Electromagnetic waves (dispersion)

From QED

< PlasmaWiki(Link to this page as [[PlasmaWiki/Electromagnetic waves (dispersion)]])
Jump to: navigation, search

A plasma acts as a dielectric medium for electromagnetic waves. Waves with frequencies slow compared to the plasma frequency will be significantly damped. This is described by the dispersion relation :

\omega^{2}-\omega_{p}^{2}=c^2 k^2

This is a valid relation for homogenous unmagnetized cold plasmas.

We start off with some of Maxwell's equations :

\nabla\times\mathbf{E}=-\frac{1}{c}\frac{\partial\mathbf{B}}{\partial t} \nabla\times\mathbf{B}=\frac{4\pi}{c}\mathbf{J}+\frac{1}{c}\frac{\partial\mathbf{E}}{\partial t}

And the vector relation :

\nabla\times\left(\nabla\times\mathbf{A}\right)=\nabla\left(\nabla\cdot\mathbf{A}\right)-\nabla^{2}\mathbf{A}

Taking the cross product of the first relation and using the vector identity:

\nabla\times\left(\nabla\times\mathbf{E}\right)=\nabla\left(\nabla\cdot\mathbf{E}\right)-\nabla^{2}\mathbf{E}=-\frac{1}{c^2}\frac{\partial}{\partial t}\left(4\pi \mathbf{J}+\frac{\partial\mathbf{E}}{\partial t}\right)

We can rewrite the current as:

\mathbf{J}=n_{e}e\mathbf{v}

And writing the Lorentz force equation

m_{e}\mathbf{a}=-q\left(\mathbf{E}+\frac{\mathbf{v}}{c}\times\mathbf{B}\right)

Since v1 is a perturbed quantitiy and v0 = 0, we can assume it is small compared to c and neglect the magnetic contribution to the lorentz force:

\frac{\partial\mathbf{J}}{\partial t}=n_{e}e\frac{e}{m_{e}}\mathbf{E}

so that:

\nabla\left(\nabla\cdot\mathbf{E}\right)-\nabla^{2}\mathbf{E}=-\frac{1}{c^2}n_{e}e\frac{e}{m_{e}}\mathbf{E}-\frac{1}{c^2}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}}

We can write the perturbed values in terms of plane waves moving in the \hat{z} direction, for example:

\mathbf{E}=\mathbf{E}_{1}\exp i\left(kz-\omega t\right)

Here we have taken E0 = 0 (no zero order electric field). Plugging in:

\nabla\left(ik\hat{z}\cdot\mathbf{E}\right)+k^{2}\mathbf{E}_{1}=-\frac{1}{c^2}\frac{n_{e}e^{2}}{m_{e}}\mathbf{E}_{1}+\frac{1}{c^2}\omega^{2}\mathbf{E}_{1}

The first term on the left must be zero, since the electric field must be perpendicular to the wave vector:

c^2 k^2=\omega^{2}-\frac{n_{e}e^{2}}{m_{e}}

Using the plasma frequency \omega_{p}^{2}=n_{e}e^{2}/m_{e}, we get the dispersion relation:

\omega^{2}-\omega_{p}^{2}=c^2 k^2

This page was recovered in October 2009 from the Plasmagicians page on Electromagnetic_waves_(dispersion) dated 22:38, 10 April 2007.

Personal tools