Sensitivity of core transport to finite beta and rotation in DIII-D H-modes

by W. Guttenfelder¹

with D.R. Ernst², A.M. Dimits³, R. Bravenec⁴, J. Candy⁵, A. Garofalo⁵, B.A. Grierson¹, A. Marinoni², G.M. Staebler⁵

¹Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA ²MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA ³Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA ⁴Fourth State Research, Austin, TX, USA ⁵General Atomics, PO Box 85608, San Diego, CA 92186-5608, USA

Presented at the US-EU TTF Salem, MA

April 28 - May 1, 2015

Email: wgutten@pppl.gov

Acknowledgements

- 2014 ALCC award
- Support by DOE, contract #'s DE-AC02-09/CH11466, DE-FG02-94ER54235, DE-AC52-07NA27344, and DE-FC02-04ER54698

National Energy Research Scientific Computing Center

Overview/Summary

- Analysis of QH-mode from National Campaign experiment (Ernst, 2013)
- Shear in equilibrium parallel flow (or parallel velocity gradient, PVG) enhances TEM transport in core (ρ =0.3) of QH-mode with NBI-only heating
 - Reduces nonlinear threshold density gradient ~25%
 - *Critical* to match experimental fluxes
- With additional ECH, density peaking, rotation and rotation shear reduced
 - Influence of PVG becomes negligible
- β is sufficiently high that EM stabilization is crucial to match exp. fluxes
 - Impact of kinetic fast ions ($n_{beam}/n_e=10\%$) is negligible
- Analysis of high- β_{pol} discharge with ITB (Garofalo, 2014)
- PVG enhances linear instability inside ITB (ρ<0.6) where thermal gradients are weak
- In the deep core (ρ=0.3), profile appears to sit at balance between ITG-PVG and KBM instabilities

Experimental background

- QH mode with NBI heating (DIII-D National Campaign experiment, Ernst 2013)
- Addition of ECH reduces density peaking and rotation
- Nonlinear density-gradient-driven TEM sims reproduce transport and DBS spectra using synthetic diagnostic, without & with ECH [Ernst et al., IAEA-FEC EX/2-3 (2014)]
 - Matching case without ECH was more complicated due to rotation shear...

Three linear flow terms in the local, strong flow limit (e.g., from GYRO Technical Guide, https://fusion.gat.com/theory/Gyro)

$$\begin{array}{l} \frac{\partial h_a}{\partial t} + \left(v_{\parallel}\mathbf{b} + \mathbf{v}_d\right) \cdot \nabla H_a + \mathbf{v}_{\mathrm{E0}} \cdot \nabla h_a + \delta \mathbf{v}_a \cdot \nabla h_a + \delta \mathbf{v}_a \cdot \left(\nabla f_{a0} + \frac{m_a v_{\parallel} f_{a0}}{T_a} \frac{I}{B} \nabla \omega_0\right) = C_a^{GL} \left[H_a\right]. \quad (3.29)$$

$$\begin{array}{l} & & & \\ & &$$

- For theoretical insight, can vary each term independently, but if toroidal flow dominates: γ_E=(r/qR)γ_P
- Have ignored centrifugal effects, but has been included in gyrokinetic codes recently (e.g. Casson, 2010)

Reference parameters at ρ =0.3, prior to ECH (2980 ms) & w/ ECH (3080 ms)

Shot	time	ρ	n _e	T _e (kev)	n _{beam} /n _e	ρ _s /a (10 ⁻³)	T _e ∕T _i	a/L _{ne}	a/L _{īi}	a/L _{īe}	Z _{eff}	ν _{ei} (10 ⁻³ c _s /a)	β _e (%)	Mach	γ _ε (c _s /a)	u'	qR/r
155161	2980	0.3	3.68	3.58	0.10	4.87	0.55	1.23	1.27	1.22	3.21	15.4	0.57	0.51	0.077	3.40	15.2
155161	3080	0.3	3.39	5.13	0.15	6.05	0.93	0.77	0.94	1.67	3.08	7.06	0.81	0.30	0.049	1.97	13.7
160710	4750	0.28	6.58	2.81	0.04	3.88	0.69	0.68	0.80	0.22	2.34	44.3	0.68	0.57	0.025	3.66	46.8

Shot	time	ρ	r/a	R/a	q	S	к	δ	dR/dr
155161	2980	0.3	0.33	2.95	1.70	0.15	1.48	0.038	-0.057
155161	3080	0.3	0.33	2.97	1.52	0.21	1.43	0.034	-0.062
160710	4750	0.28	0.30	3.08	4.56	0.74	1.74	0.19	-0.44

 $\begin{aligned} \text{Mach} &= R\Omega/c_{s} \\ \text{u'} &= -R^{2}\nabla\Omega/c_{s} = (R/a)\cdot\gamma_{\text{P,GYRO}} \\ \gamma_{\text{E,GYRO}} &= (r/qR)\cdot\text{u'}\cdot(a/R)\cdot(c_{s}/a) \end{aligned}$

Simulation model choices and resolutions

• Simulations include:

- 3 kinetic species (D, C, e; beam dilution)
- shear electromagnetic effects $(A_{||})$
- collisions (v_{ei} , v_{ii})
- Spot checks of increased radial resolution, including kinetic fast ions (as a model for beam species), and compressional magnetic perturbations (B₁₁) made little difference
- Following simulations run in the zero flow limit (Mach=0), even when flow gradients (u', γ_E) are retained

Nonlinear GYRO grids

Case	2980 ms	3080 ms			
ρ	0.3	0.3			
r/a	0.33	0.33			
L _x ×L _y	136×126	109×114			
Δn	2	2			
nx×ny	128×32	128×32			
min kx max kx	0.046 1.48	0.058 1.84			
min ky max ky	0.050 1.542	0.055 1.71			
[nθ,nλ,ne]	[14×2,8,8]	[14×2,8,8]			
species	D,C,e; beam dilution	D,C,e; beam dilution			

Without ECH, parallel velocity gradient (PVG) from rotation shear contributes substantially to linear instability at ρ =0.3

- Maximum growth rate surpasses E×B shearing rate only when including instability drive from rotation shear, u'=-R²∇Ω/c_s
 - Referred to as parallel velocity gradient (PVG) drive, similar to Kelvin-Helmholtz instability
 - As axis is approached, PVG drive can overcome ⊥ shear suppression as relative strength of E×B shearing rate weakened, γ_E=(r/qR)·u' (for purely toroidal flow)
- Addition of ECH reduces rotation shear (u'=3.4→2.0)
 - Broadens growth rate spectra, but maximum slightly reduced

- Case with no-ECH (2980 ms) strongly driven by large u'>2
- Case with ECH (3080 ms) sits just below transition to strong PVG drive
- In both cases, onset of pure PVG instability (with all other gradients set to zero, a/L_n=a/L_T=0) occurs just above experimental u'
 - For reference, Catto (1973) slab threshold for PVG (∇T=∇n=0):

 $u' > 1/q \cdot k_{\theta} \rho_s = 1.2$ (assuming $k_{\parallel} = 1/qR$)

PVG reduces linear threshold density gradient for no-ECH case

PVG reduces nonlinear threshold density-gradient ~25% for no-ECH case

- Crucial to include PVG to obtain good match with all experimental fluxes
- Addition of ECH reduces density peaking, rotation and rotation shear
 - a/L_n TEM threshold reduced due to increased T_e/T_i & decreased v_e
 - Influence of reduced u' becomes negligible
- Experimental fluxes from TRANSP (subtracted Q_{i,NC} from NEO)

Finite beta stabilization is significant for no-ECH case

nonlinear GYRO simulations Max growth rates DIII-D 155161, 2980 ms (p=0.3) increased ~35% if 10 electromagnetic effects 8 ignored 3 $\Gamma_{e}^{}$ (10²¹ #/s) П_. (N-m) 6 γ (c_s/a) 2 155161, 2980ms 4 EΜ $\rho = 0.3$ ES 2 0.1 $\gamma_{\rm E}$ 0 0 0.5 1.5 2 0.5 1.5 2 0 0 1 0.05 6 3 2.5 5 0 ES 0.5 1.5 0 2 $k_{\theta}^{}\rho_{s}^{}$ $Q_{e}^{}(MW)$ Q_i (MW) 1.5 3 2 **Resulting transport is** 0.5 increased significantly in ΕM the electrostatic (ES) limit 0 0 0.5 1.5 0.5 2 1.5 2 0 0 a/L a/L ne ne

EM stabilization not surprising given proximity of no-ECH case to KBM threshold

- β_e/β_{e,KBM}~[80%,40%] for
 [2980,3080]
- Negligible influence on transport when including kinetic fast ions (n_{beam}/n_e=10%)
- Near-axis simulations in DIII-D [Holland, 2012] and JET [Citrin, 2013] have indicate kinetic fast ions + EM effects can have significant effect on transport, especially as
 β_e approaches β_{e KBM}

Guttenfelder, US-EU TTF (2015)

In running density gradient scans, high frequency oscillations develop for no-ECH case at increased a/L_n

- Near KBM threshold → nonlinear spectra becomes dominated by high-frequency KBM mode at low-k
 - Similar complications arise when including finite rotation (Ma~0.5)
 - Investigating (i) numerical resolution, and (ii) centrifugal effects

PCI measurements shows high frequency fluctuation at low $k_{\rm R}$ in the no-ECH case

- Possibility of nonlinear coupling between PVG-enhanced TEM and nearmarginal KBM?
 - Future: apply synthetic PCI diagnostic

Are there other cases where strong u' contributes to core instability?

- High- β_p experiment with ITB [Garofalo et al., IAEA PPC/P2-31 (2014)]
- 160710, inside ITB (ρ <0.6): Weak thermal gradients (a/L_n & a/L_T<1), strong flow shear (u'>3)

In high- β_{pol} discharge, large u' enhances instability inside ITB (r/a<0.6) where thermal gradients are weak

- PVG enhances ITG/TEM linear growth rates at multiple radii
 - At r/a=0.3, KBM exists without rotation shear (u'=0)

At r/a=0.3, u' sufficiently large to push ITG-PVG growth rates above KBM

- KBM insensitive to u'
- Pure PVG threshold ($a/L_n=0$, $a/L_T=0$) occurs near experimental u'

Profiles at r/a=0.3 also near KBM threshold

- Ideal MHD ballooning modes unstable for ρ=0.1-25
 - second-stable outside ρ >0.25
- Balance between ITG-PVG and KBM depends sensitively on variations of β_e and u^\prime
- Have begun nonlinear simulations

- Analysis in deep core (ρ=0.3) of DIII-D QH-modes & high-β_{pol} H-mode illustrate importance of strong rotation shear and finite beta on microinstability and transport
- While rotation shear and it's effects expected to be weaker in ITER or future burning plasmas, finite beta effects still critical to consider, see other recent work:
 - C. Holland (2012); J. Citrin (2013-2015); S. Moradi (2014); J. Garcia (2015)

10

- Without E×B shear, simulations hit numerical instability after initial transient
 - Also with 0.8× β_e
- Tried running without E×B shear into linear growth phase (just into initial transient), then restarted with E×B shear → turbulence suppressed
- Running with u'=0 (γ_P=0) eliminates problem, but produces negligible transport (with finite γ_E)
- Higher radial resolution hasn't helped so far
- exp. 10⁰ base 10^{-1} 0.8×β_e 10⁻² $0 \times \gamma_{P}$ 10⁻³ nx=256 nx=256,0 $\times \gamma_{\rm p}$ 10^{-4} $1 \times \gamma_E$ 10⁻⁵ 10⁻⁶ 200 400 600 800 1000 0 t (a/c_)

Q_ (MW)

Simulations ongoing

IBM unstable ρ =0.1-0.25, second stable outside

ullet

