• Local, linear gyrokinetic simulations of ITG turbulence describe pinch 
and scaling in conventional tokamaks  does this hold for NSTX?
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JET     DIII-D
AUG    NSTX

(Tala et al., IAEA 2012)
(Solomon et al., PRL 2008, PoP 2010;
Yoshida et al., NF 2012)
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-3
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• RV/  -(1-7) for many 
NSTX discharges & radii

• Possible dependence on density 
gradient (R/Ln), less clear with 
collisionality (*)
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Local, linear sims unable to 
explain measured pinch

• Guttenfelder (TTF, 2013) showed 
gyrokinetic simulations (GYRO) 
predicting linear stability, Pr and 
pinch (following Peeters, 2007)

• In H-modes, mix of microtearing
(MT) and KBM predicted unstable

• No momentum transport 
predicted for MT but KBM 
predicts:
– Small Pr~0.3-0.5
– Small or outward convection, 

RV/~0-2
– Pinch insensitive to parameter 

variations (R/Ln, *, …)

• In L-mode, ITG/TEM unstable:
– Larger Pr1
– Small inward pinch, RV/ ~ -2-0
– Pinch insensitive to parameter 

variations (R/Ln, *, …)
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Many theoretical mechanisms to consider for momentum 
transport

• More general expression for momentum transport (e.g., Peeters, NF 
2011) includes contributions due to:
– Perpendicular (EB) flow shear [Casson, 2010; Dominguez, 1993]
– Particle convection (usually expected to be small)
– Up-down asymmetry [Camenen, 2009]
– Finite */nonlocal effects (profile shearing, …) [Camenen, 2011]

• Also, important to consider all mechanisms in fully developed nonlinear 
turbulence (i.e. not just quasi-linear)

• In the core of NSTX NBI plasmas, toroidal flow dominates radial force 
balance so that u=(qR/r)E (i.e. negligible vpol, pi contributions)
– In theory and codes we can vary u’, E, u, * independently to identify various 

physical mechanisms

• Have begun to investigate nonlinear, EB shear and finite * effects
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Local nonlinear L-mode predictions
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• Using L-mode analyzed extensively in [Ren, NF 2013]
• Nonlinear simulations run with varying EB shear, parallel 

flow shear and toroidal flow (following [Casson, 2009])

• Summary: Nonlinear results with EB shear largely 
consistent with quasilinear results



NSTX-U Progress on momentum transport predictions in NSTX (Guttenfelder, US TTF, April 2014)

Increasing u drives diffusive transport

• Linear dependence ~u’ as expected
• Pr~0.8, consistent with quasilinear analysis using ks~0.35 (nonlinear peak)
• Heat fluxes ~constant, unaffected by parallel gradient drive
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Increasing u gives convective pinch

• Near linear dependence ~u
• RV/~-1, consistent with quasilinear analysis using ks~0.35

– Subtracting contribution from particle flux, mRpu
• Heat fluxes ~constant, unaffected by toroidal rotation
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EB (perpendicular) shear drives strong inward convection 
but nonmonotonic

• Near linear dependence for small enough EB shear
• Decreases above E>0.15 as EB shear begins to suppress turbulence

– Seen in all transport channels - , Q, 
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Using purely toroidal flow gives less transport,
Pr approaches diffusive-only value at large flow shear

• Can define an effective momentum diffusion using purely toroidal flow, 
E=(r/qR)u (appropriate for NBI driven core plasma in NSTX)
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To better mimic experiment, calculating Pr and RV/ using 
only 20% variation in u, u~E around experimental values

• Inferred Pr and RV/ vary because of nonlinear dependencies
• Calculated two ways:

– Using reference point at u=0 (as above), e.g. (uexp) – (0)
– Using incremental change u=20%, e.g. (uexp) – (0.8*uexp)

• Incremental values (Pr~0.7, RV/~-0.5) similar to values above
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Similar Pr, RV/ found at r/a=0.8

• Odd results at 
r/a=0.65 because 
of much stronger 
EB shear
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Global linear L-mode predictions
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• Investigating Pr, RV/ and residual stress (C*/) for linear, global
simulation (n=23, ks=0.3 at r/a=0.6) (following Camenen, 2011)

• Rough criteria (Peeters, 201) -
expect residual stress from 
profile shearing to be 
comparable to pinch if: 
*(R/LT)2>u

– Close for both L-mode and H-mode
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Quasilinear Pr and RV/ from linear, global simulations in 
good agreement with local simulations
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Diamagnetic profile shear tilts 
eddies, breaks symmetry

• Transport due to residual stress 
(C/) is comparable to pinch 
transport (RV/u), but directed 
outward (opposite pinch)

• Both small compared to diffusive 
component (u)

r/a=[0.5,0.6,0.7]
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Global nonlinear L-mode predictions
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Global nonlinear simulation (no flow or flow shear)

• Significant inward directed momentum flux (no flow or flow shear)
• Transport peaks further out (r/a~0.8) than linear n=23 eigenmode

– More work required to investigate resolution and boundary conditions
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Other considerations
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• Up-down asymmetry weak in these plasmas (far from separatrix)
• Investigating influence of centrifugal effects using GKW 

(Buchholz, Hornsby, Peeters)
• Will investigate uncertainty in profiles and equilibrium 

reconstructions
• Interesting aside: D, C contribute differently to Pr and RV/

(significant carbon impurity fraction in H-modes, Zeff~3)
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Extra slides
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Three flow terms in the strong flow limit
(e.g., from GYRO Technical Guide, https://fusion.gat.com/theory/Gyro)

• Toroidal flow can lead to momentum pinch (e.g., Coriolis [1], 
TEP+thermoelectric [2])

• Parallel flow shear is a thermodynamic drive gradient, can 
cause/enhance instability [3] and drive momentum transport [4]

• EB (perpendicular) flow shear can suppress instability and 
turbulent transport, can also cause momentum transport [5].

• For theoretical insight, can vary each term independently, 
although in the core of NSTX NBI plasmas, toroidal flow 
dominates radial force balance so that:

EB (perpendicular) 
flow shear

Parallel/toroidal flow shear

Toroidal flow

pE qR
r  
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Method for predicting quasi-linear Prandtl (/i) and Pinch 
numbers (RV/)

• Local linear GYRO simulations run between r/a=0.6-0.8 (tor0.5-0.7), with
– deuterium, carbon, electrons
– , A||, B||

– numerical equilibrium (EFIT/LRDFIT)
– ne profiles from averaged inboard/outboard measurements (no centrifugal 

effects in GYRO)

• Pr and RV/ determined using momentum 
flux from different combinations of u, u

• Subtracting particle convection contribution
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Transport of toroidal angular momentum calculated from
delta-f gyrokinetics (GYRO*)

• Transport calculated for toroidal momentum from correlation of perturbed 
distribution function and effective radial drifts from all EM fields

• EM contributions are important in NSTX H-modes
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*Candy & Belli, GYRO Technical Guide, https://fusion.gat.com/theory/Gyro

Electrostatic
EB drift

Drifts from shear (v||A||~ v||Br) and 
compressional (vA~vB||) 
magnetic perturbations
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EB shear significantly reduces predicted transport

• Predicted fluxes are larger than experiment, opposite ratio of heat fluxes 
(Qe/Qi)

• Including parallel flow shear and toroidal flow have negligible impact on 
particle and heat flux
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Residual stress (/Q) compared to real frequency variation
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