Actual source code: ex13.c

  2: static char help[] = "This program is a replica of ex6.c except that it does 2 solves to avoid paging.\n\
  3: This program demonstrates use of the SNES package to solve systems of\n\
  4: nonlinear equations in parallel, using 2-dimensional distributed arrays.\n\
  5: The 2-dim Bratu (SFI - solid fuel ignition) test problem is used, where\n\
  6: analytic formation of the Jacobian is the default.  The command line\n\
  7: options are:\n\
  8:   -par <parameter>, where <parameter> indicates the problem's nonlinearity\n\
  9:      problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)\n\
 10:   -mx <xg>, where <xg> = number of grid points in the x-direction\n\
 11:   -my <yg>, where <yg> = number of grid points in the y-direction\n\
 12:   -Nx <npx>, where <npx> = number of processors in the x-direction\n\
 13:   -Ny <npy>, where <npy> = number of processors in the y-direction\n\n";

 15: /*  
 16:     1) Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 17:     the partial differential equation
 18:   
 19:             -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 20:   
 21:     with boundary conditions
 22:    
 23:              u = 0  for  x = 0, x = 1, y = 0, y = 1.
 24:   
 25:     A finite difference approximation with the usual 5-point stencil
 26:     is used to discretize the boundary value problem to obtain a nonlinear 
 27:     system of equations.
 28: */

 30:  #include petscsnes.h
 31:  #include petscda.h

 33: /* User-defined application context */
 34: typedef struct {
 35:    PetscReal   param;         /* test problem parameter */
 36:    PetscInt    mx,my;         /* discretization in x, y directions */
 37:    Vec         localX,localF; /* ghosted local vector */
 38:    DA          da;            /* distributed array data structure */
 39: } AppCtx;


 46: int main(int argc,char **argv)
 47: {
 48:   SNES           snes;                      /* nonlinear solver */
 49:   SNESType       type = SNESLS;             /* nonlinear solution method */
 50:   Vec            x,r;                       /* solution, residual vectors */
 51:   Mat            J;                         /* Jacobian matrix */
 52:   AppCtx         user;                      /* user-defined work context */
 53:   PetscInt       i,its,N,Nx = PETSC_DECIDE,Ny = PETSC_DECIDE;
 55:   PetscTruth     matrix_free;
 56:   PetscMPIInt    size;
 57:   PetscReal      bratu_lambda_max = 6.81,bratu_lambda_min = 0.;

 59:   PetscInitialize(&argc,&argv,(char *)0,help);

 61:   for (i=0; i<2; i++) {
 62:     PetscLogStagePush(i);
 63:     user.mx = 4; user.my = 4; user.param = 6.0;
 64: 
 65:     if (i!=0) {
 66:       PetscOptionsGetInt(PETSC_NULL,"-mx",&user.mx,PETSC_NULL);
 67:       PetscOptionsGetInt(PETSC_NULL,"-my",&user.my,PETSC_NULL);
 68:       PetscOptionsGetReal(PETSC_NULL,"-par",&user.param,PETSC_NULL);
 69:       if (user.param >= bratu_lambda_max || user.param <= bratu_lambda_min) {
 70:         SETERRQ(1,"Lambda is out of range");
 71:       }
 72:     }
 73:     N = user.mx*user.my;

 75:     MPI_Comm_size(PETSC_COMM_WORLD,&size);
 76:     PetscOptionsGetInt(PETSC_NULL,"-Nx",&Nx,PETSC_NULL);
 77:     PetscOptionsGetInt(PETSC_NULL,"-Ny",&Ny,PETSC_NULL);
 78:     if (Nx*Ny != size && (Nx != PETSC_DECIDE || Ny != PETSC_DECIDE))
 79:       SETERRQ(1,"Incompatible number of processors:  Nx * Ny != size");
 80: 
 81:     /* Set up distributed array */
 82:     DACreate2d(PETSC_COMM_WORLD,DA_NONPERIODIC,DA_STENCIL_STAR,user.mx,user.my,Nx,Ny,1,1,
 83:                       PETSC_NULL,PETSC_NULL,&user.da);
 84:     DACreateGlobalVector(user.da,&x);
 85:     VecDuplicate(x,&r);
 86:     DACreateLocalVector(user.da,&user.localX);
 87:     VecDuplicate(user.localX,&user.localF);

 89:     /* Create nonlinear solver and set function evaluation routine */
 90:     SNESCreate(PETSC_COMM_WORLD,&snes);
 91:     SNESSetType(snes,type);
 92:     SNESSetFunction(snes,r,FormFunction1,&user);

 94:     /* Set default Jacobian evaluation routine.  User can override with:
 95:        -snes_mf : matrix-free Newton-Krylov method with no preconditioning
 96:        (unless user explicitly sets preconditioner) 
 97:        -snes_fd : default finite differencing approximation of Jacobian
 98:        */
 99:     PetscOptionsHasName(PETSC_NULL,"-snes_mf",&matrix_free);
100:     if (!matrix_free) {
101:       MatCreate(PETSC_COMM_WORLD,&J);
102:       MatSetSizes(J,PETSC_DECIDE,PETSC_DECIDE,N,N);
103:       MatSetFromOptions(J);
104:       SNESSetJacobian(snes,J,J,FormJacobian1,&user);
105:     }

107:     /* Set PetscOptions, then solve nonlinear system */
108:     SNESSetFromOptions(snes);
109:     FormInitialGuess1(&user,x);
110:     SNESSolve(snes,PETSC_NULL,x);
111:     SNESGetIterationNumber(snes,&its);
112:     PetscPrintf(PETSC_COMM_WORLD,"Number of Newton iterations = %D\n",its);

114:   /* Free data structures */
115:     if (!matrix_free) {
116:       MatDestroy(J);
117:     }
118:     VecDestroy(x);
119:     VecDestroy(r);
120:     VecDestroy(user.localX);
121:     VecDestroy(user.localF);
122:     SNESDestroy(snes);
123:     DADestroy(user.da);
124:   }
125:   PetscFinalize();

127:   return 0;
128: }/* --------------------  Form initial approximation ----------------- */
131: PetscErrorCode FormInitialGuess1(AppCtx *user,Vec X)
132: {
133:   PetscInt       i,j,row,mx,my,xs,ys,xm,ym,Xm,Ym,Xs,Ys;
135:   PetscReal      one = 1.0,lambda,temp1,temp,hx,hy;
136:   PetscScalar    *x;
137:   Vec            localX = user->localX;

139:   mx = user->mx;            my = user->my;            lambda = user->param;
140:   hx = one/(PetscReal)(mx-1);  hy = one/(PetscReal)(my-1);

142:   /* Get ghost points */
143:   VecGetArray(localX,&x);
144:   temp1 = lambda/(lambda + one);
145:   DAGetCorners(user->da,&xs,&ys,0,&xm,&ym,0);
146:   DAGetGhostCorners(user->da,&Xs,&Ys,0,&Xm,&Ym,0);

148:   /* Compute initial guess */
149:   for (j=ys; j<ys+ym; j++) {
150:     temp = (PetscReal)(PetscMin(j,my-j-1))*hy;
151:     for (i=xs; i<xs+xm; i++) {
152:       row = i - Xs + (j - Ys)*Xm;
153:       if (i == 0 || j == 0 || i == mx-1 || j == my-1) {
154:         x[row] = 0.0;
155:         continue;
156:       }
157:       x[row] = temp1*sqrt(PetscMin((PetscReal)(PetscMin(i,mx-i-1))*hx,temp));
158:     }
159:   }
160:   VecRestoreArray(localX,&x);

162:   /* Insert values into global vector */
163:   DALocalToGlobal(user->da,localX,INSERT_VALUES,X);
164:   return 0;
165: } /* --------------------  Evaluate Function F(x) --------------------- */
168: PetscErrorCode FormFunction1(SNES snes,Vec X,Vec F,void *ptr)
169: {
170:   AppCtx         *user = (AppCtx*)ptr;
172:   PetscInt       i,j,row,mx,my,xs,ys,xm,ym,Xs,Ys,Xm,Ym;
173:   PetscReal      two = 2.0,one = 1.0,lambda,hx,hy,hxdhy,hydhx,sc;
174:   PetscScalar    u,uxx,uyy,*x,*f;
175:   Vec            localX = user->localX,localF = user->localF;

177:   mx = user->mx;            my = user->my;            lambda = user->param;
178:   hx = one/(PetscReal)(mx-1);  hy = one/(PetscReal)(my-1);
179:   sc = hx*hy*lambda;        hxdhy = hx/hy;            hydhx = hy/hx;

181:   /* Get ghost points */
182:   DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX);
183:   DAGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX);
184:   VecGetArray(localX,&x);
185:   VecGetArray(localF,&f);
186:   DAGetCorners(user->da,&xs,&ys,0,&xm,&ym,0);
187:   DAGetGhostCorners(user->da,&Xs,&Ys,0,&Xm,&Ym,0);

189:   /* Evaluate function */
190:   for (j=ys; j<ys+ym; j++) {
191:     row = (j - Ys)*Xm + xs - Xs - 1;
192:     for (i=xs; i<xs+xm; i++) {
193:       row++;
194:       if (i == 0 || j == 0 || i == mx-1 || j == my-1) {
195:         f[row] = x[row];
196:         continue;
197:       }
198:       u = x[row];
199:       uxx = (two*u - x[row-1] - x[row+1])*hydhx;
200:       uyy = (two*u - x[row-Xm] - x[row+Xm])*hxdhy;
201:       f[row] = uxx + uyy - sc*PetscExpScalar(u);
202:     }
203:   }
204:   VecRestoreArray(localX,&x);
205:   VecRestoreArray(localF,&f);

207:   /* Insert values into global vector */
208:   DALocalToGlobal(user->da,localF,INSERT_VALUES,F);
209:   PetscLogFlops(11*ym*xm);
210:   return 0;
211: } /* --------------------  Evaluate Jacobian F'(x) --------------------- */
214: PetscErrorCode FormJacobian1(SNES snes,Vec X,Mat *J,Mat *B,MatStructure *flag,void *ptr)
215: {
216:   AppCtx         *user = (AppCtx*)ptr;
217:   Mat            jac = *J;
219:   PetscInt       i,j,row,mx,my,xs,ys,xm,ym,Xs,Ys,Xm,Ym,col[5];
220:   PetscInt       nloc,*ltog,grow;
221:   PetscScalar    two = 2.0,one = 1.0,lambda,v[5],hx,hy,hxdhy,hydhx,sc,*x;
222:   Vec            localX = user->localX;

224:   mx = user->mx;            my = user->my;            lambda = user->param;
225:   hx = one/(PetscReal)(mx-1);  hy = one/(PetscReal)(my-1);
226:   sc = hx*hy;               hxdhy = hx/hy;            hydhx = hy/hx;

228:   /* Get ghost points */
229:   DAGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX);
230:   DAGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX);
231:   VecGetArray(localX,&x);
232:   DAGetCorners(user->da,&xs,&ys,0,&xm,&ym,0);
233:   DAGetGhostCorners(user->da,&Xs,&Ys,0,&Xm,&Ym,0);
234:   DAGetGlobalIndices(user->da,&nloc,&ltog);

236:   /* Evaluate function */
237:   for (j=ys; j<ys+ym; j++) {
238:     row = (j - Ys)*Xm + xs - Xs - 1;
239:     for (i=xs; i<xs+xm; i++) {
240:       row++;
241:       grow = ltog[row];
242:       if (i == 0 || j == 0 || i == mx-1 || j == my-1) {
243:         MatSetValues(jac,1,&grow,1,&grow,&one,INSERT_VALUES);
244:         continue;
245:       }
246:       v[0] = -hxdhy; col[0] = ltog[row - Xm];
247:       v[1] = -hydhx; col[1] = ltog[row - 1];
248:       v[2] = two*(hydhx + hxdhy) - sc*lambda*PetscExpScalar(x[row]); col[2] = grow;
249:       v[3] = -hydhx; col[3] = ltog[row + 1];
250:       v[4] = -hxdhy; col[4] = ltog[row + Xm];
251:       MatSetValues(jac,1,&grow,5,col,v,INSERT_VALUES);
252:     }
253:   }
254:   MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY);
255:   VecRestoreArray(X,&x);
256:   MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY);
257:   *flag = SAME_NONZERO_PATTERN;
258:   return 0;
259: }