Perturbative Particle Simulation and Other Schemes -

 Linearized trajectory method: reduce noise lineraly

* Delta-f methods: reduce noise nonlinearly
- Weight evolution method
- Perturbed moments method

» Split-weight method: developing a scheme based on the knowledge from linear
dispersions:
- Quasineutral model

e Other innovative schemes
- Adiabatic pusher, subcycling and orbit averaging
- Drift Kinetic Model



Linearized Trajectory Method

[J. Byers, Fourth Conference on Numerical Simulation of Plasmas, 1970]

* In my opinion, this paper is the forerunner of the modern-day delta-f schemes.
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Compare this later to the split-weight scheme



Delta-f : Weight Evolution Method
[Dimits and Lee JCP © 93; Parker and Lee Phys. Fluids ‘93]

e One Dimensional Vlasov-Poisson System of Equations
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e [et F=F+of but the perturbed part is not necessarily small.
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* Let w=—5 - the particle weight

e Klimonmtovich - Dupree representation
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Delta-f : Weight Evolution Method (cont.)

e Nonlinear Scheme:

o
g } -- particle pushing remains
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Delta-f . Perturbed Moments Method
[ Aydemir, Phys. Fluids ‘94]
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e o 1s the zeroth order distribution.

e However, Of is singular in phase space.

e We can only calculate the velocity moments such as
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* This method is noisier than the weight evolution method in the linear stage.

e But, it does not have the so-called growing weight problem with the weight evolution method,
which is the concern by some people.



Delta-h: Split-Weight Evolution Method

[Manuilskiy and Lee, PoP ‘00]
e One Dimensional Vlasov-Poisson System of Equations
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A Quasineutral Simulation Model

e
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e Poisson’s equation becomes
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* We need another equation, 1.e.,
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e Advantages:

-- Of scheme minimize the noise

-- In addition, Oh scheme gets rid of the plasma waves and we can use larger time steps and the
restriction on grid size also disappears.

-- Thus, this model is an improvement of the original PIC model in terms of noise, time step and
grid size.

-- There 1s some resemblemce between the current equation above and the Poisson’s equation for
the linearized trajectory method



Advantages of Perturbative Particle Simulation Methods: of & oh
« 5f method

-- w 1s the averaged weight of the particles
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- For w ~ 107% « 1, noise is greatly reduced at t = 0.

-- When w grows and approaches 1, the noise will be resides in normal modes -- it’s part of the
equilibrium thermodynamics, but it 1s not the short wavelength white noise.

e 0h method
-- Plasma waves are no longer in the simulation - can be shown with the resulting equations

—- Only the quasi-neutral waves are in the simulation for k°A\7, < 1
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-- Noise is reduced to the ion acoustic level and time step is no longer restricted by wpeAt < 1

- Grid size can be Az > Ap.



Other innovative schemes

e Adiabatic pusher, subcycling and orbit averaging:
-- Take the advantage that the electron moves much faster than the ions

-- Take the advantage the nature of low frequency waves

* Mode expansion method

-- Take the advantage that only a few modes are of interest

e Schemes for Magnetized Plasmas
-- The leap-frog scheme [Buneman, JCP 67]
-- The three-step scheme [Boris, Proc. of the 4th Conference on Numerical Simulation of Plasmas]
-- The guiding-center model [Taylor and McNamara, PF, 71]
-- The low-frequency model - drift kinetic electrons and gyration ions [Lee and Okuda, JCP 78]

-- The gyrokinetic model [Lee, PF *83]



Simulation of Magnetized Plasmas

* Vlasov Equation
- _or . oF g <E+1V><B) o o |V, vxBX)] =09
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-- Particle codes: j - particle 1. Leap-frog method
[Buneman, JCP ’67],
dx; dv;, ¢ 1 2. Three-step method
PR d—t] = (E T Vi B> [Boris, 4th CNSP *70]
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F = Z 6(x —x;)0(v —v;) -~ Klimontovich and Dupree representation

-- Continuum codes: many ways to solve the equation, __ e.g.,

dv 1
% = Vg, d—tg - % (E T Evg X B) 1. Semi-Lagrangian method
Xg [Cheng and Knorr, JCP ¢76],
2. Fourier Transform method
F(XQ + ng? Vg + dVg, t+ dt) — F(X97 Vg t> [Denavit and Kruer, Phys. Fluids‘72],

. . 3. Finite-Diff thod.
e Poisson’s Equation: same for both pterierenee metho
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-- Poisson’s equation can be solved on a spatial grid
-- It can also be solved through direct calculations using particles.



Linear Dispersion Relations for Magnetized Plasmas
- integration along unperturbed orbit [Krall & Trivelpiece, *74] X,0(6) = L ( 5)6_5
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e Cold plasma response
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* Cold response with gyrating ions and drift kinetic electrons,
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* Cold response with drift kinetic electrons and ions (guiding center plasma)
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modified plasma waves with kﬁ < k?

* These are all space charge waves, which give rise to undesirably high level of numerical noise



The gyrokinetic PIC

[perhaps, the beginning of modern nonlinear gyrokinetics]

e For w? < Q7
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e For kL > k;” and Qf > w? , we obtain

[m,; k
W= T —HQ -- quasineutral waves, since the unity term 1s negligible

e How? [Lee, PF ’83; Lee, JCP ’87]



