
Perturbative Particle Simulation and Other Schemes - 

• Linearized trajectory method: reduce noise lineraly

    • Delta-f methods: reduce noise nonlinearly
      - Weight evolution method
      - Perturbed moments method

• Split-weight method: developing a scheme based on the knowledge from linear 
dispersions: 
 - Quasineutral model

• Other innovative schemes
       - Adiabatic pusher, subcycling and orbit averaging
       - Drift Kinetic Model



Linearized Trajectory Method 
[J. Byers, Fourth Conference on Numerical Simulation of Plasmas, 1970]

• In my opinion, this paper is the forerunner of the modern-day delta-f schemes. 
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Compare this later to the split-weight scheme
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 Delta-f : Weight Evolution Method 
[Dimits and Lee JCP ‘ 93; Parker and Lee Phys. Fluids ‘93]

 • One Dimensional Vlasov-Poisson System of Equations

 • Let  but the perturbed part is not necessarily small. F = F0 + δf
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 • Take the time derivatives

• Let -- the particle weight

• Klimonmtovich - Dupree representation
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Delta-f : Weight Evolution Method (cont.)
• Nonlinear Scheme:

• Linear Scheme to solve: 
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-- particle pushing remains 
   the same as the original total F scheme

}

-- Weight equation

• Poisson’s equation takes account only the perturbed part of the distribution
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Delta-f : Perturbed Moments Method

δf(x, v, t) = F (x, v, t) − F0(x, v, t)

[Aydemir, Phys. Fluids ‘94]

Klimontovich -Dupree Representation

δf(x, v, t) =
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• Fo is the zeroth order distribution.

• However, δf is singular in phase space.

• We can only calculate the velocity moments such as 
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• This method is noisier than the weight evolution method in the linear stage.

• But, it does not have the so-called growing weight problem with the weight evolution method, 
  which is the concern by some people. 



Delta-h: Split-Weight Evolution Method
[Manuilskiy and Lee, PoP ‘00]
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• Let Fi = F0i + δfi Fe = (1 +
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)F0e + δhe

• Poisson’s equation becomes
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A Quasineutral Simulation Model 

• Advantages:

-- δf scheme minimize the noise

-- In addition, δh scheme gets rid of the plasma waves and we can use larger time steps and the 
restriction on grid size also disappears. 

-- Thus, this model is an improvement of the original PIC model in terms of noise, time step and 
grid size. 

-- There is some resemblemce between the current equation above and the Poisson’s equation for 
the linearized trajectory method  



Advantages of Perturbative Particle Simulation Methods: δf & δh
• δf method 

  -- w is the averaged weight of the particles
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w ≈ 10−6 " 1-- For , noise is greatly reduced at t = 0.

-- When w grows and approaches 1, the noise will be resides in normal modes -- it’s part of the 
equilibrium thermodynamics, but it is not the short wavelength white noise.  

• δh method 
  -- Plasma waves are no longer in the simulation - can be shown with the resulting equations
  
-- Only the quasi-neutral waves are in the simulation for 
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-- Noise is reduced to the ion acoustic level and time step is no longer restricted by  ωpe∆t! 1

-- Grid size can be   ∆x! λDe



Other innovative schemes
• Adiabatic pusher, subcycling and orbit averaging:

 -- Take the advantage that the electron moves much faster than the ions

 -- Take the advantage the nature of low frequency waves

• Mode expansion method 

  --  Take the advantage that only a few modes are of interest 

• Schemes for Magnetized Plasmas

   -- The leap-frog scheme [Buneman, JCP 67]

   -- The three-step scheme [Boris, Proc. of the 4th Conference on Numerical Simulation of Plasmas] 

   -- The guiding-center model [Taylor and McNamara, PF, 71]

   -- The low-frequency model - drift kinetic electrons and gyration ions [Lee and Okuda, JCP 78] 

   -- The gyrokinetic model [Lee, PF ’83]
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• Vlasov Equation 

-- Particle codes:

-- Klimontovich and Dupree representation

,
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-- Continuum codes: many ways to solve the equation,

,

-- e.g.,  

1. Semi-Lagrangian method 
[Cheng and Knorr, JCP ‘76],
2. Fourier Transform method
[Denavit and Kruer, Phys. Fluids‘72],
3. Finite-Difference method. 

Simulation of Magnetized Plasmas

j - particle

• Poisson’s Equation: same for both
∇

2φ = −4πe

∫
(Fi − Fe)dv E = −∇φ,

-- Poisson’s equation can be solved on a spatial grid 
-- It can also be solved through direct calculations using particles. 

∇v · [v ×B(x)] = 0 ?

1. Leap-frog method 
[Buneman, JCP ’67],
2. Three-step method
[Boris, 4th CNSP ’70]



Linear Dispersion Relations for Magnetized Plasmas 
- integration along unperturbed orbit [Krall & Trivelpiece, ’74] 

• These are all space charge waves, which give rise to undesirably high level of numerical noise
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The gyrokinetic PIC 
 [perhaps, the beginning of modern nonlinear gyrokinetics]
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Ωi -- quasineutral waves, since the unity term is negligible

 • How? [Lee, PF ’83; Lee, JCP ’87]
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